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In the context of crop and weeds discrimination, different methods are used to detect and classify plants from 
an acquisition system. Various estimators and descriptors are commonly used to characterize plants within an 
image. However, the available studies are based on disparate criteria, plants, and acquisition materials which 
does not allow an accurate estimation of the potential of criteria combinations applied to a new study. Thus, the 
objective of this study is to: (1) experimentally evaluate the discrimination potential of each criterion at the leaf 
scale, using images taken in field condition; (2) optimize the parameters of these criteria; and (3) determine the 
best combination of criteria to use.
A literature review is conducted to determine the set of criteria that could be used. A set of 3545 criteria is 
studied with an algorithm defined to select the best subsets of features (evaluated on a ground truth dataset). 
Finally, a classification of the vegetation cover is proposed, using the best performing subset. Results show the 
importance of selecting a smaller set of properties (at most 20 features among the 3545 available) and associating 
different feature types (for instance spatial with textural and morphological features).
1. Introduction

Crop and weed discrimination is a long-standing concern in modern 
agriculture, as weeds are generally considered a nuisance since they 
have a possible negative impact on crop yield or harvest quality. To 
have a reliable knowledge of the risks of yield loss over time, locally 
acquired experiences on 110 weed control trials under comparable con-
ditions were conducted in France between 1993 and 2015 on three 
major annual crops (soft wheat, rapeseed and sunflower). A reduction 
of 25 q∕ha, 4 q∕ha and 3.5 q∕ha was respectively observed [15]. Weeds 
are thus competing with their neighbours through competition for nu-
trients (nitrogen, potassium, phosphorus, carbon), light and water.

To face this problem the main weed control approach is based on the 
application of herbicide with sprayers. The methods have evolved from 
uniform chemical weeding of the plot to localized weeding in precision 
agriculture and the use of new technologies and digital tools. In this im-
petus, today’s precision agriculture is seeking to discriminate even finer 
elements like the plant in real time. It allows to weed out undesirable 
individuals, to treat diseased crops or to supply nutrients for crops to 
reduce the use of synthetic products and the ecological impact of these 
products.

* Corresponding author.

Major reviews of weed mapping techniques have been carried out 
by Monteiro et al. [36], Gao et al. [19], Mostajer Kheirkhah and As-
ghari [37] and Wang et al. [52] and show multiple approaches to weed 
mapping and feature extraction. Current research on crop/weed dis-
crimination are either based on criteria extraction and exploitation or 
deep learning methods and provide good discrimination results, up to 
77-97 % [2] depending on the criteria, acquisition conditions and ob-
served plants.

The extraction and exploitation of criteria are usually included in 
a computer vision pipeline that follows the key steps of image analy-
sis including preprocessing, segmentation [48], feature extraction and 
classification [39]. The feature or criteria can be classified according to 
the nature of the information. It is possible to distinguish (i) shape crite-
ria which are based on different representations of the contours, [1,40], 
(2) spatial criteria based on the distance of the individual to another el-
ement of the image, such as the distance to the nearest crop row [33], 
(3) texture features based on the analysis of the spatial distribution of 
the pixels (may include the soil) [43] and, finally (4) spectral indices at 
specific points on the surface can also be used [31], which could also be 
considered as a subset of texture features. Fig. 1 illustrates this general 
workflow.
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Fig. 1. Key steps of image analysis for crop/weed discrimination with (a) acquisition enhancement (b) vegetation indices (c) instance segmentation (d) feature 

extraction (e) classification.

Deep learning approaches provide good results for the dataset they 
have been trained on but their performances are usually reduced on 
new datasets. Feature extraction could be a more generic approach. 
However, extracted features may lose effectiveness in real conditions 
because they are limited by the previous stages of the pipeline. In par-
ticular by the plant instance segmentation step, which is still a scientific 
challenge.

In this context, Vayssade et al. [48] have proposed a method based 
on deep learning in a previous study, which gives promising results in 
terms of instance segmentation and allows to work in dense foliage. 
This method detects not the whole plant but the leaves as they offers 
more stable criteria: there is less intra-individual variability than with a 
plant. For example, depending on the growth stage, the plant will con-
tain a variable number of leaves with different orientations and sizes, 
these leaves may also have a partial overlap between them leading to 
an infinite number of cases. Thus the extracted criteria are viable for 
a given stage of development, for given crops and specific acquisition 
conditions. Some of these issues do not occur at the leaf level.

Moreover, the extracted criteria are more understandable at leaf 
scale: shape criterion, such as length or perimeter is less subject to in-
terpretation at the leaf level than at the plant level. Texture criterion, 
such as gradients, gives the veins of the leaf, but there is no obvious 
correspondence at the plant scale. Thus the study of these criteria at 
the leaf scale could be promising to discriminate leaves between crops 
and weeds. In addition, such leaf-scale criteria have been used success-
fully for tree species discrimination, Cerutti et al. [14,13] showing an 
accuracy up to 90% with only shape criteria at leaf scale for species 
classification.

However, each type of criterion has different effectiveness and limi-
tations. Spectral and texture features are more affected by illumination 
variations, while shape features are affected by segmentation quality. 
Moreover, because of these limitations, studies usually combine these 
types of features to take advantage of all the benefits. For instance Lin 
et al. [30] uses 4 vegetation indices, 3 textures, and 4 shape features. 
Zamani and Baleghi [56] uses 15 morphological, 12 spectral, 10 tex-
tural, 11 thermal features. However, this number of features remains 
low.

Therefore, in this study, 3545 features have been extracted for an 
exhaustive description at leaf level. Moreover, each feature has been 
optimized to obtain the best discrimination between crops and weeds in 
field condition, and the best feature sets have been established among 
all optimized features. In addition to this study, a Python framework 
allowing the extraction of these criteria is also available on github .com.

2. Material and data

2.1. Experimental plot

Data is acquired at the site of INRAE in Montoldre (Allier, France, 
at 46°20′30.3′′N 3°26′03.6′′E) within the framework of the ANR Chal-
lenge RoSE in 2019. The objective of the Challenge is to objectively 
compare the solutions proposed by participants [4,41]. Within this con-
text, the challenge provides an evaluation plan to contestants and a set 
of experimental plots of bean and corn plants. In addition various natu-
2

ral weeds (yarrows, amaranth, geranium, plantago,...) and sowed ones 
(mustards, goosefoots, mayweed and ryegrass) is managed to compare 
performances.

