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Abstract: Brettanomyces bruxellensis is described as a wine spoilage yeast with many mainly strain-
dependent genetic characteristics, bestowing tolerance against environmental stresses and persistence
during the winemaking process. Thus, it is essential to discriminate B. bruxellensis isolates at the
strain level in order to predict their stress resistance capacities. Few predictive tools are available to
reveal intraspecific diversity within B. bruxellensis species; also, they require expertise and can be
expensive. In this study, a Random Amplified Polymorphic DNA (RAPD) adapted PCR method was
used with three different primers to discriminate 74 different B. bruxellensis isolates. High correlation
between the results of this method using the primer OPA-09 and those of a previous microsatellite
analysis was obtained, allowing us to cluster the isolates among four genetic groups more quickly
and cheaply than microsatellite analysis. To make analysis even faster, we further investigated the
correlation suggested in a previous study between genetic groups and cell polymorphism using the
analysis of optical microscopy images via deep learning. A Convolutional Neural Network (CNN)
was trained to predict the genetic group of B. bruxellensis isolates with 96.6% accuracy. These methods
make intraspecific discrimination among B. bruxellensis species faster, simpler and less costly. These
results open up very promising new perspectives in oenology for the study of microbial ecosystems.

Keywords: Brettanomyces bruxellensis; morphology; genetic groups; deep learning; RAPD-PCR

1. Introduction

The spoilage yeast Brettanomyces bruxellensis presents many strain dependent characteris-
tics, such as volatile phenol production that contributes to the famous “Brett character” [1–3],
or capacities to withstand many stresses associated with wine related environments (nu-
tritional requirements, resistance to low pH values, capacity to enter in Viable But Not
Cultivable state and SO2 resistance) [4–8]. In addition to this ability of B. bruxellensis to
persist in wine [7,9–11] and in cellars [12,13], the evolution of oenological practices, such
as reducing oenological inputs (like lower SO2 doses) and the impact of climate change
on the physicochemical characteristics of wines (like higher pH levels), make the control
of B. bruxellensis more challenging [14,15] and, therefore, leads to serious financial losses
for winemakers [16]. Consequently, it is important to develop tools to further discrimi-
nate from the species level toward the strain level, and therefore, potentially, to predict
spoilage-related phenotypes.

A large number of methods have been developed to discriminate yeasts at the
strain level, but few studies have investigated intraspecific diversity among the species
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B. bruxellensis, mostly by distinguishing groups of strains. All of the studies described
molecular methods, except one, which used Fourier Transform Infrared Attenuated Total
Reflectance (FTIR-ATR) spectroscopy to analyze the molecular composition of cells with
mid-infrared radiation for B. bruxellensis strain discrimination. Despite being rapid and
not requiring DNA extraction, this method cannot be applied routinely due to the need to
standardize the protocol and access a database specific to the target microorganism [17].

Besides, molecular methods need a DNA extraction step and some of them used
restriction enzymes like the Mitochondrial DNA Restriction Fragment Length Polymor-
phism (mtDNA RFLP) method [18–20] and the Restriction Endonuclease Analysis Pulse
Field Gel Electrophoresis (REA-PFGE) method [21]. Then, methods combining the use
of restriction enzymes and Polymerase Chain Reaction (PCR) allowed for the increase in
discriminating power of the analysis, such as Amplified Fragment-Length Polymorphism
(AFLP) amplification [22,23] and the Sau-PCR method [21,24,25]. However, these methods
that use restriction enzymes are quite laborious and can be difficult to interpret due to
artifacts in electrophoresis [18].

