Robust bilevel optimization for near-optimal lower-level solutions - Systèmes intelligents pour les données, les connaissances et les humains
Article Dans Une Revue Journal of Global Optimization Année : 2024

Robust bilevel optimization for near-optimal lower-level solutions

Résumé

Abstract Bilevel optimization problems embed the optimality of a subproblem as a constraint of another optimization problem. We introduce the concept of near-optimality robustness for bilevel optimization, protecting the upper-level solution feasibility from limited deviations from the optimal solution at the lower level. General properties and necessary conditions for the existence of solutions are derived for near-optimal robust versions of general bilevel optimization problems. A duality-based solution method is defined when the lower level is convex, leveraging the methodology from the robust and bilevel literature. Numerical results assess the efficiency of exact and heuristic methods and the impact of valid inequalities on the solution time.
Fichier principal
Vignette du fichier
s10898-024-01422-z.pdf (638.06 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04792534 , version 1 (06-01-2025)

Licence

Identifiants

Citer

Mathieu Besançon, Miguel Anjos, Luce Brotcorne. Robust bilevel optimization for near-optimal lower-level solutions. Journal of Global Optimization, 2024, 90 (4), pp.813-842. ⟨10.1007/s10898-024-01422-z⟩. ⟨hal-04792534⟩
9 Consultations
0 Téléchargements

Altmetric

Partager

More