2.2. Multispectral camera

The images were acquired with the Airphen (Hyphen, Avignon, 
France) six-band multispectral camera. This is a multispectral scien-
tific camera developed by agronomists for agricultural applications. The 
camera has been configured using the 450/570/675/710/730/850 nm 
bands with a 10 nm FWHM. The focal length of each lens is 8 mm. 
The raw resolutions for each spectral band are 1280x960 px with 12 bit 
precision. Due to the conception of the camera, spectral images are not 
aligned in space. A registration method based on previous work for this 
camera, with a registration accuracy down to sub-pixel is used [49]. Af-
ter the registration, all spectral bands are rescaled to 1200 × 800 px and 
concatenated to channel-wise where each dimension refers to a spectral 
band.

2.3. Image acquisition and annotation

From the presented experimental plots a set of images were ac-
quired. The camera is attached in front of an hybrid autonomous tractor 
called “TREKTOR” launched by SITIA (Bouguenais, France) in 2019. 
The camera is setup to have a top-down view of crop rows, thus it is 
placed at the end of a 2 m pole in front of the platform allowing to re-
move visible part of the robot and at 1.8 m from the ground to see all 
three crop rows. Crops and weeds were between phenological state 3 
and 4 which means they had between 2 and 6 leaves. The ground truth 
is manually defined on images by experts with polygons around each 
leaf boundaries. In addition, polygons contain a crop/weed classifica-
tion label. These annotations are performed using the VIA annotation 
software [16] and a total of 300 images of bean were annotated, 170 in 
June and 130 in October. This dataset is now available online1 and may 
help other studies working on leaves classification. In addition the crop 
rows for each image are also manually set. The total number of leaves 
is 90 538, with 31 524 for crops and 59 019 for weeds.

3. Methodology

The objective of this paper is to extract a wide variety of features and 
evaluate their performances for classifying leaves into crops and weeds, 
in addition to defining the best subset of feature space. The methodol-
ogy followed in this study is as follows:

1. In order to evaluate criteria that could be used at the leaf level 
to discriminate between crop and weed leaves in field condition, 
a literature review was conducted. These criteria are organized 
into shape, spatial and textural features and presented in the sec-
tion 3.1.

2. Most of the features have parameters that impact the extraction and 
classification performances of these features. To solve this problem, 

1 https://data .inrae .fr /dataset .xhtml ?persistentId =doi :10 .15454 /JMKP9S &

version =1 .0.

http://github.com
https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/JMKP9S&version=1.0
https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/JMKP9S&version=1.0
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this article proposes to optimize these parameters by using an opti-
misation algorithm to efficiently sample the parameter space, it is 
described in section 3.2.

3. The results of the literature review indicate that there is no con-
sensus on which of these criteria are the best for discriminating 
between crop and weed (at plant or leaf scale). In order to de-
termine the best combination of criteria to use in discriminating 
between crop and weed leaves in field condition, an algorithm to 
select the best subsets of features is used and described in sec-
tion 3.3.

4. The performance of each method is evaluated on the ground truth 
dataset, using Area Under the Curve (AUC) as the performance 
metric. The best performing feature subset is presented to classify 
leaves into crops and weed. These subsets are extracted for each 
type of feature (locally) and among all feature (globally), this is 
available in the results section 4.

5. Finally a classification of the vegetation cover is proposed using 
the best performing features subsets and the results are discussed 
in section 4.3.

3.1. Literature review

In computer vision, shape, spatial and textural features are com-
monly used for describing and classifying objects. This section presents 
a review of these features. To facilitate the extraction of features and 
their merging, they have been programmed using the OOP2 paradigm 
in Python. Each feature is thus named according to its type (shape / 
spatial / spectral) and internal properties. Thus the following subsec-
tions present each of them according to its type. An overview of all the 
criteria is available as supplementary material (Table 8).

3.1.1. Shape criteria
Shape properties are based on a structural analysis of the contours 

of related regions, it mostly consists of detecting morphological and 
anatomical traits. The shape can be coded as a set of positions (pixels) 
that go around the boundary. From this description, various information 
can be used. This type of analysis is found particularly in granulometry 
[21], geomatics [34], leaf classification [13] or even animal posture de-
tection [47,11]. These criteria are the most intuitive, easy to implement, 
and unaffected by lighting. Each of the following paragraphs explain an 
extraction method as well as the resulting properties used for discrimi-
nation.

Shape ellipse Watcharabutsarakham et al. [53] have mentioned that 
the major and minor axis can be used to classify leaves. These properties 
can be obtained through an elliptical Hough algorithm as described 
by the article. From the retrieved ellipse, few more information can 
be computed such as the distance between the ellipse center and the 
detected shape center. Three factors of eccentricity, the directrix, the 
angle and the focal distance. Some of these properties were also used 
by Lottes et al. [32] for the classification of plant covers.

Shape particle Based on the work of Hentschel and Page [21], these 
shape metrics have been used to characterise and classify particles. 
Vayssade et al. [47] used it to classify goats activities within pasture, 
Bonneau et al. [11] to estimate the sow posture with an accuracy near 
deep learning methods (94 % vs 96 %). This set of 18 characteristics is 
based on a variety of ratios of the Feret diameter, area and perimeter. 
Some of them are known as: Equivalent Diameter, Eccentricity, Aspect 
Ratio, Form Factor, Roundness or Convexity. Others are unnamed fea-
tures. The Feret diameter is defined as (1) the longest distance between 
two points on the contour, and (2) the shortest distance across the 
shape. Some of these properties are also used by Lottes et al. [32] and 
Saha et al. [44].
3

2 Object-Oriented Programming.
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Shape solidity The solidity factor is widely used for weed plant clas-
sification [1]. The solidity factor is defined as a ratio between the 
segmentation mask area and convex hull area. Thus, it is bound from 0 
to 1. This factor indirectly computes the holes area of the regions. When 
applied to weed discrimination, this factor allows to discriminate some 
specific species like carrot from others. When carrots are segmented, 
the segmentation mask is sparse, filled by a large amount of holes, due 
to leaves structures. This does not occur for dicotyledon plants, and it is 
less impacted by other monocotyledons weeds. At leaf scale, such crite-
ria provide information about the contour (leaf teeth) as the inner leaf 
mask should be filled. This approach has been used for species classifi-
cation [45] and weed discrimination [32].