Then, the methods that followed were based only on PCR. One of them was the Intron
Splice Site PCR (ISS-PCR) method [18,26,27]. Recently, microsatellite analysis was applied
for intraspecific discrimination among B. bruxellensis species [21,28]. This technique became
a highly discriminating, robust and reproducible method adapted to the study of large
populations, discriminating strains in different genetic groups and providing information in
particular about their ploidy state and SO2 resistance [5,12,29,30]. Thus, the determination
of the genetic group of a given isolate could allow for predicting the risk of SO2 resistance
and, thus, help winemakers to adapt their antimicrobial techniques [5]. In addition, a
diagnostic tool, TYPEBrett (ISVV-Microflora patent PCT/FR2016/052701) based on the
microsatellite technique was developed and patented. Another PCR-based technique was
the Random Amplified Polymorphism DNA PCR (RAPD-PCR) method. This method was
most widely used to study intraspecific diversity among B. bruxellensis species, even if it
could sometimes be combined with other methods to improve discrimination [19,21,31–37].
The first use of RAPD-PCR provided poor discrimination of wine isolates from reference
strains [31], but the method was improved by combining the individual profiles of each
primer to assign composite profiles to each strain, making it more discriminating [19].
However, RAPD-PCR has sometimes been described as poorly reproducible and less
efficient than other methods, but these problems could be minimized by standardizing
the protocol [21,38]. Therefore, the RAPD-PCR method presents many advantages such as
low cost, ease of use and analysis [39] to reveal intraspecific diversity within B. bruxellensis
species, even if molecular methods require advanced skills and specialized equipment.

Another direction could be explored in order to further simplify discrimination. A pre-
vious work described different cell morphologies depending on the strain, and suggested
a link between the variability in yeast cell shapes and the genetic group to which they
belong [11]. To validate this suggested link, extensive analyses through larger microscopic
observations with a consequent number of isolates should be conducted. In this context,
the use of tools such as those provided by deep learning methods appears obvious. Deep
learning algorithms have been developed to classify images into defined categories by
exploiting available features they contain [40,41]. In recent years, such algorithms have
been applied to images in various biological fields and have transformed the analysis
and interpretation of imaging data. For example, deep learning tools have been used to
discriminate foodborne pathogens [42], to aid in sickle cell anemia diagnosis [43] and to
predict mechanisms of drug resistance of cancer cells [44]. The aim of the present work is
to provide rapid, easy-to-use and inexpensive tools for routine intraspecific discrimination.
First, a RAPD-PCR protocol was adapted to study intraspecific diversity among 74 isolates
belonging to four genetic groups, and provides a baseline for classifying these isolates using
a simple and accessible molecular technique. Simultaneously, a pre-trained Convolutional
Neural Network (CNN) was fitted to predict the genetic group of isolates tested based on
differences in cell morphology.
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2. Materials and Methods
2.1. Yeast Isolates and Strains

This study included a total of 74 isolates previously identified as B. bruxellensis and
discriminated in four different genetic groups (GG1, GG2, GG3 and GG4) by microsatellite
analysis (Table 1): (i) 10 strains of B. bruxellensis from collections (AWRI1499, CDR3, CDR9,
CDR11, CDR12, CDR217, CDR219, LO2E2, LO417, LO6/036) [29], and (ii) 64 isolates
obtained from enological materials and/or wine from wineries (named from 1 to 64) [11].
The yeasts were stored at −80 ◦C in YPD liquid medium (0.5% w/v yeast extract (Biokar,
Beauvais, France), 1% w/v bactopeptone (Biokar), 2% w/v D-glucose (Prolabo, Fontenay-
sous-Bois, France) and 0.02% w/v chloramphenicol (Sigma, St Louis, MI, USA), containing
20% v/v glycerol.

Table 1. List of isolates and strains used in this study.

Isolate/Strain of Reference Genetic Group (GG)

1, 14, 25, 26, 27, 30, 49, 61, 62, LO2E2, CDR3, CDR12 GG1

2, 4, 6, 11, 17, 19, 20 GG2

3, 5, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 23, 24, 28, 29, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52,

53, 54, 55, 56, 57, 58, 59, 60, 64, LO6/036, CDR9, CDR11
GG3

63, CDR217, CDR219, LO417, AWRI1499 GG4
AWRI: Australian Wine Research Institute, Australia; CDR: Côtes du Rhône, Inter Rhône, France.

