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1 Historique et positionnement dans l’équipe de recherche 
Mes activités de recherche ont toujours été liées à l’étude des sols et de leur 

fonctionnement. Tout d’abord centrées sur les interactions mycorhiziennes lors de 

mes premiers stages en laboratoire, je me suis orienté vers le rôle des sols dans le 

cycle du carbone pendant mon master 2 et surtout pendant mon doctorat intitulé "Les 

respirations autotrophe et hétérotrophe du sol dans une chênaie tempérée" sous la 

co-direction de K. Soudani et J.-C. Lata (UMR 8079, Laboratoire Ecologie 

Systématique Evolution, Université Paris-Sud XI, 2005-2008). Ce doctorat constitue 

une charnière dans mes activités de recherche car il m’a permis d’ouvrir mes 

thématiques de recherche vers l’écologie microbienne en initiant une collaboration 

avec L. Ranjard et P.-A. Maron (UMR Microbiologie du Sol et de l’Environnement, 

INRA Dijon) pour mieux comprendre les variations d’émissions de CO2 par les sols. 

A l’issue de ce doctorat, je me suis orienté un peu plus vers l’écologie microbienne 

au travers du post-doctorat que j’ai réalisé dans l’équipe BIOCOM (dir. L. Ranjard, 

DR INRA, UMR 1347 Agroécologie, INRA Dijon) : "Etude de la Biogéographie des 

communautés de champignons du sol au sein du Réseau de Mesure de la Qualité 

des Sols" (Direction L. Ranjard, DR INRA, 2008-2010). Ce post-doctorat et mon 

recrutement en tant que Maître de Conférence à AgroSup Dijon en 2010 ont ancré 

mon parcours scientifique à Dijon et ont joué un rôle déterminant dans mes 

thématiques de recherche actuelles que je détaillerai plus loin (Chapitre 2. § 2.2). 

Aujourd’hui, mon parcours scientifique se poursuit au sein de l’équipe BIOCOM, 

dans le pôle BIOME (Biologie et fonctions écosystémiques des sols) de l’UMR 1347 

Agroécologie (INRA, AgroSup Dijon, Université de Bourgogne-Franche-Comté). 

Cette équipe compte 7 personnels permanents : 2 DR, 3 MC, 1 IE, 1 TR ; 1 post-

doctorante et 1 PRAG (AgroSup Dijon). L’équipe BIOCOM est structurée autour de 3 

axes de recherches (Figure 1) : 1) Etude des processus et des filtres impliqués dans 

la distribution spatiale des communautés microbiennes du sol à différentes échelles ; 

2) Rôle de la diversité microbienne dans le fonctionnement biologique du sol; 3) 

Diagnostic microbiologique de la qualité des sols agricoles. Mes activités de 

recherche au sein de l’équipe BIOCOM se déploient à part égale entre les axes 1 et 

3. Mon intégration au sein de l’équipe BIOCOM m’a permis d’aller plus loin dans mes 

activités de scientifiques, en particulier au travers du co-encadrement de la thèse de 
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F. Constancias (2010-2014) ; mais aussi en termes de responsabilités puisque je 

suis responsable de l’équipe BIOCOM depuis le 1er Mars 2018. 

 

 
Figure 1. Schéma conceptuel des thématiques de l'équipe BIOCOM et de leurs relations. 

Les axes de recherche fondamentale sont identifiés en vert, l’axe de transfert est identifié en bleu. 
  

Axe	1	:	Etude	des	processus	et	des	filtres	impliqués	dans	la	
distribution	spatiale	des	communautés	microbiennes	du	sol	à	
différentes	échelles		

Axe	3	:	Diagnostic	microbiologique	
de	la	qualité	des	sols	agricoles	

Axe	2	:	Rôle	de	la	diversité	microbienne	
dans	le	fonctionnement	biologique	du	sol	
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2 CV 
Etat Civil   

 
Nom et Prénom: CHEMIDLIN PREVOST-BOURE Nicolas 

Date et lieu de naissance : 30/05/1981, Paris (14e) 

Nationalité : Française 

Situation familiale : PACSE, 2 enfants 

Adresse professionnelle : 
UMR 1347 Agroécologie AgroSup Dijon, INRA, Université de Bourgogne-Franche-

Comté 

17 rue de Sully, BP 86510, 21065 DIJON Cedex 

Téléphone professionnel : 03.80.69.30.53 / 03.80.77.25.66 

Fax : 03.80.77.25.51 / 03.80.69.32.24 
e-mail :  nicolas.chemidlin@agrosupdijon.fr 

 

Situation administrative   
 

Depuis le 1er Janvier 2011, Maître de Conférences du Ministère de l’Agriculture, de 

l’Agroalimentaire et de la Forêt (5e échelon, CNECA N°2) 

De septembre 2005 à Janvier 2012, Professeur agrégé classe normale en Sciences 

de la Vie, Sciences de la Terre et de l’Univers 

 

Formation et cursus professionnel   
 
2011 - … : Maître de Conférences en Biologie des sols – Sciences du sol ; 

Département Agronomie Agroéquipement Elevage et Environnement ; AgroSup 

Dijon 

 

2008 – 2011 : Post-Doctorat ; UMR Microbiologie du Sol et de l’Environnement, 

INRA Dijon. Sujet : "Etude de la Biogéographie des communautés de 

champignons du sol au sein du Réseau de Mesure de la Qualité des Sols" ; 

sous la direction de L. Ranjard 
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2005 – 2008 : Doctorat ; Laboratoire Ecologie – Systématique - Evolution (ESE), 

Université Paris- Sud XI, Orsay. Mention très honorable et félicitations du jury 

Titre: "Les respirations autotrophe et hétérotrophe du sol dans une chênaie 

tempérée" ; sous la direction de K. Soudani et J.-C. Lata 

Composition du Jury : 

Ivan JANSSENS, PR, Université d’Anvers, Anvers [rapporteur] 

Thierry HEULIN, DR CNRS, CEA Cadarache [rapporteur] 

Paul LEADLEY, PR, Université Paris-Sud XI, Orsay [examinateur] 

Nathalie FROMIN, CR, CEFE, Montpellier [examinatrice] 

Kamel SOUDANI, MCF, Université Paris Sud XI, Orsay [encadrant] 

Jean-Christophe LATA, MCF, Université Paris VI, Paris [co-encadrant] 

Moniteur à l’Université Paris-Sud XI, Orsay. 

 

2004 – 2005 : 4e année à l’Ecole Normale Supérieure de Cachan (ENS 
Cachan) 

Master2 Sciences, Technologie, Santé, Mention Ecologie, Biodiversité, Evolution, 

spécialité Ecologie, Biodiversité, Evolution, Université Paris Sud XI. Mention 

bien Stage de Master 2 : "Les respirations autotrophe et hétérotrophe du sol en 

forêt tempérée décidue" ; laboratoire ESE sous la direction d’E. Dufrêne, 

Université Paris Sud-XI. 

 

2003 – 2004 : 3e année à l’ENS Cachan ; Admis à l’Agrégation SVSTU (81e) 
 

2002 – 2003 : 2e année à l’ENS Cachan 
Maîtrise de Biologie Cellulaire et Physiologie, mention Génétique Moléculaire et 

Cellulaire & Physiologie, Université Paris Sud XI. Mention bien. Stage de 

Maîtrise : "Etude de l’effet des bactéries auxiliaires de mycorhization sur la 

mise en place de mycorhizes in vitro chez des clones de peuplier blanc" ; 

sous la direction de D. Khasa, Laboratoire de Mycologie, Pavillon Marchand, 

Université Laval, Québec, Canada 

 

2001 – 2002 : 1ère année à l’ENS Cachan 
Licence de Biologie, mention Biologie Cellulaire et Physiologie, Université Paris 

Sud XI. Mention Assez Bien. Stage de Licence : "Contribution à la mise en 
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place d’une technique moléculaire de détection de bactéries intrafongiques 

chez Laccaria bicolor S238N" ; sous la direction de P. Frey-Klett, INRA de 

Nancy, Centre de Champenoux 

 

1999 – 2001 : Classe préparatoire BCPST au lycée Henri IV (Paris 05). Admis au 

concours Agro (262e) et aux ENS (68e) 

 

1999 :  Baccalauréat série S mention Bien, Lycée Richelieu, Rueil-

Malmaison 

 

Langues étrangères   
 

Anglais : lu, écrit, parlé (TOEIC : 860) ; Allemand : niveau Bac 

 

Formations complémentaires   
 

• Formation "Techniques du génie génétique : PCR en temps réel", 5 jours 

(29/06/2009 – 03/07/2009), AGROCAMPUS de Rennes. 

• Formation "Échantillonnage dans l’espace et dans le temps pour l’inventaire et 

la surveillance des ressources naturelles, module 1" (23/09/2013 – 27/09/2013), 

INRA, Orléans. 

 

Animation scientifique et responsabilités   
 

Ø Responsabilités au sein d’AgroSup Dijon et de l’UMR Agroécologie 

• Responsable de l’équipe BIOCOM (1er Mars 2018) 

• Suppléant de Christelle Philippeau au Conseil Scientifique d’AgroSup Dijon 

(2012-2015) 

• Co-direction de la dominante d’approfondissement « Ressources, Données, 

Diagnostic, Changements Climatiques » (R2D2C) à AgroSup Dijon (à partir 

de Septembre 2018 ) 

• Co-direction de formation diplômante : licence professionnelle "Agriculture, 

Nouvelles Technologies, Durabilité", Université de Bourgogne Franche-
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Comté, responsabilité de 4 UE en L3, Master et en formation Ingénieure 

(depuis 2011) 

 

Ø Activités d’expertise 

• Expertise de projet dans le cadre des Labex de l’Université Joseph Fourié, 

Grenoble 

• Reviews pour des journaux à comité de lecture de rang A : European 

Journal of Soil Biology ; Plant and Soil, Geoderma ; Agronomy for 

Sustainable Development ; Global Change Biology 

 

Projets de recherche 
 

Ø En tant que coordinateur 
Projets régionaux 

• 2011 – 2013 : BIOMAPS : " Biodiversité Microbienne des Sols à l’échelle 

d’une Mosaïque Agricole : approche écologique et évaluation 

environnementale des pratiques agricoles à court et moyen terme" – 

FABER Conseil Régional de Bourgogne 

• 2016 – 2018 : Monitoring des communautés microbiennes des sols à 

l’échelle d’un paysage agricole – Conseil Régional de Bourgogne 

• 2016 – 2020 : IFEP : "Impacts de la fertilisation des prairies sur leur 

biodiversité et sur les transferts de bactéries et de contaminants chimiques 

du sol au lait" – cofinancement Comité Interprofessionnel de Gestion du 

Comté / I-Site Bourgogne-Franche-Comté. 