Shape metrics This set of 8 properties comes from the documentation 
of the shape metrics tools of the University of Connecticut,3 these are 
used for shape classification of lands [3] and building [38]. Few prop-
erties, such as Cohesion, Traversal, Range and Viable Interior was not 
implemented due to time complexity. The others 8 implemented metrics 
are named: Proximity, Exchange, Spin, Perimeter Index, Depth, Girth, 
Dispersion and Detour.

Shape fragstat The book by McGarigal [34] shows some of the features 
used at the landscape, class, or parcel scale for classification or shape 
similarity measures. The fragstats documentation shows a small set of 
criteria4 that can be exploited at the leaf scale such as: Perimeter-Area 
Ratio, Shape Index, Fractal Dimension Index, Linearity Index, Related 
Circumscribing Circle, Contiguity Index and the Perimeter Area Fractal 
Dimension. These features have been selected as shape criterion in our 
study because they reflect shape complexity for a given spatial scale 
and correspond to: Perimeter-area-ratio, Shape Index, Fractal Dimen-
sion Index, Linearity Index, Related Circumscribing Circle, Contiguity 
Index and Perimeter Area Fractal Dimension.

Shape skeletonize The skeletonization is commonly used in shape 
recognition techniques. It transforms the input mask (i.e. the shape) to 
a new structural representation of the shape [17]. This representation 
captures part of internal hierarchy. As instance, the Lottes et al. [32]
study uses the skeleton length for weed discrimination. In this study 
more features are extracted from that structural representation. These 
properties are defined as: the number of 𝑒𝑛𝑑_𝑝𝑜𝑖𝑛𝑡, the number of in-
ternal 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠, the number of 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 and the total length of the 
skeleton (𝑝𝑖𝑥𝑒𝑙_𝑐𝑜𝑢𝑛𝑡).

Shape angle The distribution of angles between points around the con-
tours can be exploited to measure the similarities between shapes [9]. 
This method was used to classify symbols (digits and letters). The pro-
cedure is defined as follows: for a point of the contour, the relative 
angles of all the other points that are in a given radius are computed. 
The radii and angles are stored in a “shape matrix” of dimensions: 
𝑟𝑎𝑑𝑖𝑎𝑙_𝑏𝑖𝑛𝑠 × 𝑎𝑛𝑔𝑙𝑒_𝑏𝑖𝑛𝑠. Each element (𝑖, 𝑗) of the matrix contains a 
counter which corresponds, for a given point, to the number of points 
which are in this bin of radius 𝑖 and in the bin of angle 𝑗. Finally, the 
procedure is repeated for each point of the contour to feed the “shape 
matrix”. This one is used as a discriminating variable.

Shape Hu Moments The Hu Moments have been proposed long time 
ago by Hu [23] and are part of structural analysis. The contours of the 
related regions are transformed into “moments”, which are then trans-
formed into Hu Moments. The importance of this extraction comes from 
its translation, rotation, and scaling invariance. A similar element, e.g. 
two different bean leaves at various positions, rotation or scale will then 

3 http://clear .uconn .edu /tools /Shape _Metrics /method .htm.
4 http://www .umass .edu /landeco /research /fragstats /documents /Metrics /
Shape %20Metrics /SHAPE %20METRICS .htm.

http://clear.uconn.edu/tools/Shape_Metrics/method.htm
http://www.umass.edu/landeco/research/fragstats/documents/Metrics/Shape%20Metrics/SHAPE%20METRICS.htm
http://www.umass.edu/landeco/research/fragstats/documents/Metrics/Shape%20Metrics/SHAPE%20METRICS.htm
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be represented identically. This assertion remains true if intra-species 
and intra-individual variability are not taken into account. Hu Moment 
have been used for leaf classification challenge [42].

3.1.2. Spatial criteria
The spatial properties are based on the extraction of global infor-

mation related to the agricultural plot. These extraction methods are 
based on a distance which is calculated between the extracted global 
information and the centroid of the related region. The distribution of 
the values is strongly correlated to the vegetation density, allowing to 
discriminate the weeds, mostly between rows.

Spatial Row The distance between the plant and the crop line is one of 
the most used spatial descriptors when such prior knowledge is observ-
able [33,27,5]. The number of techniques to extract such rows within 
an agronomic images is large, most of them are based on Hough Trans-
form applied to line detection, as [33]. Recent studies in deep learning 
show that CNN can be used to detect crop row in agricultural acqui-
sition [6]. As the objective of this section is to evaluate the impact of 
the distance between plants and crop row (not the row detection per-
formance), this study uses the crop rows from the ground truth.

Spatial Blob In most cases, plants can be classified into two types: 
monocotyledons and dicotyledons. At an early stage, when the plant 
emerges from the ground, its appearance is totally different according 
to this initial type. Monocotyledons usually look like a filament, while 
dicotyledons look like an oval shape when seen from above. With this 
information, a specific shape detection algorithm can be implemented. 
Such as Blob detection, which aims to detect groups of connected pix-
els in an image that share a common property (shape, color, . . . ). The 
objective of Blob detection is to identify and mark these regions. These 
marks are used to calculate the Euclidean distance between the centroid 
of leaf and the nearest blob. Thus, the distribution of values is strongly 
correlated to the density of vegetation.

Spatial Corner The detection of points of interest can be used to dis-
criminate weeds. This is what is proposed in the article of Xu et al. [55], 
using an algorithm of detection of corners in the image. From these 
points of interest, the distance and the angle between the center of the 
plant and the closest points of interest are used as discriminating prop-
erties. In reality, this detection finds the leaves apexes. Here only the 
distance between the centroid and the nearest points of interest is com-
puted since the angle is already present in Shape Ellipse properties.