2.2. Genetic Analysis
2.2.1. DNA Extraction

Using stock-cultures stored at −80 ◦C, cultures were prepared in YPD medium at
28 ◦C. After growth until the stationary phase, cells were harvested by centrifugation
(9150× g for 4 min at 4 ◦C), washed with 1 mL of sterile water and then re-suspended in
200 µL of extraction buffer (SDS 1% w/v, Triton × 100 2% w/v, NaCl 100 mM, Tris 10 mM,
EDTA 1 mM, pH = 8), with 0.3 g glass beads (0.5 mm in diameter; Scientific Industries)
and 60 µL phenol:chloroform:isoamyl alcohol 25:24:1 (Sigma). The cells were broken for
3 × 45 s at 6500 rpm with a 60-s interval using a Precellys 24-Dual Homogenizer (Bertin
Technologies, Montigny-le-Bretonneux, France). After the addition of 200 µL of Tris EDTA
buffer (Tris 10 mM, EDTA 1 mM, pH 8), the cultures were centrifuged at 18,200× g for
10 min at 4 ◦C. The aqueous phase was collected and the DNA was precipitated with 1 mL
of 100% ethanol and then centrifuged at 18,200× g for 10 min at 20 ◦C. The pellet was
washed with 70% ethanol and centrifuged at 18,200× g for 5 min at 20 ◦C. Then, the pellet
was dried and resuspended in sterile water. Finally, the samples were stored at −20 ◦C.
The concentration and purity of DNA was measured by Infinite M200 Pro NanoQuant
(TECAN, Lyon, France).

2.2.2. RAPD-PCR

RAPD profiles were obtained using 3 primers, OPA-02 (5′-TGC CGA GCT G-3′), OPA-
03 (5′-AGT CAG CCA G-3′) and OPA-09 (5′-GGG TAA CGC C-3′) (Eurogentec, Seraing,
Belgium), as previously described [19,21,31,33]. PCR reactions were performed in 40 µL
reactions containing 50 ng of DNA, Go Taq Buffer 1.25×, 1.875 mM MgCl2, 2 µM of primer
(1 primer per PCR reaction), 0.25 mM of each dNTP and 2.5 U of Go Taq polymerase (Go
Taq® Flexi DNA Polymerase, Promega, Madison, WI, USA). The amplification reactions
were carried out in a thermocycler BioRAD T100™ (BioRAD, Marnes-la-Coquette, France)
under the following conditions: initial denaturation at 95 ◦C for 5 min, followed by
40 cycles of 94 ◦C for 1 min, 36 ◦C for 1 min, 72 ◦C for 2 min and a final extension at 72 ◦C
for 10 min [19,33]. The reaction products were analyzed by capillary electrophoresis using
MultiNA (MCE-202/MultiNA, Shimadzu Biotech, Marne la Vallée, France) and the DNA-
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2500 Reagent Kit (Shimadzu Corporation, Marne la Vallée, France) with pGEM®DNA
Markers (Promega, Madison, USA) as ladder.

2.3. Cell Polymorphism Analysis
2.3.1. Cultures

Isolates were grown on YPD plates (YPD broth with 2% w/v agar) at 28 ◦C from the
stock at −80 ◦C. From each YPD plate, one isolated colony was inoculated in 15 mL of YPD
and the liquid cultures were incubated at 28 ◦C for 72 h.

2.3.2. Microscopic Observations

For each culture, 6 µL was placed between the slide and coverslip and optical
microscopic transmitted light observations were performed. Images were scanned at
1280 × 960 pixels, 8-bit gray scale, at ×40 magnification and 38% brightness using the
EVOS® FL Imaging System (Invitrogen, Bothell, WA, USA).

Two data sets were built.
Dataset1 was composed of 10 images per culture and 3 independent cultures for each

of the 74 isolates. Six images of isolate 30 and one of isolate 56 were rejected due to artifacts.
The distribution of images among genetic groups was the following: 354 images for GG1,
210 for GG2, 1499 for GG3 and 150 for GG4.