 

Projets nationaux 

• 2015 – 2017 : Projet d’édition d’un Atlas microbiologique des sols français – 

co-coordination avec L. Ranjard – cofinancement ADEME ; Observatoire 

Français des Sols Vivants ; AgroSup Dijon ; INRA. 

 

Ø En tant que partenaire 
Projets régionaux 

• 2016 – 2018: Eco-dynamiques d’un espace forestier et des activités 

humaines : la forêt et réserve de Val-Suzon sur le temps long – Conseil 
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Régional de Bourgogne Franche Comté, coordination JP Garcia, Université 

de Bourgogne Franche Comté 

• 2018– 2023 : Réseau de Veille à l’innovation Agricole Bourgogne Franche-

Comté – ADEME, UE (FEADER), coordination J. Halska (CA71) 

 
Projets nationaux 

• 2006 – 2009 : ECOMIC-RMQS : Microbio-géographie à l'échelle de la 

France par application d'outils moléculaires au réseau français de mesures 

de la qualité des sols – ANR, coordination L. Ranjard, INRA 

• 2012 – 2016 : MOSAIC : Approche à l'échelle du paysage de la dynamique 

des Matières Organiques des Sols dans des systèmes Agricoles Intensifs 

liés à l'élevage, et dans un contexte de Changements globaux – ANR, 

coordination V. Viaud, INRA 

• 2014 – 2018 : CAMMISOLE: Effet du Changement global en Afrique de 

l’ouest et à Madagascar sur la diversité des Microorganismes du Sol et ses 

conséquences sur les services Ecosystémiques – FRB, coordination L. 

Bernard, IRD 

• 2011 – 2015: AgrInnov – CASDAR, INRA, AgroSup Dijon, Région Pays de la 

Loire, Région Bourgogne, ADEME, coordination L. Ranjard, Chef de file : 

Observatoire Français des Sols vivants. 

• 2013 – 2014: META-Taxomic RMQS – France Génomiques, coordination L. 

Ranjard 

• 2011 – 2014 : ECOFINDERS – UE, 6e PCRD, Coordination P. Lemanceau. 

• 2018 – 2022 : Agro-Eco Sol – Projets d’Investissement d’Avenir 3, 

coordination M. Vallé Aurea AgroSciences, L. Ranjard, INRA et Arvalis 

institut du végétal. 

 

Collaborations scientifiques 
 

• UMR Chronoenvironnement (F Gillet, D Gilbert, PM Badot) 

• UMR CNRS 5558, Laboratoire de Biométrie (J Thioulouse) 

• Unité Infosol (D Arrouays, C Jolivet, N Saby, INRA Orléans) 

• UMR SAS (V Viaud, INRA rennes) 
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• UMI 209 UMMISCO (N Marilleau, IRD) 

• UMR 6282 Biogeoscience (J Lévêque, O Mathieu, Université de Bourgogne 

Franche-Comté) 

• UMR 1347 Agroécologie AgroSup Dijon, INRA, Université de Bourgogne 

Franche-Comté (S Petit, F Dessaint, JP Guillemin) 

• ADEME (A Bispo) 

• Comité Interprofessionnel de Gestion du Comté (Y Bouton) 

• Chambres d’Agriculture (P Mulliez et V Riou (49), J Halska (71)) 

• Observatoire Français des Sols Vivants (E. d’Oiron) 

 

Activités de formation en lien avec la recherche et responsabilités 
 

Ø Formation académique de la licence au doctorat 

• Co-direction de la dominante d’approfondissement « Ressources, 
Données, Diagnostic, Changements Climatiques » (R2D2C) à 
AgroSup Dijon (à partir de Septembre 2018 ). Elle vise à former des 

ingénieurs opérationnels capables de proposer des stratégies de gestion des 

ressources naturelles (eau, sol, biodiversité) en contexte de changement 

climatique. Elle s’appuie sur une démarche en trois temps : 1) évaluation de 

l’état des ressources, 2) diagnostic, 3) Proposition d’actions ; en mettant en 

œuvre des outils de diagnostic éprouvés, en particulier les outils de 

diagnostic microbiologique des sols issus de mes activités de recherche 

finalisée. 
 

• Co-direction de formation diplômante : licence professionnelle 
"Agriculture, Nouvelles Technologies, Durabilité", Université de 
Bourgogne Franche-Comté, responsabilité de 4 UE en L3, Master et 
en formation Ingénieure (depuis 2011) 

 

• Encadrement de stages recherche : 
o Licence et Master : S. Aussems (L3Pro, 2010), Cécile Gruet (2017, 

L3) ; Rémy Doyen (2009, M2, co-direction L. Ranjard) ; Dewi Gleau 
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(2013, M2, co-direction : JP Guillemin), Emmannuelle Franc (M2 Pro, 

2016, co-direction). 
o Thèse de doctorat : F. Constancias : "Distribution spatiale de la 

diversité bactérienne tellurique à différentes échelles spatiales : de 

l'agrégat au paysage" (2011 à 2015, co-direction L. Ranjard).  
o Post-doctorat : Battle Karimi : "Atlas français des bactéries du sol" 

(2015-2017, co-encadrement avec L Ranjard) ; Battle Karimi (2017-

2018) 
 

Ø Formation professionnelle 

• Formations à destination des agriculteurs et des viticulteurs : 
"Les indicateurs biologiques et agronomiques de la qualité des sols" : 13 

formations de deux jours depuis 2013. 

• Formations à destination des conseillers agricoles (RESOLIA) : 
"Les indicateurs biologiques et agronomiques de la qualité des sols" : 4 

formations de 3 jours depuis 2015 dont 3 en tant qu’intervenant et 1 en tant 

que responsable de formation. 

• Formations à destination des enseignants des lycées agricoles (Plan 
National de Formation du Ministère de l’Agriculture, de 
l’Agroalimentaire et de la Forêt): 
1 formation d’une journée et demie en 2016. 

 

Liste des travaux 
 

24 articles dans des revues à comité de lecture, 5 chapitres d’ouvrage et 1 

ouvrage en cours de publication; H index =10 

 

Ø Articles soumis dans des revues à comité de lecture  
Karimi B., Dequiedt S., Terrat S., Jolivet C., Arrouays D., Wincker P., Cruaud C., 

Bispo A., Chemidlin Prévost-Bouré N., Ranjard L. (2018). Soil Bacterial Networks 

Driven by Land Use on Broad-scale, Soil Biology and Biochemistry, soumis 

 

Karimi B., Terrat S., Dequiedt S., Saby N.P.A., Horrigue W., Lelièvre M., Nowak V., 

Jolivet C., Arrouays D., Wincker P., Cruaud C., Bispo A., Maron P.-A., Chemidlin 
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Prévost-Bouré N., Ranjard L. (2018). Biogeography of Soil Bacteria and Archaea 

across France, Science Advances, in press. 

 

Le Guillou C., Chemidlin Prévost-Bouré N., Akkal-Corfini N., Dequiedt S., Nowak V., 

Terrat S., Menasseri-Aubry S., Viaud V., Maron P.-A., Ranjard L. (2018). Tillage 

intensity and pasture in rotation effectively shape soil microbial communities at a 

landscape scale, MicrobiologyOpen, soumis. 

 

Ø Articles publiés dans des revues à comité de lecture  
[1] Sadet-Bourgeteau S., Houot S., Dequiedt S., Nowak V., Tardy V., Terrat S., 

Montenach D., Mercier V., Karimi B., Chemidlin Prévost-Bouré N., Maron P.-A. 

(2018). Lasting effect of repeated application of organic waste products on 

microbial communities in arable soils, Applied Soil Ecology, in press. 

[2] Bernard L., Razanamalala K., Razafimbelo T., Maron P.-A., Ranjard L., 

Chemidlin Prévost-Bouré N., Lelievre M., Dequiedt S., Ramaroson V., Becquer T., 

Trap J., Blanchart E., Marsden C. (2017). "Soil microbial diversity drives the 

priming effect along climate gradients – A case study in Madagascar", ISME 

Journal, doi:10.1038/ismej.2017.178 

[3] Terrat S., Horrigue W., Dequiedt S., Saby N.P.A., Lelièvre M., Nowak V., 

Tripied J., Regnier T., Jolivet C., Arrouays D., Wincker P., Cruaud C., Karimi B., 

Bispo A., Maron P.-A., Chemidlin Prévost-Bouré N., Ranjard L. (2017). Mapping 

and Predictive Variations of Soil Bacterial Richness across France, Plos One,12, 

10. 

[4] Karimi B., Maron P.-A., Chemidlin-Prévost Bouré N., Bernard N., Gilbert D., 

Ranjard L. (2017). Microbial diversity and ecological networks as indicators of 

environmental quality, Environmental Chemistry Letters, Volume 15, Number 2, 

Page 265-281 
[5] Horrigue W., Dequiedt S., Chemidlin Prévost-Bouré N., Jolivet C., Saby 

N.P.A, Arrouays D., Bispo A., Maron P.-A. and Ranjard L. (2016). Predictive 

Model of Soil Molecular Microbial Biomass, Ecological Indicators, Volume: 64 

Pages: 203-211 

[6] Guigue J., Lévêque J., Mathieu O., Schmitt-Kopplin P., Lucio M., Arrouay 

D., Jolivet C., Dequiedt S., Chemidlin Prévost-Bouré N., Ranjard L. (2015). 
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Water-extractable organic matter linked to soil physico-chemistry and 

microbiology at the regional scale, Soil Biology and Biochemistry, 84, 158-167 

[7] Constancias F., Saby N.P.A., Terrat S., Dequiedt S., Horrigue W., Nowak 

V., Guillemin J.- P., Biju-Duval L., Chemidlin Prévost-Bouré N. & Ranjard L. 

