Article Dans Une Revue Journal of Fungi Année : 2021

Prediction of Genetic Groups within Brettanomyces bruxellensis through Cell Morphology Using a Deep Learning Tool

Résumé

Brettanomyces bruxellensis is described as a wine spoilage yeast with many mainly strain-dependent genetic characteristics, bestowing tolerance against environmental stresses and persistence during the winemaking process. Thus, it is essential to discriminate B. bruxellensis isolates at the strain level in order to predict their stress resistance capacities. Few predictive tools are available to reveal intraspecific diversity within B. bruxellensis species; also, they require expertise and can be expensive. In this study, a Random Amplified Polymorphic DNA (RAPD) adapted PCR method was used with three different primers to discriminate 74 different B. bruxellensis isolates. High correlation between the results of this method using the primer OPA-09 and those of a previous microsatellite analysis was obtained, allowing us to cluster the isolates among four genetic groups more quickly and cheaply than microsatellite analysis. To make analysis even faster, we further investigated the correlation suggested in a previous study between genetic groups and cell polymorphism using the analysis of optical microscopy images via deep learning. A Convolutional Neural Network (CNN) was trained to predict the genetic group of B. bruxellensis isolates with 96.6% accuracy. These methods make intraspecific discrimination among B. bruxellensis species faster, simpler and less costly. These results open up very promising new perspectives in oenology for the study of microbial ecosystems.
Fichier principal
Vignette du fichier
jof-07-00581.pdf (2 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03342935 , version 1 (16-05-2024)

Identifiants

Citer

Manon Lebleux, Emmanuel Denimal, Déborah de Oliveira, Ambroise Marin, Nicolas Desroche, et al.. Prediction of Genetic Groups within Brettanomyces bruxellensis through Cell Morphology Using a Deep Learning Tool. Journal of Fungi, 2021, 7 (8), pp.581. ⟨10.3390/jof7080581⟩. ⟨hal-03342935⟩
124 Consultations
35 Téléchargements

Altmetric

Partager

More