Dataset2 consisted of 233 images, with 46 images for GG1 (10 images for 1 culture
of isolate 14; 17 images for 2 cultures of isolate 49; 19 images for 2 cultures strain LO2E2),
63 images for GG2 (10 images for 1 culture of isolate 2; 18 images for 2 cultures of isolate 11;
18 images for 2 cultures of isolate 17; 17 images for 2 cultures of isolate 20), 66 images for
GG3 (10 images for 1 culture of isolate 7; 19 images for 2 cultures of isolate 9; 18 images
for 2 cultures of isolate 32; 19 images for 2 cultures of isolate 60) and 58 images for GG4
(10 images for 1 culture of isolate 63; 16 images for 2 cultures of strain CDR219; 16 images
for 2 cultures of strain LO417; 16 images for 2 cultures of strain AWRI1499).

2.3.3. Cell Shape Determination

From dataset1, one representative (without artifact, similar cell density) image per
biological replicate was selected, amounting to 3 images per isolate. A total of 100 cells were
pseudo-randomly selected (excluding buds) from these 3 images. Then, ImageJ software
(1.52i) was used to measure cell morphology characteristics as described in a previous
study [11]. Briefly, the length to width (l/w) ratio and the cell area were determined from
the measurement of 100 single cells per isolate, amounting to 7400 cells.

2.3.4. Deep Learning

The pre-trained Convolutional Neural Network GoogleNet was chosen. This CNN
was trained with over 1 million images classified into 1000 object categories. This network
thus learned rich feature representations for a wide range of images. It had to be adapted
by transfer learning to specialize it for the discrimination of genetic groups. Hence, the end
of the CNN was customized to output 4 categories, corresponding to the 4 genetic groups
instead of the 1000 initial object categories. Then, the learning rate weight of the last layers
was set to 5 to accentuate the learning rate. On the contrary, the learning rate weight of the
10 first layers was frozen in order to keep the advantage of the previous training.

Firstly, dataset1 was used to train the CNN. To fit the input requirement of the
network and increase the number of learning cases, the microscopic images were divided
into subpictures (Figure 1). To do this, each image from dataset1 was divided into multiple
thumbnail images of 224 × 224 pixels, corresponding to the input size of the pre-trained
CNN. Several thousand thumbnails were generated in this way. To balance the sets
for each genetic group, the same number (3000) of randomly selected thumbnails were
used, corresponding to the number of elements in the smallest genetic group (GG4). This
4 × 3000 thumbnail dataset was then randomly divided into two subsets: (i) 75% used for
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CNN training (training dataset), and (ii) 25% used for training performance validation
(validation dataset) and the calculation of the confusion matrix.
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Figure 1. Typical microscopic image divided into thumbnails.

Due to the low number of images available, data augmentation was performed to
increase the amount of training data. The augmentation process was achieved by applying
several random transformations from original images consisting of rotations (−45◦, +45◦),
horizontal and vertical mirrors and x-, y-axis translations (−30 pixels, +30 pixels). The
training was performed on 64 epochs using a Nvidia GTX1080 GPU.

Secondly, dataset2 was used to test the accuracy of the trained model. For each of
the 233 images to be classified, the same thumbnailing process as for the dataset1 was
applied. Then, each thumbnail of the image to be labeled was presented to the CNN, which
associated it with one genetic group. The genetic group that was most frequently assigned
among the thumbnails was then assigned to the image.