(2015b). Contrasting spatial patterns and ecological attributes of soil bacterial 

and archaeal taxa across a landscape, MicrobiologyOpen, doi: 

10.1002/mbo3.256 

[8] Constancias F., Terrat S., Saby N.P.A., Horrigue W., Villerd J., Guillemin J.-

P., Biju- Duval L., Nowak V., Dequiedt S., Ranjard L. & Chemidlin Prévost-Bouré 

N. (2015a). Mapping and determinism of soil microbial community distribution 

across an agricultural landscape, MicrobiologyOpen, doi : 10.1002/mbo3.255 

[9] Terrat S., Dequiedt S., Horrigue W., Lelievre M., Cruaud C., Saby N.P.A., 

Jolivet C., Arrouays D., Maron P.A., Ranjard L., Chemidlin Prévost Bouré N. 

(2015). Improving Soil Bacterial Taxa-Area Relationships Assessment Using 

DNA Meta-Barcoding. Heredity, special issue ‘Environmental genomics’, 468-

475 

[10] Chemidlin Prévost-Bouré N., Dequiedt S., Thioulouse J., Lelièvre M., Saby 

N.P.A., Jolivet C., Arrouays D., Plassart P., Lemanceau P., Ranjard L. (2014). 

Similar processes but different environmental filters for soil bacterial and fungal 

diversity turnover on a broad spatial scale. PLos One Volume: 9 Issue: 11 

Article Number: e111667 

[11] Constancias F., Chemidlin Prévost-Bouré N., Terrat S., Aussems S., Nowak 

V., Guillemin J.-P., Bonnotte A., Biju-Duval L., Navel A., Martins J., Maron P.-

A, Ranjard L. (2014). Microscale evidence for a high decrease of soil bacterial 

density and diversity by copping. Agronomy for Sustainable Development, 

Volume:	34	Issue:	4	Pages:	831-840	 

[12] Lienhard P., Terrat S., Chemidlin Prévost-Bouré N., Nowak V., Régnier T., 

Sayphoummie S., Panyasiri K., Tivet F., Mathieu O., Levêque J., Maron P.-A. & 

Ranjard L. (2014). Pyrosequencing evidences the impact of cropping on soil 

bacterial and fungal diversity in Laos tropical grassland. Agronomy for 

Sustainable Development, 34, 525-533. 

[13] Maunoury-Danger F., Chemidlin Prevost Boure N., Ngao J., Berveiller D., 

Brechet C., Dufrene E., Epron D., Lata J.-C., Longdoz B., Lelarge-Trouverie C., 

Pontailler J.-Y., Soudani K. & Damesin C. (2013). Carbon isotopic signature of 
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CO2 emitted by plant compartments and soil in two temperate deciduous forests. 

Annals of Forest Science, 70, 173-183. 

[14]  Ranjard L., Dequiedt S., Chemidlin Prévost-Bouré N., Thioulouse J., Saby N. 

P. A., Lelievre M., Maron P. A., Morin F. E. R., Bispo A., Jolivet C., Arrouays D. 

and Lemanceau P. (2013). Turnover of soil bacterial diversity driven by wide-

scale environmental heterogeneity. Nature Communications, 4, 1434 

[15] Lienhard P., Tivet F., Chabanne A., Dequiedt S., Lelièvre M., Sayphoummie 

S., Leudphanane B., Chemidlin Prévost-Bouré N., Séguy L., Maron P.-A. and 

Ranjard L. (2013). No-till and cover crops shift soil microbial abundance and 

diversity in Laos tropical grasslands, Agronomy for Sustainable Development, 

33, 375-384 

[16] Lienhard P., Terrat S., Mathieu O., Levêque J., Chemidlin Prévost-Bouré 

N., Nowak V., Régnier T., Faivre C., Sayphoummie S., Panyasiri K., Tivet F., 

Ranjard L. & Maron P.-A. (2013). Soil microbial diversity and C turnover 

modified by tillage and cropping in Laos tropical grassland. Environmental 

Chemistry Letters, 11, 391-398. 

[17] Chemidlin Prévost-Bouré N., Christen R., Dequiedt S., Mougel C., Lelièvre 

M., Jolivet C., Shahbazkia H. R., Guillou L., Arrouays D., Ranjard, L. (2011). 

Validation and Application of a PCR Primer Set to Quantify Fungal Communities 

in the Soil Environment by Real-Time Quantitative PCR. PLoS ONE ,6, 

e24166. doi:10.1371/journal.pone.0024166 

[18] Chemidlin Prévost-Bouré N., Maron P.-A., Ranjard L., Nowak V., Dufrêne 

E., Damesin C., Soudani K., Lata J.-C. (2010b). Seasonal dynamics of bacterial 

community in forest soil under different leaf litter amounts: towards linking 

microbial community and soil functioning, Applied Soil Ecology , 47, 14-23. 

[19] Chemidlin Prévost-Bouré N., Soudani K., Damesin C., Berveiller D., Lata 

J.-C., Dufrêne E. (2010a). Increase in aboveground fresh litter quantity over-

stimulates soil respiration in a temperate deciduous forest, Applied Soil Ecology 

, 46, 26-34. 

[20] Ranjard L., Dequiedt S., Jolivet C., Saby N., Thioulouse J., Harmand J., Loisel 

P., Rapaport A., Fall S., Simonet P., Joffre R., Chemidlin-Prévost Bouré N., 

Maron P.-A., Mougel C., Martin M., Toutain B., Arrouays D. and Lemanceau P. 

(2010). Biogeography of soil microbial communities: a review and a description of 
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the ongoing French national initiative. Agronomy for Sustainable Development, 

30, 359-365. 

[21] Dequiedt S., Lelievre M., Jolivet C., Saby N., Martin M., Thioulouse J., Maron 

P.-A., Mougel C., Chemidlin Prévost-Bouré N., Arrouays D., Lemanceau P. and 

Ranjard L. (2009). ECOMIC-RMQS: Biogéographie microbienne à l'échelle de la 

France: Etat d'avancement et premiers résultats. Etude et Gestion des Sols, 16, 

219-231. 

[22] Dequiedt S., Thioulouse J., Jolivet C., Saby N., Lelievre M., Maron P.-A., 

Martin M., Chemidlin Prévost-Bouré N., Toutain B., Arrouays D., Lemanceau P. 

and Ranjard L. (2009). Biogeographical patterns of soil bacterial communities. 

Environmental Microbiology Reports, 1, 251-255. 

[23] Chemidlin Prévost-Bouré N., Ngao J., Berveiller D., Bonal D., Damesin C., 

Dufrêne E., Lata J-.C., Le Dantec V., Longdoz B., Ponton S., Soudani K. and 

Epron D. (2009). Root exclusion through trenching does not affect the isotopic 

composition of soil CO2 efflux. Plant and Soil, 319, 1-13. 

[24] Bertaux J., Schmid M., Chemidlin Prévost-Bouré N., Churin J.-L., Hartmann 

A., Garbaye J. and Frey-Klett P. (2003). In Situ Identification of Intracellular 

Bacteria Related to Paenibacillus spp. in the Mycelium of the Ectomycorrhizal 

Fungus Laccaria bicolor S238N. Applied and Environmental Microbiology, 69, 

4243-4248. 

 

Ø Chapitres d’ouvrages  
[25] In La microbiologie moléculaire au service du diagnostic environnemental, 

Editions ADEME; 2017 : 

a. Dequiedt S., Chemidlin Prévost-Bouré N., Terrat S., Horrigue W., 
Arrouays D., Saby N.P.A., Jolivet C., Ranjard L. Diagnostic 

microbiologique de la qualité des sols français à l’échelle nationale en 

fonction de leur mode d’usage – Partie 1 – Biomasse moléculaire 

microbienne 

b. Terrat S., Chemidlin Prévost-Bouré N., Dequiedt S., Horrigue W., 
Arrouays D., Jolivet C , Ranjard L. Diagnostic microbiologique de la qualité 

des sols français à l’échelle nationale en fonction de leur mode d’usage – 

Partie 2 – Inventaire diversité microbienne 
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c. Chemidlin Prévost-Bouré N., Dequiedt S., Plassart P., d’Oiron Verame 
E., Ranjard L. Diagnostic microbiologique de la qualité des sols d’un réseau 

de parcelles agricoles en grande culture et en viticulture (AgrInnov)  

[26] Ranjard L., Chemidlin Prévost-Bouré N., Dequiedt S. Soil microbial 

biogeography: mapping microscopic organisms on a wide scale, in Global Soil 

Biodiversity Atlas, Ed. Joint Research Centre of the European Commission, 

2016 

[27] Pivato B., Chemidlin Prévost-Bouré N., Ranjard L., Lemanceau P. Microbiome 

du sol, in Metagenomique, Ed. QUAE, 2015. 

 

Ø Ouvrages  
[28] Karimi B., Terrat S., Dequiedt S., Chemidlin Prévost-Bouré N., Ranjard L. 

(2017) Atlas Français des bactéries du sol, en cours de publication. 

 

Ø Articles sans comité de lecture 
[29] Cannavacciulo M., Cassagne N., Riou V., Mulliez P., Chemidlin Prévost-Bouré 

N., Dequiedt S., Villenave C., Cérémonie H., Cluzeau D., Cylly D., Vian J., Peigné 

J., Gontier L., Fourrié L., Maron P.-A., D’oiron Verame E., Ranjard L. (2017) 

Validation d’un tableau de bord d’indicateurs sur un réseau national de fermes en 

grande culture et en viticulture pour diagnostiquer la qualité biologique des sols 

agricoles, Innovations Agronomiques, 2017, 55 : 41-54. 