3.1.3. Textural, color and spectral criteria
Texture properties are vast and include many things, like image 

transformations (Fourier, Wavelets, color spaces, . . . ), color, spectral 
properties or histograms to characterise observed surfaces. The article 
Mekhalfa and Yacef [35], have tested texture and color properties on 
RGB images of soybeans. The proposed color characteristics, are the 
means and standard deviations of the image in two color spaces (RGB 
and HSV). In terms of texture properties, i.e. an analysis of the spa-
tial distributions of the colors, the paper relies on GLCM (Gray-Level 
Cooccurrence Matrix), Haralick and LBP (Local Binary Pattern) fea-
tures. According to the study, these properties provide classification 
rates between 89.43 % and 96.17 %. Here, this work has been improved 
by adding their location to the extracted properties. Thus, all the ex-
tractions defined hereafter are automatically done on each individual 
bands, on NDVI and on the standard deviation (std) between spectral 
bands (which is also an image).

Spectral signature The spectral signature is defined as the value (at the 
center of the shape and at the center of its bounding box) of all spec-
tral bands, the NDVI value and the standard deviation between spectral 
4

bands.
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Table 1

Synthesis of colors moments.

min max range
mean std median
skewness kurtosis entropy

Spectral Stats As shown by Lottes et al. [32], statistical properties of 
the underlying bounding box (that contains the shape) can be computed 
and used for weed discrimination. According to this article, a set of 
nine properties for each spectral bands is extracted separately as well 
as a vegetation index (NDVI) and the standard deviation (std). These 
properties are based on color moments (Table 1).

Spectral HoG The HoG descriptors for Histogram of Oriented Gradient 
was used by Saha et al. [44] for weed discrimination. It is often used 
in computer vision, both for object detection and texture discrimination 
because of its properties of geometric invariance. The HoG descriptors 
are based on gradient intensity and edge directions. From this infor-
mation, a histogram is computed and used as descriptor. Applied to a 
leaf, these properties allow to characterise leaf veins [46]. These fea-
tures are generally robust to illumination changes and color differences 
due to the leaf maturity.

Spectral DoG Difference of Gaussian (DoG) is a texture feature extrac-
tion method that is used to identify and highlight edges and boundaries 
within an image. It is a type of band-pass filter that enhances image 
details and removes noise. The DoG algorithm works by taking the dif-
ference of two Gaussian filters with different standard deviations. The 
larger standard deviation produces a smoother image, while the smaller 
standard deviation enhances the edges and details. The difference be-
tween these two Gaussian filtered images creates the DoG image, which 
emphasizes the high-frequency components of the image, such as edges 
and textures.

Spectral Hu Moment Moments and Hu Moments are generally applied 
to segmentation masks or contours. It retrieves shape properties, such 
as perimeter, centroid, etc. Computing these features on spectral bands 
and NDVI could include more discriminating information.

Spectral Gabor Gabor filters have been widely used for texture anal-
ysis in mono-bands images. By extension, Jain and Healey [25] have 
proposed to use properties based on the results of Gabor filters applied 
to multispectral texture classification. They use a set of symmetric and 
circular Gabor filters, with three octave scales and four orientations to 
compute properties, such as averages and energy. These filters have 
been used in the field of weed discrimination by Ishak et al. [24]. In the 
current study, a symmetric and circular Gabor filters are applied with a 
single (optimized) octave scale and four orientations ([0, 40, 90, 158]) as 
defined by Jain and Healey [25]. However, extracted properties from 
such filters are based on color moments (Table 1) on each Gabor orien-
tation filter.

Spectral LBP The LBP descriptor, for Local Binary Pattern is a feature 
that encodes texture information. The general principle of LBP is to 
compare the level of a pixel luminance with the levels of its neighbours 
(0 if inferior, and 1 else). Depending on the neighbour position, a weight 
is applied to the positive value ([1, 2, 4, 8, 16, 32, 64, 128]), the LBP value 
is then the sum of weighted positives values. The last feature, is the his-
togram of the leaf texture for each spectral bands and NDVI. This gives 
an account of information relating to regular patterns in the image, in 
other words texture.

Spectral CSLBP The CS-LBP operator for Center-Symmetric Local Bi-
nary Pattern is an extension of the previously defined LBP operator [8]. 
For each pixel, the absolute and symmetric difference of the neighbour-

hood is computed, if the value is higher than a fixed threshold 𝑇 = 0.1
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the element takes the value 1 (0 otherwise). The set of results is coded 
as LBP through a weighted sum depending on the neighbour location. 
These features are considered to be more robust against rotation than 
standard LBP.

Spectral OCLBP The OC-LBP (Opposite Color LBP) operator is an ex-
tension of the LBP operation. Banerji et al. [8] propose an LBP ex-
tension to the colorimetric domain by considering the inter channel 
relationship instead of local and spatial relationship of a pixel. For each 
color pair (𝑢, 𝑣), 𝑢 > 𝑣 the inter-channel properties are considered by 
𝐶 = 𝐼(𝑥, 𝑦, 𝑢) − 𝐼(𝑥, 𝑦, 𝑣)). With 𝐼 the multispectral image, 𝑥, 𝑦 the pixel 
position and 𝑢, 𝑣 the color channels to compare. The obtained image is 
defined in the same way as LBP: a weighted sum of positives values. 
These properties have been used by Waghmare et al. [51] for grape 
plant diseases detection.

Spectral GLCM This is a square matrix of dimension 𝑁𝑔 , where 𝑁𝑔 is 
the number of gray levels in the image. The [𝑖, 𝑗] element of the matrix 
is generated by counting the number of times a pixel of value i is ad-
jacent to a pixel of value j, and then dividing the entire matrix by the 
total number of comparisons made. Each entry is thus considered as the 
probability that a pixel of value i is adjacent to a pixel of value j de-
noted 𝑝(𝑖, 𝑗), defining for us the co-occurrence matrix 𝐺. This has been 
used by Bakhshipour et al. [7] for weed discrimination.

Spectral Haralick The basis of these features is the GLCM (grayscale 
co-occurrence matrix). From that, Haralick have defined 14 texture de-
scriptors that can be computed. This estimator was tested for canopy 
discrimination by Wong et al. [54].