3. Results and Discussion
3.1. Intraspecific Discrimination of the B. bruxellensis Isolates into Genetic Groups

RAPD-PCR was adapted here to assess its discriminating power and provide an
accessible protocol to determine the genetic group of B. bruxellensis isolates. RAPD-PCR
assay was performed on 74 B. bruxellensis isolates with 3 different primers among those
most used in the literature: OPA-02, OPA-03 and OPA-09 [19,21,31,33]. The analysis led
to obtaining 4 profiles for OPA-02 (A2 to D2) and OPA-03 (A3 to D3), and 5 profiles for
OPA-09 (A9 to F9) (Figure 2), making OPA-09 the most discriminating primer compared
to the other two primers, in accordance with previous studies [19,31]. The reproducibility
of the RAPD-PCR method adapted in this study was checked (as Supplementary Data,
Figure S1).
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The ability to predict a B. bruxellensis isolate’s adaptability to given environmental
factors, such as SO2 resistance, was demonstrated by determining a genetic group of
isolates using microsatellite genotyping [5]. In this work, we investigated whether the
RAPD-PCR adapted method could assign genetic groups in the same way as microsatellite
genotyping. This was done with the aim of proposing a routine method to potentially
predict SO2 resistance. Therefore, the intraspecific diversity obtained by RAPD-PCR was
compared to the discrimination in genetic groups by microsatellite analysis (Figure 2).
Whatever the primer used, high correlation was obtained between genetic groups and
RAPD-PCR profiles. Nevertheless, primer OPA-02 did not discriminate between GG3 and
GG4, which shared the same profile C2. Similarly for primer OPA-03, GG2 and GG3 shared
the same profile B3. The best correlation was obtained with primer OPA-09 since each
profile corresponded to a unique GG: profile A9 to GG1, B9 to GG2 and D9 to GG4. GG3
was divided into 2 profiles, C9 and E9. Thus, RAPD-PCR was suitable for discriminating
the 74 isolates of B. bruxellensis in the same distribution as microsatellite analysis within
genetic groups described [11,29]. This RAPD-PCR protocol could be applied to provide
a simple and rapid molecular means of determining the genetic group of a B. bruxellensis
isolate, and thus, a prediction of its phenotype since the identification of the genetic group
of a given isolate provides information about its SO2 resistance [5].

3.2. From Cell Polymorphism to Genetic Groups
3.2.1. Qualitative and Quantitative Description of Cell Morphology

In the literature, microscopic observations of B. bruxellensis strains show a high level
of cell polymorphism. Up to now, the majority of the studies reporting polymorphism
in B. bruxellensis have focused on its ability to form filaments, described as a survival
mechanism [45]. Thus, the description of polymorphism as strain dependent mainly
focused on filaments [46–49] at the expense of yeast cells, which display highly diverse
morphology and are not sufficiently exploited. Indeed, correlating the diversity of yeast cell
morphology to an intraspecific genetic diversity is difficult due to the limited data available,



J. Fungi 2021, 7, 581 7 of 13

making it difficult to compare the results of the different studies (few or no microscopic
observations available, heterogeneous images, different culture conditions). Nevertheless,
a previous study suggested that the variability of the yeast cell shapes may be linked to
intraspecific diversity within B. bruxellensis species. Indeed, microscopic observations of
12 strains of B. bruxellensis revealed different cell shapes depending on the strain, and
that this shape variability was linked to the genetic group of the strains [11]. Thus, this
phenotypic characteristic could be a tool for discriminating isolates.

In this work, 74 isolates of B. bruxellensis were observed by transmitted light optical
microscopy, highlighting different cell features. First, several distinctive cell shapes ap-
peared according to the strain: elongated cells (Figure 3a), small cells (Figure 3b) and round
cells (Figure 3c). No influence of growth stage, culture conditions and lifestyle on cell
morphology was noticed (data not shown), confirming previous studies [11,46]. These var-
ious shapes were consistent with previous studies, each of which described a range of cell
shapes such as round, elongated, ovoid, carrot-shaped and ellipsoidal [11,33,46–48,50,51].
In addition, strains belonging to GG4 presented the characteristic of forming multicel-
lular structures (aggregation of independent cells or non-separation of daughter cells)
(Figure 3d), which cannot be described through individual cell shape. Strains belonging to
the other 3 genetic groups only rarely displayed these multicellular structures. This feature
has rarely been described in B. bruxellensis species [46,51].
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Then, to further investigate the link between yeast cell morphology and genetic groups,
it was necessary to compare a large number of cells and rely on quantitative data. Thus,
the qualitative feature “shape” was transposed into a quantitative variable by plotting the
cell area versus the l/w ratio (Figure 3e). The shapes of 100 cells for each of the 74 isolates,
totaling 7400 cells, from dataset1 were assessed: the higher the ratio, the more elongated
the cells and the higher the area value, the bigger the cells. The wide distribution of the
points highlighted highly diverse cell morphology in the species B. bruxellensis.