 

Ø Communications dans des congrès avec publication des actes  
Ø Communications orales 

[1] Karimi B., Chemidlin Prévost-Bouré N., Terrat S., Dequiedt S., Saby N., 

Horrigue W., Lelièvre M., Nowak V., Jolivet C., Arrouays D., Wincker P., 

Cruaud C., Bispo A., Maron P.A., Ranjard L., Bacterial "social" network in 

french soils: a Metagenomics insight ; Sfécologie-2016, International 

Conference of Ecological Sciences, 24-27 Octobre 2016, Marseille, 

conférence invitée 

[2] Chemidlin Prévost-Bouré N., Dequiedt S., Terrat S., Horrigue W., 
Maron P.-A., Ranjard L., Distribution spatiale des communautés 

microbiennes des sols, modélisation et indication. COMMISCO 2015, 13 

Novembre 2015, Bondy, conférence invitée. 
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[3] Chemidlin Prévost-Bouré N., Terrat S., Dequiedt S., Lelièvre M., Nowak 
V., Horrigue W., Maron P.A., Ranjard L., Processes and filters shaping 

soil microbial diversity assessed by high throughput sequencing ; BES and 

SFE Joint Annual Meeting, 2014: 9 – 12 December, Lille, France, 

conférence invitée 

[4] Constancias F., Terrat S., Saby NPA, Horrigue W., Villerd J., Guillemin JP, 

Luc Biju-Duval L., Nowak V., Dequiedt S., Ranjard L., Chemidlin Prévost-

Bouré N. (2014) Caractérisation de la distribution spatiale des communautés 

microbiennes du sol et de ses déterminants à l’échelle du paysage. 7èmes 

Journées Françaises de l'Ecologie du Paysage (IALE), Dijon 

[5] Terrat S., Dequiedt S., Lelièvre M., Nowak V., Wincker P., Cruaud C., 

Saby NPA, Jolivet C., Arrouays D, Maron P.A., Ranjard L., Chemidlin 

Prévost-Bouré N. Processes and filters shaping soil microbial diversity 

assessed by high throughput sequencing, 20th World Congress of Soil 

Science, Jeju, Corée du Sud, 8-13 Juin 2014. 

[6] Chemidlin Prévost-Bouré N., Dequiedt S., Ranjard L. Turnover of soil 

microbial diversity is driven by wide-scale environmental heterogeneity. 2nd 

Thünen Symposium on Soil Metagenomics: Mining and Learning from 

Metagenomes, Braunschweig, Allemagne, 11-13 Décembre 2013, 

conférence invitée. 

[7] Constancias F., Chemidlin Prévost-Bouré N., Nowak V., Dequiedt S., Biju-

Duval L., Guillemin J-P, Joffre R., Martins J., Ranjard L. Spatial patterns of 

microbial communities at a soil microscale. ISME 14, Copenhagen, 

Danemark, 19-24 Aout 2012 

[8] Chemidlin Prévost-Bouré N., Dequiedt S., Saby NPA, Thioulouse J., 
Jolivet C., Lelièvre M., Arrouays D., Ranjard L., Spatial processes driving 

soil microbial community assembly on a wide scale. EUROSOIL 2012, 

BARI, Italie, 2-6 Juillet 2012 

[9] Chemidlin Prévost-Bouré N., Dequiedt S., Saby N., Lelievre M., Arrouays 

D.,Jolivet C., Thioulouse J., Maron P.-A., Lemanceau P. et Ranjard L. 

Biogéographie Microbienne : mythe ou réalité ? Congrès Ecologie 2010, 

Montpellier, France, 2 - 4 Sept. 2010. 

[10] Chemidlin Prévost-Bouré N., Dequiedt S., Doyen R., Lelievre M., 

Jolivet C., Martin M., Saby N., Toutain B., Arrouays D., Harmand J., Loisel 
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P., Thioulouse J., Maron P.-A., Lemanceau P. et Ranjard L. Profils 

Biogéographiques de la diversité des champignons telluriques Congrès de 

l’Association Francophone d’Ecologie Microbienne, Lyon, France, 31 Août – 

2 Sept 2009 

[11] Chemidlin Prévost-Bouré N., Dufrêne E., Damesin C., Soudani 
K., Lata J.-C. Short term bacterial community structure dynamics in forest 

soil and litter: an in situ study in a CarboEurope site. EUROSOIL 2008, SOIL 

- SOCIETY – ENVIRONMENT, Vienna, Austria, 25 - 29 August 2008 

[12] Chemidlin Prévost-Bouré N., Damesin C., Dufrêne E., Lata J.-C., 
Soudani K. Les respirations autotrophe et hétérotrophe du sol dans une 

chênaie tempérée. VIIIèmes Journées de l’Ecologie Fonctionnelle, Nouan-le-

Fuzelier, 6-9 Mars 2006. 

[13] Chemidlin Prevost-Boure N., Ngao J., Epron D., Berveiller D., Bonal 

D., Damesin C., Lata J.-C., Le Dantec V., Longdoz B., Dufrêne E., Ponton 

S., Soudani K. Est-il possible de détecter in situ les différentes composantes 

respiratoires du sol par l’utilisation des isotopes stables en abondance 

naturelle ? 3èmes Journées Jeunes Chercheurs de la SFIS, Université de 

Lyon I, 24-25 octobre 2007 

[14] Chemidlin Prévost-Bouré N., Dufrêne E., Lata J.-C., Ranjard L., 
Berveiller D., Damesin C., Soudani K. Litière et respiration du sol dans une 

chênaie tempérée : intensité, composition isotopique et structure des 

communautés bactériennes impliquées. Xèmes Journées de l’Ecologie 

Fonctionnelle, La Grande Motte, 2-4 Avril 2008. 

[15] Chemidlin Prévost-Bouré N., Mulliez P., Offre de formation 

Agrinnov, Journée Nationale de l’Innovation Agricole, 2-4 Novembre 2015, 

Angers, conférence invitée 

[16] Stage Génome à l’école, Ecole de l’ADN, 16-20 Mars 2015, Nîmes, 

Conférence invitée 

[17] Journées sciences du vivant : "le monde microbien", 10-11 

Décembre 2014, Institut Pasteur, Paris, Conférence invitée 

[18] Chemidlin Prévost-Bouré N., Dequiedt S., Maron P.A., Ranjard L. 
La métagénomique du sol et la biodiversité microbienne. Colloque National 

de l’Education Nationale "Science et Société : Biodiversité", Palais de la Porte 

Dorée, Paris, France, 14-15 Novembre 2013, Conférence invitée 
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Ø Posters 
[1] Karimi B., Terrat S., Dequiedt S., Saby N., Horrigue W., Lelièvre M., Nowak 

V. Jolivet C., Arrouays D., Wincker P., Cruaud C., Bispo A., Maron P.A., 

Chemidlin Prévost-Bouré N., Ranjard L., Contrasting Spatial Patterns and 

Ecological Attributes of Soil Bacterial Taxa Across French National Territory; 

Sfécologie-2016, International Conference of Ecological Sciences, 24-27 

Octobre 2016, Marseille 

[2] Chemidlin Prévost-Bouré N., Terrat S., Dequiedt S., Saby N., Jolivet C., 

Lelièvre M., Cruaud C., Wincker P., Bispo A., Arrouays D., Maron P.A., 

Ranjard L., Is soil an island for bacteria? : Contribution of the soil bacterial 

Taxa-area relationship using new generation sequencing ; 16th International 

Symposium on Microbial Ecology, 21-26 August 2016, Montreal, Québec, 

Canada 

[3] Terrat S., Dequiedt S., Saby N., Horrigue W., Lelièvre M., Nowak V., Tripied 

J., regnier T., Jolivet C., Arrouays D., Wincker P., Cruaud C., Bispo A., Karimi 

B., Maron P.A., Chemidlin Prévost-Bouré N. ; Ranjard L. Biogeographical 

patterns of soil bacterial diversity at the scale of France; 16th International 

Symposium on Microbial Ecology, 21-26 August 2016, Montreal, Québec, 

Canada 

[4] Bouton Y., Nowak V., Guyot P., Chemidlin Prévost-Bouré N. (2015) 

Diversité microbienne du lait au cours d’un cycle de pâturage, Colloque de 

la Société Française de Microbiologie, Institut Pasteur, Paris, 23-25 Mars 

2015. Prix du meilleur poste. 

[5] Ranjard L., Constancias F., Chemidlin Prévost-Bouré N., Dequiedt S., Saby 

N.P.A., Horrigue W., Biju-Duval L., Guillemin J-P., Jolivet C., Arrouays D., 

Maron P.-A. (2014). A spatial upscaling strategy to assess soil microbial 

community assembly and the impact of land use, International Symposium 

on Microbial Ecology, 24-29 Aout 2014, Seoul, Corée du Sud 

[6] Plassart P., Chemidlin Prévost-Bouré N., Terrat S., Dequiedt S., 
Creamer R., Stone D., Griffiths B., Ranjard L., Lemanceau P. (2014) 

Spatial patterns of soil bacterial communities at the European scale, 

International Symposium on Microbial Ecology, 24-29 Aout 2014, Seoul, 

Corée du Sud 
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[7] Chemidlin Prévost Bouré, N. ; Constancias, F. ; Terrat, S. ; Dequiedt, S. ; 

Saby, N. ; Biju-Duval, L. ; Guillemin, J.-P. ; Jolivet, C. ; Arrouays, D. ; 

Maron, P.-A. ; Ranjard L. (2014). A spatial upscaling strategy to assess soil 

microbial community assembly and the impact of land-use. First Global Soil 

Biodiversity Initiative Conference, 2-5 Décembre 2014, Dijon, France 

[8] Chemidlin Prévost Bouré, N. ; Constancias, F. ; Terrat, S. ; Dequiedt, S. ; 

Saby, N. ; Biju-Duval, L. ; Guillemin, J.-P. ; Jolivet, C. ; Arrouays, D. ; 

Maron, P.-A. ; Ranjard L. (2014). A spatial upscaling strategy to assess soil 

microbial community assembly and the impact of land-use. First Global Soil 

Biodiversity Initiative Conference, 2-5 Décembre 2014, Dijon, France 

[9] Horrigue W., Dequiedt S., Chemidlin Prévost Bouré N., Maron PA, 
Constancias F., Arrouays D., Jolivet C., Ranjard L. (2014). Predictive 

models of abundance and diversity of soil microbial communities. First Global 

Soil Biodiversity Initiative Conference, 2-5 Décembre 2014, Dijon, France 

[10] Plassart P., Chemidlin Prévost-Bouré N., Terrat S., Dequiedt S., 
Creamer R., Stone D., Lemanceau P., Ranjard L., Spatial patterns of soil 

bacterial communities at the European scale. First Global Soil Biodiversity 

Initiative Conference, 2-5 Décembre 2014, Dijon, France 

[11] Constancias F., Chemidlin Prévost-Bouré N., Dequiedt S., Nowak V., 

Guillemin J-P, Biju- Duval L., Ranjard L. Is there a sub alpha-diversity at 

soil microscale. EUROSOIL 2012, BARI, Italie, 2-6 Juillet 2012 

[12] Chemidlin Prévost-Bouré N., Dequiedt S., Saby NPA., Thioulouse 
J., Jolivet C., Lelievre M., Arrouays D., Ranjard L.. Soil Fungal 

Communities Ecology:a Biogeographical Approach, Ecology of Soil 

Microorganisms, Microbes as Important Drivers of Soil Processes, Prague, 

République Tchèque, 27 Avril au 1er Mai 2011. 