Spectral Polyfit A new type of feature based on polynomial fitting is 
produced. Multispectral images may lack information due to the selec-
tion of the spectral domain (The Airphen camera uses 6 spectral bands). 
To recover the original spectrum distribution across the surface, a sim-
ple solution that can be used is curve fitting [12], by using the value 
of observed pixel and their distances to the center of the shape. The re-
sult of the fitting is the polynomial parameter, which can be used as a 
discriminant variable.

Spectral Shi Tomasi The Shi-Tomasi feather is a kind of key point de-
tector using the eigenvalue of the second moment of the color matrix 
[20]. On these values, a threshold is applied to determine if a pixel can 
be a corner or not. This algorithm has an interesting step, it transforms 
the input color image space into a gray scale color space, through this 
eigenvalue decomposition. Here, instead of finding the local maxima of 
this transformation, which are the key points. A histogram is used to de-
scribe the observed surface, so the values of corresponding to a corner 
accumulate in a specific bins of the histogram, while flat surfaces accu-
mulate on other bins, etc. This transformation is applied on the first 3 
bands of our data (450 nm, 570 nm, 650 nm) which are nearest to a 
RGB color space.

3.2. Optimization

Some features have parameters, like the number of bins in case of 
histogram analysis, the 𝑖𝑛𝑛𝑒𝑟 and 𝑜𝑢𝑡𝑒𝑟 radius of “shape angles” and so 
on. Some parameters are discrete numbers, but others are in a contin-
uous space, like four parameters of the “texture gabor” which requires 
to set them before using it (sigma, lm, gm, ps). Setting these param-
eters has a critical impact on classification performances, they can be 
set empirically. But to optimize the performances of extracted features, 
these parameters must be optimized properly and automatically. This is 
known as an parameter optimization problem.

There are many ways to sample the parameter space. One approach 
is grid search, where the parameter space is divided into a number of 
5

discrete regions (or grids) and a search is performed in each point of 
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Fig. 2. Feature parameter optimization procedure.

Table 2

Five epochs of the optimization procedure through ASHA algorithm. The objec-
tive column shows the model performance.

epoch sigma lm gm ps objective

1616 1.865 5.720 0.409 0.403 0.621
1617 1.838 5.732 0.363 0.421 0.604
1618 1.894 4.960 0.431 0.335 0.556
1619 3.363 8.253 0.083 0.690 0.465
1620 7.705 4.655 0.986 0.090 0.517

the grid [29]. Another approach is random search, where a random 
point is chosen in the parameter space and the performance if evaluated 
[10]. However, they can also lead to suboptimal solutions, because both 
methods are brute force approaches that scale poorly with the features 
parameters number. Therefore, it is important to choose an appropriate 
sampling method for the problem at hand. To achieve this optimization, 
more complex algorithms must be used to sample the parameter space 
efficiently.

An asynchronous early stop method based on the continuous halv-
ing algorithm is used to solve this challenge, this is the ASHA algorithm 
(Asynchronous Successive HAlving). The ASHA algorithm is a random-
ized, asynchronous and incremental algorithm for sampling the param-
eter space. It is based on the continuous halving algorithm, which is 
a greedy algorithm that divides the parameter space into two halves 
and selects the best half at each step. The ASHA algorithm uses this ap-
proach to iteratively divide the parameter space into smaller subsets. At 
each step, it selects the best subset based on a performance metric and 
stops when the subset is small enough that the performance is no longer 
improving. This approach is more efficient than grid search or random 
search, because it can find good solutions without exploring the entire 
parameter space. The asynchronous part of this algorithm allows it to 
run on multiple processors, which can speed up the search [22].

In addition, to sample the parameter space correctly, each param-
eter has been manually bounded to limit the search space. The ASHA 
algorithm has been implemented in the Sherpa software package [22]
in Python. Finally, the optimization is done through 10 000 epochs. At 
each epoch a 2-fold cross-validation is used for training and validat-
ing a decision tree classifier. This should enforce the learning of more 
stable properties and avoid overfitting, because the first fold contains 
the majority of data obtained in June, while the second fold contains 
the data obtained in October. The decision tree classifier is chosen to 
use simple decision criteria, rather than complex model, to extract most 
relevant features. The performance of the extracted features is there-
fore the performance of the underlying learned classifier (average of 
the cross-validation procedure). The Fig. 2 synthesizes the optimization 
procedure.

As an example, Table 2, show 5 epochs for the optimization of spec-
tral Gabor features (parameters: sigma, lm, gm and ps), the objective 
value is the value to be maximized, it corresponds to the performances 
of classification model evaluated by the Area Under the Curve metric 

[18]. After the optimization process, all features are extracted.
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Fig. 3. Sequential feature selection algorithm.

3.3. Feature selection

Now that all the features are optimized and extracted, the main 
question of this article can be explored. What are the best features to 
classify leaves into crops and weeds. Since the number of features is 
huge (3545), as shown in Table 8, a manual estimation of each feature 
performances cannot be established properly. To answer this question, 
researchers in this field typically use a metric to estimate how well a 
feature fits the problem (correlation coefficient or root mean squared 
error), and then the best features are used. However, a better combi-
nation might exist, e.g., merging two high rank criteria might be less 
accurate than merging a high rank with a low rank. As an example, row 
distance and a texture characteristic, the efficiency may be greater than 
that of two texture criteria, because row distance is likely complemen-
tary to texture property.

Instead of evaluating each feature through a metric, a data mining 
technique is proposed, such as “Sequential Forward Selection” (SFS) 
[26]. It is an algorithm that analyzes each feature to check whether 
it is going to be useful for the classification task. To put it in another 
way the motivation behind this algorithm is to automatically select the 
subset of features most relevant to the problem. Thus, it reduces the 
initial 𝑑-dimensional feature space to a 𝑘-dimensional feature subspace, 
where 𝑘 < 𝑑. The Fig. 3 shows how the algorithm works.

4. Results and discussion

4.1. Feature optimisation

Among the 25 types of properties, only 12 of them have parame-
ters that need to be optimized. For each of them the parameters and 
the underlying classifier performances have been extracted in the be-
low Table 3 (for spatial and shape feature) and Table 4 (for spectral 
features).