To investigate this distribution further, density curves were plotted according to the
area on the right and to the l/w ratio on the top, to show the distribution of the cells
inside each genetic group (Figure 4). GG1 and GG4 presented a low average l/w ratio
(1.50), corresponding to rounder cells. However, GG1 presented a lower average area
(13.9 µm2) than GG4 (18.5 µm2). GG2 and GG3 presented higher average l/w ratios
(1.72 and 1.84, respectively), corresponding to more elongated cells. Moreover, these
groups could be discriminated by their average area, 11.5 µm2 for GG2 corresponding
to small cells, compared to 16.9 µm2 for GG3. Differences appeared between genetic
groups, but considering the spread of the curves, overlaps suggested similarities in cell
morphology between genetic groups. In particular, the curves corresponding to GG3 had
a large amplitude. As such, to refine the discrimination according to cell morphology, it
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would be relevant to explore it at the isolate level. Therefore, the average l/w ratio and the
average area of 100 cells were determined for each isolate. The 2D spatial representation
of these averages specified the clusters according to genetic groups (Figure 4). GG2 was
clearly separated from GG3 and GG4, while close to some isolates of GG1. The large
majority of GG3, corresponding to elongated cells, was also clearly separated. However,
it should be noted that some isolates belonging to GG3 had a lower l/w ratio and were
mixed with several GG1 and GG4 isolates. These latter isolates, from GG4, were also
grouped together. Despite some minor confusions between the different groups, it is clear
that, in the culture conditions of this study, the polymorphism of the cells was related to
genetic groups.
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Nevertheless, this manual treatment of the images quickly limited the analysis since it
was time consuming, quite subjective and it took account of only two cell shape attributes,
leaving out the distinctive feature of GG4 to form multicellular structures although it
could be a key point for genetic group discrimination. Thus, in order to analyze all cell
and population features available through microscopic images rapidly and reproducibly,
a more robust method such as deep learning could be applied. Indeed, algorithms for
deep learning, such as convolutional neural networks, allow image classifying into defined
categories by exploitation of all the features available in raw images (even the subtlest
ones) and automatic learning [40,41].

3.2.2. Use of Deep Leaning to Predict the Genetic Group of B. bruxellensis Isolates

For the present study, the use of a CNN allows us to change the focus from studying
single cells to that of the general aspect of the population. Indeed, although the different
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classes share common shapes, the algorithm ought to separate them according to their
differences, and thus, the majority shapes and behaviors.

To exploit intra- and inter-genetic group variability more efficiently, the CNN GoogleNet
was used and trained to classify microscopic images in the 4 genetic groups. The detailed
performance analysis is shown in Table 2. The model successfully predicted the genetic
group of the image 90.8% of the time, with an F1-score of 0.9076. The model was 91.05%
reliable when assigning a genetic group to an image. These results indicated that the model
was able to predict the genetic group of an isolate from a simple microscopic observation
more than 9 times out of 10.

Table 2. Performance of the Convolutional Neural Network (CNN) GoogleNet trained and validated
with dataset1 to classify genetic groups from microscopic images.

Accuracy Error Sensitivity Specificity Precision FalsePositive Rate F1-Score

0.9080 0.0920 0.9080 0.9693 0.9105 0.0307 0.9076

Results of classification for dataset validation (from dataset1) are presented in the
confusion matrix (Figure 5). The diagonal represented the correctly predicted number of
each observation. The precision (bottom) and the sensitivity (right column) were calculated
for each class. Each genetic group was predicted at 90.3%, 81.7%, 92.5% and 98.7% for GG1,
GG2, GG3 and GG4, respectively. Moreover, the model reached a high prediction reliability
of 86.0%, 94.6%, 86.5% and 96.7% for GG1, GG2, GG3 and GG4, respectively. The minor
confusions between genetic groups could be explained by the characteristics they share,
like GG1 and some GG3 isolates clustered together due to a low l/w ratio in Figure 4. In
addition, GG4 was the best predicted class probably due to the behavior characteristic of
this genetic group, which tends to form multicellular structures and is, therefore, easy to
discriminate (Figure 3d). The classification results indicated the model clearly learnt to
classify images based on cell morphological and population features.
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To test the “real-world” performance of the model, classification was performed
on dataset2. With these microscopic images, the model achieved an accuracy of 96.6%,
confirming its outstanding predictive power. Thus, this deep learning method stands as
a prime method for the study of microbial intraspecific discrimination. Indeed, from a
simple microscopic observation of a culture of B. bruxellensis, it is possible to predict the
genetic group of the isolate studied with fairly high confidence. The prediction of the
CNN might achieve greater accuracy by including more strains, since the larger and more
representative the training database, the better the performances of the CNN. The CNN
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trained in this study provides a very fast initial result, which can be used as is. Nevertheless,
if a higher level of confidence is required, it can be achieved with the RAPD-PCR protocol.
This allows confirmation at the genetic level of the pre-determination in silico of the genetic
group. The complementarity of both methods makes intraspecific discrimination within
B. bruxellensis species efficient, rapid, simple and inexpensive.