[13] Dequiedt S., Chemidlin-Prevost- Bouré N., Saby N.P.A., Thioulouse J., 

Lelievre M., Jolivet C., Maron P.A., Martin M., Arrouays D., Lemanceau P., 

Ranjard L. Biogeographical patters of soil microbial communities at the 

scale of drench metropolitan territory, International Symposium on Microbial 

Ecology, Seattle, Etats-Unis d’Amérique, 22-27 Août 2010. 

[14] Chemidlin Prevost-Bouré N., Dequiedt S., Thioulouse J., Jolivet C., 

Saby N., Lelievre M., Maron P.-A., Martin M., Arrouays D., Lemanceau P., 

Ranjard L. Microbial-biogeography at the scale of France by the use of 
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molecular tools applied to the French soil quality monitoring network 

(RMQS). BAGECO 10, Uppsala, Suède, 15-19 Juin 2009 

[15] Chemidlin Prevost-Boure N., Dufrêne E., Lata J.C., Damesin C. 
and Soudani K. Temporal dynamics of autotrophic and heterotrophic soil 

respiration in a temperate deciduous forest. Open Science Conference on 

the GHG Cycle in the Northern Hemisphere, Sissi-Lassithi, Crête, 14-18 

November 2006 

 

Ø Thèse  
Chemidlin-Prévost-Bouré N. (2008) Les respirations autotrophe et 

hétérotrophe du sol dans une chênaie tempérée. Thèse de Doct. en Sci., Univ 

Paris-Sud, Orsay, ,220 p 

 

Ø Autres productions : Déclarations d’invention  
[1] DIRV-16-0042 : Diagnostic de la qualité microbiologique d’un sol par la 

mesure de la biomasse moléculaire microbienne, Ranjard L., Dequiedt S., 

Maron P.A., Horrigue W., Chemidlin Prévost-Bouré N. 

[2] DIRV-16-0043 : Diagnostic de la qualité microbiologique d’un sol par la 

mesure de la diversité taxonomique des communautés bactériennes et de 

champignons, Ranjard L., Dequiedt S., Maron P.A., Horrigue W., Chemidlin 

Prévost-Bouré N., Terrat S. 
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1 Introduction 
Le fonctionnement [biologique] des sols occupe une part primordiale pour les 

activités humaines. Au travers de leurs propriétés, les sols déterminent notre 

capacité à produire des biens en quantité et en qualité. Dans ce contexte, la 

composante microbienne des sols occupe une place prépondérante. Le sol héberge 

une extrême diversité de microorganismes. Ils sont les plus abondants : un gramme 

de sol contient environ 109 bactéries et 105 champignons (≈ 50% de la biomasse du 

sol, ≈ 5t de Carbone par hectare ;Maron et al., 2011) ; et les plus diversifiés : environ 

106 espèces bactériennes et 103 à 104 espèces de champignons par gramme de sol 

(Torsvik, 2002; Bates et al., 2013). Cette extrême diversité taxonomique des 

microorganismes du sol supporte une extraordinaire diversité fonctionnelle qui leur 

confère un rôle très important dans le fonctionnement biologique des sols. D’un point 

de vue qualitatif, ils sont impliqués dans tous les cycles biogéochimiques (Carbone, 

Azote, Phosphore ; Chemidlin Prevost-Boure et al., 2010b) ; le maintien de la 

structure du sol ; la dégradation des composés exogènes (e.g. pesticides) ou 

réduisent la durée de vie de certains pathogènes dans le sol (Vivant et al., 2013). 

D’un point de vue quantitatif, l’intensité de certaines fonctions dépend du niveau de 

diversité de la communauté (e.g. minéralisation de la MO et dénitrification ; Philippot 

et al., 2013; Tardy et al., 2014). En plus de cette importance stratégique pour le 

fonctionnement du sol, la diversité des communautés microbiennes (richesse 

spécifique, composition taxonomique) détermine tout ou partie du niveau de 

redondance de ces fonctions et donc leur stabilité (résistance/résilience) en réponse 

à des perturbations (pratiques agricoles, changements climatiques). Les 

communautés microbiennes constituent donc une assurance écologique pour 

l’Homme (Loreau, 2010). 

Néanmoins, l’utilisation intensive des sols les soumet à des pressions croissantes 

conduisant à la dégradation de cette ressource naturelle dont les effets se ressentent 

aujourd’hui, notamment au niveau agricole. En effet, historiquement adossée à des 

leviers externes à l’agroécosystème pour garantir des rendements élevés, 

l’agriculture connait actuellement une transition forte vers l’agroécologie (ensemble 

d’agricultures alternatives à l’agriculture dont le système de production n’est adossé 

qu’à des leviers externes à l’agroécosystème ; in l’Agrorévolution Française, Vincent 

Tardieu, 2012) pour favoriser la durabilité des exploitations agricoles. Ainsi, le sol 



Chapitre 2 

 23 

n’est plus un support de productions mais un écosystème "piloté de manière à fournir 

durablement diverses catégories de biens et de services précisément qualifiés" 

(Millenium Ecosystem Assessment, 2010). Dans ce contexte, l’enjeu est donc d’être 

en mesure d’utiliser au mieux les composantes biologiques des sols, et 

particulièrement les communautés microbiennes au regard de leur importance 

quantitative et qualitative. Pour cela, il est nécessaire de mieux comprendre les 

déterminants de la diversité des communautés microbiennes des sols ; et de diffuser 

les connaissances et les outils de gestion auprès des acteurs de terrain, en 

particulier du monde agricole. 

  

L’écologie microbienne évolue fortement depuis 20 ans avec le développement et 

l’amélioration continue des techniques d’écologie moléculaires basées sur l’étude du 

métagénôme du sol. Elles ont progressivement permis de caractériser à haut débit et 

de plus en plus finement la diversité microbienne des sols tant en termes de richesse 

taxonomique (diversité α) ou de structure des communautés microbiennes 

(abondance relative des différents taxons présents) ; offrant ainsi la possibilité de 

cartographier la diversité des microorganismes du sol. Elles sont aussi à l’origine 

d’évolutions fondamentales indispensables à la compréhension de l’écologie des 

microorganismes du sol. Leur mise en œuvre a permis de démontrer que les 

approches biogéographiques (i.e. l’étude de la distribution des organismes dans 

l’espace et le temps) historiquement inféodées aux plantes et aux macroorganismes 

étaient applicables aux microorganismes du sol (Horner-Devine et al., 2004). Ceci 

permet aujourd’hui d’évaluer si les microorganismes du sol ont une écologie 

particulière comme le suggère le postulat de Baas Becking (1934) : "tout est partout, 

mais l’environnement sélectionne" ; ou s’ils sont soumis aux mêmes lois écologiques 

que les macroorganismes et les plantes. D’une part, l’association des techniques 

d’écologie moléculaire aux approches biogéographiques permet d’évaluer si les 

communautés microbiennes des sols suivent une des plus robustes et plus 

anciennes relations en écologie : la relation Aire-Taxons (TAR, augmentation du 

nombre de taxons observés avec l’aire d’échantillonnage ; Arrhenius 1921; Gleason 

1922) et d’évaluer le postulat de Baas-Becking. D’autre part, l’étude des variations 

spatiales de structure des communautés microbiennes des sols (diversité β) permet 

dans un premier temps d’évaluer si les communautés microbiennes des sols sont 

soumises aux même processus écologiques que les macroorganismes : la sélection 
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environnementale, la dispersion (i.e. le déplacement et l’établissement avec succès 

d’un organisme dans un nouveau lieu), la dérive écologique (i.e. des variations 

d’abondance relative des différents taxons de la communauté suite à différents 

évènements démographiques) et la mutation (i.e. l’apparition de nouvelles espèces 

suite à des mutations génétiques). Dans un second temps, elle permet d’identifier et 

de quantifier clairement ces processus pour les hiérarchiser, mais aussi d’identifier et 

de hiérarchiser les filtres environnementaux supportant ces processus : 

caractéristiques physico-chimiques du sol, occupation du sol, pratiques agricoles, 

localisation géographique. Ceci permet alors d’identifier de potentiels leviers de 

gestion des communautés microbiennes des sols. Par ailleurs, comme les 

macroorganismes, les microorganismes constituant les communautés microbiennes 

interagissent entre eux et il est aujourd’hui possible de rendre compte de ces 

interactions dans la compréhension de l’écologie des microorganismes du sol. 