Table 3 and Table 4, show a noticeable improvement of the fea-
ture performances through this optimization procedure. Few features 
are strongly enhanced, from 50 % to 62.81 % for “Shape Angles”, or from 
46.75 % to 72.39 % for “Spectral DoG”, showing the necessity of feature 
parameter optimisation. Irrelevant features start to appear here, for fea-
tures that have parameters, this is the case for “Spatial Corner”, “Spatial 
Blob” or “Spectral HOG” that does not exceed 60 % of AUC with a deci-
sion tree classifier.

The high accuracy of feature classification induced by feature pa-
rameter optimization can be explained by different reasons. First, these 
optimization techniques allow for an efficient exploration of the param-
eter search space, enabling the identification of the optimal values that 
6

maximize their individual performances. Second, the improvement is 
Smart Agricultural Technology 5 (2023) 100245

Table 3

Feature parameter optimization through ASHA algorithm, the objective column 
shows the performance of the underlying classifier.

Type Parameter Value Objective Worst

Shape Angles bins_radius
bins_theta
radius_inner
radius_outer

2
22
0.9827
9.6870

62.81 50.00

Spatial Corner blockSize
k
ksize
threshold

2
0.0995
1
0.09926

59.52 51.49

Spatial Blob area
circularity
inertia
convexity

0
0
0
1

52.00 51.23

Table 4

Feature optimization through ASHA algorithm. To show the benefit of the fea-
ture optimisation process, the column Worst, shows is the least discriminant 
parameters. The column Objective shows the best performance of the model.

Type Parameters Values Objective Worst

Spectral DoG sigma_a
sigma_b

17.7569
0.0475

72.39 46.75

Spectral Gabor gm
lm
ps
sigma

37.51
3.8094
0.6573
8.7758

71.68 49.95

Spectral GLCM normed
symmetric

𝑓𝑎𝑙𝑠𝑒

𝑡𝑟𝑢𝑒

68.96 61.55

Spectral Zernike m
n

1
1

60.14 55.12

Spectral Haralick size 128 69.66 52.99
Spectral HOG size 256 54.96 51.08
Spectral LBP nbins 256 69.17 53.16
Spectral Shi-Tomasi nbins 14 67.23 51.84
Spectral CSLBP nbins 22 69.53 55.33

measured between best and worst performances (instead of best and 
expert / usual performances), resulting in an important gain. An expert 
choice of parameters (or the use of usual values) may lead to better 
performances than the worst case and reduce the gain induced by pa-
rameter optimization.

Once the feature parameter optimization is performed, all features 
(with or without parameters) can be extracted. Thus, the next step is 
to use the feature selection algorithm to select the best criteria from all 
extracted features. The next section will show the results of the feature 
selection algorithm.

4.2. Feature selection by type

For this study, the SFS algorithm is applied independently on each 
feature type (locally), and on all extracted features (globally). This 
allows us to check which features are the most relevant for their cate-
gories as well as globally. For the SFS algorithm, the number of features 
included in the subspace is considered a stopping criterion. Here, the 
stopping criterion has been set to 𝑘 = 10 for each feature type and 𝑘 = 20
for all features. The result of the procedure is available on the next Ta-
ble 5 for spatial feature, in Table 6 for shape feature and in Table 7
for spectral features. Finally Fig. 4 shows best global criteria. On all of 
these Tables, the best subspace size is highlighted in bold for each fea-
ture type, and the green cells indicate the best feature type to use for a 
specific feature space size.

Since these 3 feature types extract only one feature each, Table 5

shows only one performance for each feature type. But it also shows 
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Table 5

Best features for spatial features. Best results 
for a specific feature count are highlighted.

feature count 1

Spatial Blob 51.80
Spatial Corner 56.59
Spatial Row 66.90

that among the 3 spatial feature “Spatial Row”, which is the distance of 
the leaf to the crop row, has the most relevant performance. This is ex-
pected, as it allows to discriminate inter-row weeds. However, the weed 
coverage in October were high and overlapped the crop row, reducing 
this feature performance. The worst is “Spatial Blob”, which may be due 
to a lack in the optimization procedure for this feature, or more likely 
to the lack of discriminating information in this analysis, as for “Spa-
tial Corner” that offers moderate performances. The next Table 6 is for 
shape criteria.

As shown in Table 6, “Shape Solidity” that have been found rel-
evant at plant scale [1] is less relevant at leaf scale. The first fea-
ture selected for “Shape Skeletonize” is the pixel-count. It refers to 
the length of the skeleton, which is the most discriminating property 
among the others of this feature type. Among all shape feature, the 
“Shape Particle” is the most important one, the four best features are 
respectively “inv-area”, “m1”, “m2”, and “form-factor” with a score 
of 76.08 %. While the second best shape property is “Shape Fragstats” 
that is used to classify land plot, its 3 best features are respectively 
the ‘perimeter-area-ratio’, the ‘related-circumscribing-circle’, and the 
‘perimeter-area-fractal-dimension’ with a score of 74.83 %. The four 
first features selected for the “Shape Ellipse” seem quite good, such 
as “center-distance”, “minor-axis”, “angle”, and “eccentricity 2” with 
an accuracy score of 69.76 %. The other ones seem to been less rele-
7

vant for crop and weed discrimination at leaf scale. Finally, Table 9 in 

Table 6

Best classification features for each feature type through ASHA algorithm. Each line
of feature(s) combined for a specific feature type. The presented results are the opt
with all the features for a specific feature type. Best results for a type of features are

feature count 1 2 3 4 5

Shape Angles 65.73 65.72 65.73 65.72 65.72
Shape Ellipse 60.84 67.47 69.46 69.76 69.56
Shape Fragstats 67.85 70.10 74.83 73.62 73.10
Shape Hu-moment 56.87 59.79 63.30 64.87 65.52
Shape Metrics 57.01 62.74 66.88 67.81 68.52
Shape Particle 67.88 70.15 74.50 76.08 76.04
Shape Skeletonize 68.81 68.81 68.65 68.52 –
Shape Solidity 59.04 – – – –