3.2.3. Does the Link between Genetic Groups and Cell Morphologies Predict any Specific
Functions?

The existence of a link between cell polymorphism and genetic groups in the B. bruxellensis
species indicates that shape variation is probably linked to clusters of genes encoding
for various functions, which could be related to adaptation to environmental factors,
for example.

In a study investigating the phenotype of a nearly complete collection of gene-deletion
mutants of Saccharomyces cerevisiae [52], 673 strains exhibited slight to strong morphological
alterations compared to a wild-type strain, allowing the identification of genes involved
in specifying cell shape and size. In particular, clumped and elongated strains were
enriched for mutations in genes for cell growth, cell division and DNA synthesis, whereas
round strains were enriched for mutations in protein synthesis genes. Therefore, in the
B. bruxellensis species, since the genetic groups gather strains with the same morphological
typology, it is likely that strains from the same genetic group share similar mutation types.

In addition, microsatellite analysis revealed that strains of B. bruxellensis were struc-
tured in genetic groups according to ploidy level [29]. Thus, cell morphology may be
related to ploidy level, especially as another morphological characteristic, filamentation,
has been shown to be related to the ploidy of yeasts. Indeed, in S. cerevisiae, different
triggers for pseudohyphae formation have been reported for diploid (nitrogen limitation)
and haploid cells (glucose deprivation) [46,53–55].

Besides the shapes, one of the genetic groups was distinguishable by a multicellular
phenotype. Such phenotypes, like flocs resulting from aggregation or clumps formed
by incomplete separation, have been described in S. cerevisiae as protection mechanisms
against environmental stresses [56–59]. In B. bruxellensis, it turns out that GG4, which
presented this feature, is mainly composed of SO2 resistant/tolerant strains [5]. Thus, these
multicellular structures may be involved in the SO2 resistance of the yeast.

4. Conclusions

In this study, the CNN GoogleNet was trained to provide rapid and highly reliable
screening of genetic groups of B. bruxellensis isolates, since it was able to correctly predict the
genetic group of an isolate from a simple microscopic observation with 96.6% accuracy. This
CNN provides a rapid, simple and inexpensive tool for routine intraspecific discrimination
in B. bruxellensis species. Pre-determination in silico of the genetic group of an isolate can be
confirmed at the genetic level by the RAPD-PCR protocol, since the use of primer OPA-09
successfully discriminated B. bruxellensis isolates in the same distribution among genetic
groups as microsatellite analysis, in a more accessible and less expensive manner.

The present study opens new perspectives for the use of deep-learning methods in
oenology to provide powerful, robust and timesaving analyses. The polymorphism of
yeast cells among B. bruxellensis species clearly appears to be related to the genetic group of
isolates. Therefore, assessing cell morphology could allow us to predict the genetic group
of isolates, itself linked to their SO2 resistance. The same intraspecific discrimination study
could be considered for other yeast species using a CNN. Furthermore, discrimination
could be extended at the interspecies level for the identification of unknown microorgan-
isms. CNN could be used to pre-classify species of yeast or species of bacteria from routine
microscopic observations performed after isolation to optimize subsequent molecular analy-
ses. Moreover, this tool could be useful for implantation control and population monitoring
during winemaking, providing real-time results simply by microscopic observation.
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3 independent repetitions are provided for 3 different isolates. Ladder: pGEM®DNA Markers.
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