 

Dans la suite, je présenterai ma thématique, mes objectifs et ma stratégie de 

recherche. Puis, je présenterai mes activités de recherche fondamentale au travers 

de trois parties couvrant ma thèse, mes travaux de post-doctorat à l’échelle du 

territoire national et mes travaux à l’échelle d’un paysage agricole. Une dernière 

partie me permettra de décrire mes travaux de recherche finalisée et leur mise en 

œuvre dans le cadre d’activités de recherche participative en lien avec le 

développement agricole. 
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2 Thématique, objectifs et stratégie de recherche 

2.1 Thématique de recherche et objectifs 
Ma thématique de recherche est la biogéographie microbienne des sols à 

l’échelle du territoire national et des paysages agricoles ; la biogéographie étant 

l’étude de la distribution des organismes dans l’espace et le temps. Je la décline au 

sein de deux des axes de recherche de l’équipe BIOCOM, l’étude du déterminisme 

spatial et temporel des communautés microbiennes du sol et le diagnostic 

microbiologique des sols agricoles. Dans l’axe 1, mes objectifs de recherche sont de: 

1) décrire la distribution spatiale des communautés bactériennes et fongiques, 2) 

évaluer les processus écologiques et leur intensité au travers de la relation "aire - 

espèces" (augmentation du nombre d’espèces inventoriées avec l’augmentation de 

l’aire d’échantillonnage), 3) hiérarchiser les filtres environnementaux déterminant ces 

variations, 4) évaluer l’impact du mode d’usage des sols sur ces communautés. Au 

sein de l’axe 3, mon objectif est d’accélérer le transfert des outils de diagnostic et 

des connaissances associées pour l’évaluation des pratiques auprès des acteurs du 

monde agricole (agriculteurs, conseillers de chambre d’agriculture, 

interprofessions…) en appui du développement agricole pour la transition 

agroécologique. 
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2.2 Stratégie de recherche 

 
Figure 2. Stratégie de recherche. 
Le schéma décrit le continuum entre recherche fondamentale et recherche finalisée en mettant en 
évidence les échelles investiguées et les sorties finalisées en termes d’outils de diagnostic et de 
recherche participative. Le cadre méthodes identifie la séquence technique mise en œuvre aux 
différentes échelles spatiales : extraction d’ADN du sol, séquençage des communautés microbiennes 
et analyses statistiques et dans les approches de recherche finalisée. 
 

Pour atteindre ces objectifs, ma stratégie de recherche met en jeu des approches 

à différentes échelles spatiales (Territoire national et paysage agricole) et de 

métagénomique environnementale pour considérer la réponse des communautés 

microbiennes des sols à différents types de variations environnementales : 

caractéristiques des sols, géomorphologie, pratiques agricoles (Figure 2). Ainsi, il est 

possible de mieux comprendre la biogéographie des communautés microbiennes 

des sols en les cartographiant et en identifiant les processus et les filtres 

environnementaux déterminant leurs variations. La comparaison des résultats entre 

échelles permet d’évaluer la généricité des résultats à différentes échelles spatiales. 

Les connaissances acquises permettent ensuite de développer des outils de 

diagnostic d’impact des pratiques agricoles opérationnels et transférables aux 

acteurs du monde agricole (ADEME, Observatoire National de la Biodiversité) dans 

le cadre d’une recherche finalisée. Je déploie ces outils dans des projets de 

recherche participative incluant plusieurs acteurs du monde agricole (agriculteurs, 

conseillers de chambre d’agriculture…) permettant ainsi d’accompagner la transition 

agroécologique. 
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3 Étude des émissions de Carbone par les sols en forêt 
tempérée décidue 

Cette partie s’appuie en particulier sur ma thèse de doctorat et les articles référencés 

sous les numéros [18], [19] & [23]. 

J’ai réalisé mon doctorat sur les émissions de carbone (C) par le sol en milieu 

forestier, généralement nommée respiration du sol. Mes travaux s’inscrivaient dans 

un contexte de changements climatiques où la compréhension du fonctionnement du 

sol est cruciale puisque la respiration du sol (RS) représente entre 40% et 70% des 

émissions de CO2 par les écosystèmes continentaux, déterminant ainsi leur l’état de 

source ou de puits de C. Plus précisément, mes travaux portaient sur l’étude des 

deux composantes autotrophe (RA) et hétérotrophe (RH) de RS afin de mieux 

comprendre les processus impliqués dans le fonctionnement du sol et leurs réponses 

faces aux variations des facteurs environnementaux. 

J’avais pour objectifs de décomposer RS en ses composantes RA et RH d’une 

part ; et de déterminer l’effet de variations de facteurs biotiques et abiotiques sur le 

fonctionnement du sol d’autre part. J’ai atteint ces objectifs au travers de deux 

expérimentations de terrain réalisées dans une forêt tempérée décidue (forêt de 

Barbeau, site FR-Font, Réseau CarboEurope-IP). 

La décomposition de RS en RA et RH a mis en jeu la méthode des « Trench 

plot » couplée à des mesures de RS et l’utilisation des isotopes stables du C en 

abondance naturelle. Ce couplage entre différentes techniques a permis de tester 

l’impact de l’exclusion racinaire sur la composition isotopique du CO2 sortant du sol 

(δ13CRs). Les résultats ont permis de montrer que RH contribuait à hauteur de 40 à 

60% de RS (Figure 3). L’étude des déterminants de RS montre qu’elle augmente avec 

la température du sol ; cette augmentation étant modulée par l’humidité du sol 

suivant une loi lognormale présentant un optimum à la capacité au champ. Au 

contraire, l’exclusion racinaire n’a pas affecté δ13CRs, ce qui laisse supposer que la 

différence de composition isotopique entre RA et RH est trop faible pour décomposer 

précisément RS dans des écosystèmes forestiers sans alternance entre types 

photosynthétiques C3 et C4. 
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Figure 3. Dynamique temporelle de la respiration du sol dans le trench plot (TP) et le plot contrôle 

(CP). 
Les barres d’erreur correspondent à des erreurs standard et les points correspondent aux respirations 
moyennes par plot (n=30). Article associé : [23]. 
 

Les effets associés aux variations de facteurs biotiques sur le fonctionnement du sol 

ont été étudiés via une modification quantitative des allocations de litière foliaire au 

sol (apport normal, apport doublé, pas d’apport), et par un suivi mensuel de RS, de 

δ13CRS et de la structure des communautés bactériennes (BCS) du sol et de la litière. 

 

 
Figure 4. Dynamique temporelle de la respiration du sol (FS) dans les différentes modalités d'apport 

de litière. 
Les lignes noires, grises et en pointillés correspondent aux modalités d’apport de litière : apport 
doublé, apport normal et pas d’apport ; respectivement. Les barres d’erreur sont des erreurs 
standards. L’encart en haut à droite montre la relation entre la température du sol et l’intensité de la 
respiration du sol. Article associé [19] 
 

Les résultats (Figure 4) montrent que RS augmente de façon non proportionnelle à la 

quantité de litière allouée. Cette augmentation a été reliée à un « priming effect » 

(PE). L’intensité des flux de CO2 issus du sol de surface et de la litière n’ayant pas 
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été affectée par le traitement, le PE a été localisé dans du sol profond et comme 

utilisant du C récalcitrant. Ceci pourrait être confirmé par les mesures de δ13CRs mais 

ces dernières n’ont pas été affectées par le traitement, la signature isotopique de la 

matère organique du sol étant relativement proche dans les horizons profonds d 

ecelle de l’horizon de surface. Néanmoins, les BCS du sol et de la litière ont été 

significativement modifiées par le traitement, mettant en avant de potentielles 

variations de fonctionnement du sol, hypothèse qui s’est vue appuyées par la mise 

en évidence d’un lien statistique entre les variations de BCS et l’intensité et la 

composition isotopique du flux de CO2 dans la litière. 

 
Figure 5. Analyse de coinertie entre l’évolution de la structure des communautés bactériennes de la 
litières et l’intensité et la signature isotopique de la respiration du sol (Fs, δ13CFs) ou de la litière (Fl, 
δ13CFl). 
Les axes de la coinertie sont prennent en compte 79% des variations de structure des communautés 
bactériennes et de l’intensité/de la signature isotopique des flux de CO2. Les polygones correspondent 
à des convex de Hull dont la taille est proportionnelle à la variabilité des BCS. Les polygones en gris 
correspondent aux mois où la température du sol est descendue en dessous de 10°C et le polygone 
noir indique une sécheresse estivale. Les flèches sont proportionnelles à la corrélation entre les axes 
de la coinertie et l’intensité/de la signature isotopique des flux de CO2. Lorsque les flèches se 
superposent avec les convexes de Hull, il y a un lien statistique entre les deux. La significativité de ce 
lien a été testée par un test de Monté-Carlo (1000 permutations). Article associé [18]. 
 

L’ensemble de ces résultats a permis de mettre en évidence l’importance d’études 

intégrées de la RS. En particulier, pour mieux comprendre le fonctionnement du sol et 

ses variations dans un contexte de changements climatiques, il apparait nécessaire 

de prendre en compte à la fois les variations du flux de CO2 sortant du sol en lien 

avec les paramètres abiotiques du milieu (température, humidité), mais aussi la 

variabilité du système sol en termes de structure des communautés microbiennes. 
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4 Distribution spatiale et déterminisme de l’abondance, de la 
diversité et de la structure des communautés microbiennes à 
différentes échelles spatiales 

Cette partie s’appuie en particulier sur les articles référencés sous les numéros [3-5], 

[7-10], [12], [14-15] & [22]. 

Cette partie vise à synthétiser mes travaux en biogéographie microbienne des 

sols à deux échelles d’étude différentes : le territoire national et le paysage agricole. 

Aux deux échelles, les objectifs étaient de : 1) décrire la distribution spatiale des 

communautés bactériennes et fongiques ; 2) évaluer l’importance relative de 

différents processus écologiques (déterministe [Sélection environnementale] vs 

neutres [dispersion]) structurant les communautés microbiennes du sol ; 3) identifier 

et hiérarchiser les filtres environnementaux supportant ces processus : physico-

chimie du sol, climat, utilisation du sol ou pratiques agricoles (travail du sol, 

amendements organiques…). Dans la suite, je présenterai les résultats à l’échelle du 

territoire national puis à celle du paysage agricole. Je ferai ensuite une synthèse 

entre échelles. 