Table 7

Best features individually for each feature type for classification through ASHA algor
is the number of feature(s) combined for a specific feature type. The presented res
result obtained with all the features for a specific feature type. Best results for a type

feature count 1 2 3 4 5

Spectral LBP 69.81 70.71 70.72 70.71 70.71
Spectral OCLBP 61.69 65.09 68.26 69.34 69.94
Spectral CSLBP 70.36 70.36 70.36 70.36 70.36
Spectral Zernike 57.26 68.67 72.58 73.42 74.44
Spectral Shi-Tomasi 71.11 67.74 70.02 70.29 71.25
Spectral Signature 66.76 67.37 74.40 75.79 77.25
Spectral Hu Moment 68.29 68.71 70.48 74.21 81.70
Spectral Stats 68.97 72.58 79.09 81.61 83.36
Spectral Polyfit 59.57 62.80 66.01 66.94 67.70
Spectral HOG 55.99 64.73 69.83 72.01 73.93
Spectral DoG 70.54 74.04 78.36 80.76 82.54
Spectral Gabor 69.50 74.48 80.07 82.23 83.53
Spectral GLCM 59.57 66.22 73.84 76.87 78.93
Spectral Haralick 63.80 75.85 78.89 81.16 82.56
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the supplementary material, shows the name of the ten top best shapes 
features.

As shown in Table 7, the best features are the ones related to the tex-
ture and color of leaves. If a single feature should be used then, the best 
feature is the “Spectral Shi-Tomasi”, which is related to the roughness 
of the texture, since it is the first step of corner detection, however the 
remaining features are less discriminant than the others feature types. 
Among these spectral properties, the LBP, OCLBP and CSLBP were ex-
pected to produce better performances (they max out at around 70 %), 
this means that the histogram construction is not producing relevant 
features. The same remarks can be established for the Zernike features 
even if their performances are slightly better (around 76.60 %).

“Spectral Signature” is commonly used for vegetation classification, 
it uses the spectral value of the center of the shape (or window) as a cri-
terion. The performances of this feature are better than the features pre-
viously discussed but max out at around 80 %. The next feature, which 
is the “Spectral Hu Moment”, is a transformation of the spectral value of 
the center of the shape through Hu Moment, this transformation shows 
a significant increase in the performances of such features, from 79.53 %
for “Spectral Signature” to 83.19 % for “Spectral Hu-Moment”, in addi-
tion this transformation seems more interesting on spectral properties 
than shape properties as seen in Table 6.

Features “Spectral Polyfit” and “Spectral Stats” are relatively close 
by definition but show a significant difference on their performances. 
“Spectral Stats” extracts statistical properties (Table 1) of the underlying 
sub-texture which contains the leaf and the soil around it, while “Spec-
tral Polyfit” uses the spectral information of the sub-texture to recon-
struct the spectral distribution of the leaf surface, then the polynomial 
values are used as discriminating information. The initial assumption 
was that “Spectral Polyfit” (which is an attempt to reconstruct the ini-
tial spectrum distribution from the discrete values) should have been 
more relevant than “Spectral Stats”.

“Spectral HOG” for Histogram of Oriented Gradient, is generally 

used to retrieve gradient information. In case of leaf analysis, this trans-

 presents the results for a specific feature type. The feature count is the number 
imal combinations for each feature counts. Column “full” is the result obtained 
 in bold, best results for a specific feature count are highlighted.

6 7 8 9 10 full

65.73 65.72 65.73 65.73 65.72 68.38
69.48 69.28 69.10 68.80 68.54 67.58
72.55 – – – – 72.55
65.78 65.74 – – – 65.74
68.76 68.98 68.89 – – 68.89
75.99 76.03 75.95 75.83 75.73 73.13
– – – – – 68.52
– – – – – 59.04

ithm. Each line presents the results for a specific feature type. The feature count 
ults are the optimal combinations for each feature counts. Column “full” is the 
 of features are in bold, best results for a specific feature count are highlighted.

6 7 8 9 10 full

70.71 70.71 70.71 70.71 70.71 72.61
70.34 70.47 70.66 70.56 70.60 73.03
70.36 70.36 70.36 70.36 70.36 68.12
75.42 75.80 76.19 76.37 76.60 76.91
72.01 72.59 72.84 72.94 73.03 72.00
78.18 79.23 79.35 79.58 79.53 63.65
83.09 83.15 83.05 83.22 83.19 71.29
84.37 84.98 85.65 86.29 86.54 74.58
68.40 68.97 69.54 70.48 70.63 70.20
74.83 75.44 75.95 76.37 76.67 74.40
83.53 84.64 85.42 86.03 86.33 75.76
84.52 85.14 85.60 86.15 86.40 74.92
80.12 80.97 81.61 82.13 82.56 79.52
83.69 84.62 85.01 85.33 85.51 81.30
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Fig. 4. Best features among all extracted feature for classification through ASHA 
algorithm. Best overall result is highlighted.

formation detects leaf veins [28], which is a criterion to discriminate 
leaf species. Since this analysis doesn’t produce good enough perfor-
mances, it is possible that the spatial resolution is too low for this kind 
of methodology.

The remaining “DoG”, “Gabor”, “GLCM” and “Haralick” features of-
fer good performances as expected. “Spectral Gabor” is the best of the 
four when ten features are used, while “DoG” and “GLCM” show slightly 
less accurate results. Finally, Table 10 in the supplementary material, 
shows the name of those ten top best spectral features.

4.3. Best of all features

As shown previously (Table 7), the best starting feature is the second 
bin of “Spectral Shi-Tomasi” histogram, thus it is selected firstly and its 
performance level is found in the first point of Fig. 4 (lower-left). The 
second selected feature is “Spatial Row”, it is expected that this feature 
should be on the top as it is a complementary with the color/texture fea-
tures. At this stage, it is interesting to note that this combination is less 
accurate 74.98 % than two texture Haralick features 75.85 %. The next 
8

three features are “Spectral Stats 2_min”, “Spectral Stats 5_max” and 

Fig. 5. This figure shows the classification of leaves, from an image taken in Jun
corresponds to well classified crops. While the purple and red color correspond resp
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“Spectral Gabor 3_0 mean”. Which is the minimum spectral value of the 
underlying sub-texture of the 650 nm spectral band for the first feature. 
In the same way, it is the maximum for the 850 nm spectral band. The 
Gabor filter is applied on all spectral bands, the discriminating criterion 
is one from the 450 nm. This leads to a performance of 85.95 %. The next 
feature is “Shape Metrics Detour”, with a performance of 87.41% which 
beats any previous classification model.