 

4.1 Distribution spatiale et déterminisme de l’abondance, de la diversité et 
de la structure des communautés microbiennes à l’échelle du territoire 
national 

Les études à l’échelle du territoire national s’appuient sur le Réseau de Mesure 

de la Qualité des Sols (RMQS ; Arrouays et al., 2002 ; [22]). Mis en place en 2001 

par le GISSOL et coordonné par l’INRA (Unité InfoSol, Orléans), le RMQS est un 

réseau de surveillance à long terme (cyclicité de 10 à 15 ans) de la qualité des sols 

en France. Il compte 2200 sites répartis suivant une grille systématique de 16km de 

côté et est représentatif de la diversité des types de sols et des modes d’usage des 

sols à l’échelle de la France (Figure 6). 
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Figure 6. Variabilité environnementale à l’échelle de la France. 
Chaque pixel correspond à un site RMQS. Les différentes variables représentées sont : (a) l’utilisation 
du sol sur la base du Corinne Land Cover niveau 1 ; (b) La température annuelle moyenne ; ‘c) la 
somme des précipitations annuelles ; (d) le pH du sol ; (e)la teneur en carbone organique du sol ; (f) la 
texture du sol au regard de la classification de la Food and Agricultural Organisation des Nations 
Unies (FAO) ; (g) l’atitude de chaque site d’après les modèles numériques de terrain de l’IGN. 

 

La première campagne du RMQS a duré près de 12 ans et l’étude de la 

biogéographie des communautés microbiennes s’est déroulé sur les 10 dernières 

années environ dans le cadre du programme ECOMIC-RMQS (ANR, Coordination L. 

Ranjard). Sachant que les méthodes de métagénomique connaissent des 

améliorations techniques tous les 3 à 5 ans, l’étude de la biogéographie des 

communautés microbiennes a mis en œuvre plusieurs méthodes de métagénomique 

différentes. Dans chaque partie, je décrirai donc brièvement la méthode mise en 

œuvre. 
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4.1.1 Abondance des communautés microbiennes des sols 
Articles [5] & [22] 

Plusieurs méthodes existent pour mesurer la biomasse microbienne d’un sol. En 

particulier, la quantité d’ADN directement extraite d’un échantillon de sols est 

reconnue comme une mesure robuste et reproductible de la biomasse microbienne 

d’un sol (Dequiedt et al., 2011) et a été nommée biomasse moléculaire microbienne 

pour la différencier des mesures de biomasse microbienne s’appuyant sur une 

quantification du carbone ou de l’azote microbien.  

 

 
Figure 7. Cartographie de la biomasse moléculaire microbienne des sols à l'échelle du territoire national. 
En dessous de la carte, le variogramme utilisé pour réaliser l’interpolation est proposé. L’article 
associé est référencé sous le numéro [5]. 

 

L’abondance des communautés microbiennes des sols à l’échelle du territoire 

national varie entre 0.1 et 630 µgADN.gsol
-1 (Figure 7). Cette gamme de variations est 

du même ordre de grandeur que celles observées dans d’autres études à des 

échelles similaires ou plus larges (Zhou et al., 1996, Kuske et al., 1998, Frostegard 

et al., 1999, Ranjard et al., 2003; Serna-Chavez et al., 2013). Ces variations de 

biomasse moléculaire microbienne du sol sont distribuées de manière hétérogène et 

structurée, la relation entre la semi-variance et la distance représentée par le 

variogramme étant significative. La taille des unités spatiales à l’échelle du territoire 
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français est d’environ 160km de rayon, ce qui est très important au regard de la taille 

des microorganismes du sol. Cette structuration spatiale à plusieurs échelles est en 

accord avec la bibliographie puisqu’elle est observée à l’échelle globale (Serna-

Chavez et al., 2013; Fierer, 2017). Néanmoins, cette structuration spatiale présente 

aussi une forte variabilité locale au regard du fort effet pépite du variogramme de la 

biomasse moléculaire microbienne (ca. 50%). L’échelle spatiale de ces variations est 

sans doute inférieure à la résolution de la carte (ici, 2,5km).  

 

Une approche de partition de la variance de la biomasse moléculaire microbienne 

mettant en œuvre une analyse canonique des redondances a permis d’identifier et 

de hiérarchiser les filtres environnementaux impliqués. Les facteurs les plus 

importants pour expliquer les variations de biomasse moléculaire microbienne sont la 

teneur en Carbone organique du sol (Corg (g/kg) : 15.4%) et l’utilisation du sol (2.9%), 

indépendamment des interactions potentielles entre ces ceux variables. Ceci est en 

accord avec les observations de la littérature (Serna-Chavez et al., 2013, Ranjard et 

al., 2003). L’effet positif du Corg est lié à son statut de ressource trophique pour tous 

les microorganismes du sol. L’effet de l’utilisation du sol à l’échelle du territoire 

national peut être associé à l’intensité d’utilisation du sol : dans les systèmes 

forestiers et prairiaux, le sol est soumis à une pression anthropique inférieure à celle 

des systèmes en grande culture et des systèmes horticoles et viticoles dans lesquels 

il est travaillé de manière plus ou moins forte au moins une fois par an et connait des 

apports plus ou moins répétés de nutriments et de produits phytosanitaires. Le 

second groupe de filtres environnementaux déterminant le niveau de biomasse 

moléculaire microbienne correspond à un ensemble de conditions réactionnelles : le 

pH (1.0%), la teneur en argiles (1.9%) et en carbonates (0.9%), le ratio C/N (0.7%), 

la teneur en potassium (0.5%) et la température annuelle moyenne (0.8%). Le pH et 

la teneur en argiles ont un effet positif. Le pH détermine le niveau d’activité 

enzymatique des microorganismes (Fierer, 2017) et donc les capacités de 

dégradation de la matière organique par les microorganismes du sol. L’effet positif 

des argiles s’explique par leur rôle de protection de la matière organique et des 

microorganismes, permettant ainsi de protéger les microorganismes de leurs 

prédateurs tout en limitant l’accessibilité de la matière organique aux autres 

organismes [12]. Le ratio C/N et la teneur en carbonates (CaCO3) ont un effet négatif 

sur la biomasse moléculaire microbienne, notamment car une augmentation de ratio 
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C/N traduit une diminution de la dégradabilité de la matière organique, et une 

augmentation de la teneur en carbonates dans un sol augmente le niveau de 

protection de la matière organique. 

 

4.1.2 Richesse des communautés bactériennes des sols 
Article [3] 

Les communautés microbiennes des sols sont composées d’une grande diversité 

de microorganismes appartenant à différents règnes : Bactéries, Archées et 

Champignons, notamment. Elles peuvent être caractérisées par différentes 

métriques telles que la richesse taxonomique (diversité α) ou la structure de la 

communauté. Ici, je me focaliserai sur la richesse taxonomique des communautés 

bactériennes du sol. Ceci a été rendu par le déploiement de méthodes de 

séquençage haut débit sur l’ensemble du RMQS (France Génomiques, programme 

Méta-TAXOMIC RMQS, Coordination L. Ranjard). Ces méthodes se sont 

démocratisées dans les années 2010 (Check Hayden, 2014) et sont reconnues 

efficaces pour caractériser les communautés microbiennes des sols (Cuny, Maron & 

Ranjard, 2017). Les communautés bactériennes sont caractérisées à partir de l’ADN 

directement extrait du sol à l’aide de marqueurs taxonomiques spécifiques des 

bactéries (ADNr 16S, ici : F479 (5’-CAGCMGCYGCNGTAANAC-3’) et R888 (5’-

CCGYCAATTCMTTTRAGT-3’). L’analyse bioinformatique des séquences ([3] & [9]) 

permet de clusteriser les 10 000 séquences obtenues par échantillon en Unités 

Taxonomiques Opérationnelles (OTU) à 95% de similarité génétique, ce qui 

correspond à l’échelle du genre. Le nombre d’OTUs identifiées par échantillon 

constitue la mesure de richesse bactérienne. 
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Figure 8. Cartographie de la richesse bactérienne des sols à l'échelle du territoire national 

Le variogramme sur lequel s’appuie l’interpolation est présenté en dessous de la carte. Les zones 
détourées mettent en évidence des zones présentant des niveaux de diversité forts (H-zone) ou 
faibles (L-zone). L’article associé est référencé sous le numéro [3]. 

 

La Figure 8 présente la distribution spatiale de la richesse bactérienne à l’échelle 

du territoire national. La gamme de variation est assez large : 555 à 2007 OTU par 

échantillon de sol. Elle est en accord avec la bibliographie puisque des études à des 

échelles globales comparables en termes de profondeur de séquençage ont montré 

une richesse bactérienne variant de 500 à 4400 OTU par échantillon de sol 

(Delgado‐Baquerizo et al., 2017; Thompson et al., 2017; Delgado-Baquerizo et al., 

2018). L’étude des variations spatiales de la richesse bactérienne des sols démontre 

sa distribution hétérogène et structurée en unités spatiales de 110km de rayon 

environ. Néanmoins, comme pour la biomasse moléculaire microbienne, le fort effet 

pépite (73%) montre qu’elle varie aussi fortement à des échelles plus fines. 

En mettant en œuvre la même approche de partition de la variance, les filtres 

environnementaux déterminant la richesse taxonomique des communautés 

bactériennes des sols ont pu être identifiés et hiérarchisés. Il ressort de cette analyse 

que la richesse taxonomique bactérienne est particulièrement sous la dépendance 

du pH (11.0%, effet positif), de la teneur en argiles (5.8%, effet négatif) et de 

l’utilisation du sol (1.4%). L’effet positif du pH est lié à son rôle dans l’accessibilité à 

l’ensemble des ressources du sol (carbone, azote, conditions réactionnelles ; Fierer, 

2017). Ainsi, il détermine en partie la diversité des niches écologiques dans le sol. 

Richesse
bactérienne

(OTU)
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De même, la diversité des niches écologiques est affectée par la teneur en argile : 

son augmentation réduit l’hétérogénéité de l’environnement à micro-échelle, limitant 

alors la diversité des niches écologiques (Chau et al., 2011). Le troisième filtre est 

l’utilisation du sol. Fait surprenant, les systèmes les plus perturbés (grandes cultures, 

vignes et vergers, systèmes en labour) présentent les niveaux de richesse 

bactérienne les plus élevés par rapport à des systèmes plus stables (forêts, prairies). 