To conclude on these results, the best classification model includes 1 
spatial feature, 6 shape features and 13 spectral features. In the previous 
Fig. 4, only 20 features are shown, if more features are extracted, the 
performances begin to decrease (21 features = 91.16 %), this means that 
the performance reaches a vertical asymptote. To show this a model 
has been learnt with all features (3545), the cross-validation score is 
79.97 %.

4.4. Visual results

Fig. 5 shows two rows with field beans plants. Weeds are located 
between these two rows and on each of them. Most of plant and weed 
leaves are correctly classified (plant leaves are colored green, and weed 
leaves are colored blue). However, this image suggests a problem re-
mains for the smallest leaves that are in the center of the plant. These 
crop leaves, colored in red, are classified as weed leaves. This classi-
fication is induced by shape features, which are less relevant for this 
category of leaves than for the others.

Fig. 6 focuses on specific parts of plant rows. Weeds on Fig. 6.a are 
mostly monocots, whereas those visible on Fig. 6.b are mostly dicots. 
These two figures illustrate the quality of classification, which is equiv-
alent for the two weed groups. Fig. 6.c presents a dense foliage, with 
highly developed wild mustard. On this figure, the major part of mus-
tard leaves is correctly classified. The classification of field bean leaves 
depends on their visibility. Several partially occluded leaves are classi-
fied as weed leaves (in red). Conversely, Fig. 6.d presents sparse foliage, 
where many bean plants have not emerged. In that case, the small bean 
leaves are also classified as weed leaves.

All of these images illustrate the difficulty in classifying leaves 
which, being in the row of crops, have particular shapes, because they 
are partially obscured or because they are not sufficiently developed.

5. Conclusion

The features evaluated were identified from a thorough literature 

review. These features can be grouped as spatial properties, based on 

e 2019. The blue color corresponds to well classified weeds. The green color 
ectively to weeds and crops poorly classified.
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Fig. 6. This figure shows the classification of leaves, from parts of four images taken in June 2019. The blue color corresponds to well classified weeds. The green 
color corresponds to well classified crops. While the purple and red color correspond respectively to weeds and crops poorly classified. These pictures show that 
leaves inside crop rows are correctly classified, as are monocots. On the other hand, the emerging leaves of crops and some weed type leaves of dicotyledons are 

incorrect.

notions of distances at the image scale, shape properties allowing to 
characterize the morphological features of the individuals. And, finally, 
properties of textures, colors and spectra were proposed to extract in-
formation related to the composition and internal structures of leaves.

From this survey, it came out that some methods have parameters 
that influence the discrimination potential of these properties. There-
fore, an algorithm was proposed to optimize these feature parameters 
before the extraction and evaluation of these features. It has been shown 
that the optimization of these feature parameters plays a crucial role in 
the performance of these criteria. For example, “Shape Angles” prop-
erties went from 50 % to 62.81 % of discrimination potential after op-
timization, as well as the “Spectral DoG” properties from 46.75 % to 
72.39 %, etc.

After the optimization of these properties, the set of properties was 
extracted from the dataset for evaluation. In this evaluation, it was 
shown the importance of selecting a smaller set of properties, the over-
all score is better with 20 features than all the features (3545). It is 
also important to notice the contribution of each feature decreases as 
the number of features increases, resulting in a less interesting “perfor-
mance over computing time” ratio. For each property type, the top 10 
properties were defined. Then the top 20 among all properties com-
bined were defined. These results show a crop/weed discrimination 
performance up to 91 percent with 20 properties, while a performance 
of 79.97 % is observed using the 3545 properties. Indeed, the usual clas-
sification techniques do not seem to be able to handle large dimensions 
of properties. But here, the performances of classifications proposed by 
smaller sets are superior to the use of all the criteria. Thus, the def-
inition of this minimal set also allows to decrease the computation 
time.

6. Further research

In this study, feature selection is only based on classification perfor-
mances of features. Computation speed is neither estimated nor taken 
into account. However, depending on the application, a compromise 
9

between computation speed and classification performance could be 
used. The selection of the best features for real-time weed detection 
and elimination is of particular interest. Fig. 4 shows that the major 
classification improvement comes from the 10 first features (from 71 
to 90 %), the next 10 features improve the classification result of a bit 
more than 1 %. This observation shows that a study focused on perfor-
mance over computing time should be relevant. This is also a key step 
in developing on-board weed control systems in autonomous vehicles 
where computing power can be restricted and time matters the most.

An hybrid approach could also be explored to improve performances 
for specific applications or decrease computing time. Deep learning 
could be used to improve feature extraction. Following the approach 
that has been undertaken in a previous article [50], an alternative based 
on function approximators is possible. The best shape properties could 
then be defined from a fixed representation of the contour. The same is 
true for texture and spectral properties. Moreover, the computing time 
needed to extract these features does not allow a real time use, which 
reinforces the need to study deep learning.

Considering precision farming applications, this approach could be 
replicated to select the best features for a specific set of crop(s) and 
weeds. The objective could change from an application to another and 
should be linked to the classification accuracy requirements and the 
time available. A real-time application may focus on computing time 
with less consideration for classification performance. A UAV approach 
may allow more computing time as the result is already delayed from 
the acquisition. In both case, the image resolution may be an impor-
tant setting: too high and the computing time may be too important, 
too low and the classification performance may drop too much. This 
resolution may also impact the feature contribution to the overall classi-
fication with spectral or shape feature requiring highest resolution than 
spatial features. Consequently, a study focusing on the impact of im-
age resolution on various features could provide insightful knowledge. 
It could also be interesting to work on several datasets with different 
crop and weeds association to evaluate the genericity of the proposed 

approach.
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