Ces différences s’expliquent bien par la théorie des perturbations intermédiaires 

dans laquelle une perturbation modérée diminue la compétitivité des organismes les 

plus adaptés à un environnement donné, permettant ainsi à d’autres espèces, moins 

adaptées au milieu initial, de s’implanter et de se développer. Pour les bactéries du 

sol, les systèmes viticoles, horticoles et de grandes cultures sont modérément 

perturbés au regard de leur petite taille, permettant ainsi leur diversification ([3]). Les 

autres filtres environnementaux identifiés correspondent au ratio C/N (0.5%), à la 

teneur en potassium (0.5%) et à la température annuelle moyenne (0.4%). Hormis la 

température, elles ont toutes un effet négatif sur la richesse taxonomique 

bactérienne, potentiellement car leur augmentation traduit une diminution de 

l’hétérogénéité des niches à micro échelle. 

 

4.1.3 Structure des communautés bactériennes des sols 
Articles [4-5], [9-10], [14]. 

Dans cette partie, je me focalise sur les variations de structure des communautés 

bactériennes des sols (diversité β). Les résultats présentés s’appuient sur la 

caractérisation des communautés bactériennes du sol par une technique d’empreinte 

moléculaire (ARISA, Ranjard et al., 2001), les résultats s’appuyant sur les techniques 

de séquençage haut débit étant en cours de publication. L’IGS bactérien présente un 

polymorphisme taille qui permet de caractériser la structure des communautés 

bactériennes du sol au travers de l’abondance relative de chaque taille de bande à 

raison de 100 bandes par échantillon ([14]). 
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Figure 9. Cartographie de la structure des communautés bactériennes des sols à l'échelle du 
territoire national 
La représentation des variations de structure des communautés bactériennes des sols est réalisée en 
interpolant les scores normalisés des sites sur les trois premiers axes d’une analyse NMDS. Les trois 
cartes sont ensuite superposées et un mélange de couleurs est réalisé selon la codification RVB. Le 
triangle de mélange des couleurs est proposé à gauche de la carte. Dans cette représentation, deux 
sites présentant des couleurs différentes ont des structures de communautés différentes. Cette carte 
a servi de base dans la rédaction de l’article [14] mais n’a pas été publiée. 

 

La Figure 9 présente les variations de structure des communautés bactériennes 

des sols sur la base d’une ACP permettant d’avoir une représentation des 

différences relatives entre chaque site. Ainsi, sur la carte de la Figure 9, deux sites 

présentant des couleurs différentes ont des communautés bactériennes différentes. 

A l’échelle du territoire national, on observe des variations de structure de 

communautés entre régions : e.g. Landes, Languedoc-Roussillon, Massif Central, 

Bretagne et Nord-Est de la France. Ces variations sont structurées spatialement à 

grande échelle puisque le rayon des unités spatiales est d’au minimum 140 km de 

rayon [14]. La structure des communautés bactériennes est donc structurée 

spatialement à l’échelle du territoire national, conclusion qui est en accord avec la 

littérature tant à des échelles continentales ou de pays (Green & Bohannan, 2006; 

Martiny et al., 2006; Fierer et al., 2007; Powell et al., 2015; Delgado‐Baquerizo et 

al., 2017; Thompson et al., 2017; Delgado-Baquerizo et al., 2018). Néanmoins, la 

variabilité locale de la structure des communautés bactériennes des sols est sans 

doute très forte au regard de l’effet pépite des variogrammes qui est d’au moins 57%. 

L’analyse des variations de structure des communautés bactériennes a été 

réalisée à partir des données de fingerprint moléculaire et de séquençage haut débit 

sur la base de leur composition (présence/absence des différentes bandes/OTU) 

0      AXE 3        1

1       AXE 3     0
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dans quatre régions contrastées : Landes, Bretagne, Bourgogne, Sud-Est de la 

France ([9-10]). Cette analyse de la variance de la structure des communautés 

bactériennfies des sols a été réalisée par une analyse canonique des redondances 

sur matrice de distance (db-RDA, Legendre & Anderson, 1999; Legendre et al., 

2009) en utilisant l’indice de Jaccard comme mesure de dissimilarité entre sites. 

Cette analyse a mis en œuvre trois groupes de variables explicatives : les 

caractéristiques physico-chimiques du sol, l’utilisation du sol et un groupe de 

descripteurs géographiques. Ces descripteurs géographiques correspondent à des 

PCNMs (Principle Coordinates of Neighbourg Matrix ; Dray et al., 2006) et ont la 

particularité d’être tous indépendants et de représenter une échelle spatiale pouvant 

être estimée au travers de leur semi-variogramme. La prise en compte de ces trois 

groupes de variables dans l’analyse a permis de tester l’importance relative des 

processus de sélection et de dispersion dans la structuration spatiale des 

communautés bactériennes des sols ; et d’identifier et de hiérarchiser les filtres 

environnementaux impliqués dans le processus de sélection environnementale. 

 

 
Figure 10. Partition de la variance de la structure des communautés bactériennes des sols 

La structure des communautés bactériennes des sols a été caractérisées par une technique de 
fingerprint moléculaire (ARISA) et par une technique de séquençage haut débit (Pyroséquençage 454, 
Roche, notée NGS). Les groupes de variables sont représentés comme suit : caractéristiques 
physico-chimiques du sol (gris clair), utilisation du sol (gris foncé), descripteurs géographiques (noir), 
interactions entre caractéristiques physico-chimiques des sols et utilisation du sol (blanc). Les seuils 
de significativité sont les suivants : ns : P>0.05 ; * : P<0.05 ; ** : P<0.01 ; *** : P<0.001. 
 

Quelle que soit la méthode utilisée pour caractériser les communautés bactériennes 

des sols à l’échelle des quatre régions, l’ensemble physico-chimie du sol et utilisation 

du sol explique la part la plus importante des variations de structure des 
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communautés bactériennes, ceci indépendamment de leurs interactions (Figure 10). 

Ceci traduit le fait que la sélection environnementale est sans doute le premier 

processus structurant les communautés bactériennes des sols. Les descripteurs 

spatiaux expliquent une part plus faible mais significative des variations de structure 

des communautés bactériennes des sols dans toutes les régions excepté les 

Landes. Ces derniers peuvent traduire des gradients environnementaux non 

mesurés ou bien des relations spatiales entre sites, i.e. des migrations d’un site A 

vers un site B. Ici, vu le grand nombre de variables environnementales prises en 

compte dans l’analyse, il apparaît peu probable que les descripteurs spatiaux 

correspondent uniquement à des gradients environnementaux non mesurés. Ils 

traduisent donc probablement une limite à la dispersion des communautés 

bactériennes du sol. Les processus stochastiques comme la dispersion semblent 

jouer un rôle significatif mais plus faible que la sélection environnementale. Ces 

observations sont en accord avec la littérature puisque le processus de sélection 

environnementale est systématiquement identifié comme structurant pour les 

communautés microbiennes des sols (Horner-Devine et al., 2004; Drenovsky et al., 

2010; Griffiths et al., 2011; Hanson et al., 2012; Powell et al., 2015). L’importance 

des limites à la dispersion est plus réduite et moins fréquemment observée (Hanson 

et al., 2012) mais a tout de même été démontrée pour certains genres (Cho & Tiedje, 

2000) ou pour la communauté totale (Powell et al., 2016). Ici, les groupes de PCNMs 

représentant des structures spatiales a des échelles larges (80 à 120 km de rayon) 

et plus fines (40 à 65 km de rayon) expliquaient tous deux des parts significatives de 

la variance des communautés bactériennes des sols. Ceci suggère que la limite à la 

dispersion pour les microorganismes pourrait être effective à différentes échelles 

spatiales. 

L’analyse fine des filtres environnementaux structurant les communautés 

bactériennes des sols a été réalisée sur les données d’empreinte moléculaire. Parmi 

les variables de physico-chimie des sols, chaque variable présente un effet marginal 

relativement faible étant donné le nombre important de variables explicatives 

sélectionnées. La hiérarchie des variables de physico-chimie des sols varie un peu 

entre les différentes régions. Néanmoins, en Bretagne, Bourgogne et dans le Sud-

Est de la France, le pH est le premier filtre structurant les communautés 

bactériennes de sols. Il est suivi par des variables reliées à la quantité et à la qualité 

des ressources trophiques dans les sols (teneur en azote total : Ntot ; Corg, ratio C/N) 
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et par la texture du sol (teneur en argiles et en limons) ; puis par la teneur en 

nutriments tels que le potassium ou le magnésium. En dernier, et uniquement en 

Bretagne, les précipitations annuelles moyennes constituent un filtre structurant les 

communautés bactériennes des sols. Contrairement aux trois autres régions, les 

communautés bactériennes de la région des Landes ne semblent structurées que 

par la qualité de la ressource trophique puisque seul le ratio C/N est significatif. Ceci 

peut s’expliquer par le caractère particulier de cette région qui présente une 

variabilité très faible en termes de types de sols (principalement des podzosols) ou 

d’utilisation du sol (principalement des couverts forestiers). Le rôle majeur du pH 

identifié ici est aujourd’hui bien démontré dans la littérature (Fierer & Jackson, 2006; 

Griffiths et al., 2011, 2016; Hanson et al., 2012; Terrat et al., 2014, 2017). Le rôle 

prépondérant de l’utilisation du sol est aussi régulièrement identifié dans la littérature, 

en particulier lorsque des systèmes contrastés sont considérés (Drenovsky et al., 

2010; Dumbrell et al., 2010). Il est moins prégnant lorsque les variations d’utilisation 

du sol sont plus graduelles (Delgado-Baquirezo et al., 2017). Ces différences 

peuvent être liées à un effet direct de la diversité végétale épigée qui a été identifiée 

comme pouvant structurer les communautés microbiennes (bactéries : Thompson et 

al., 2017 ; champignons : van der Heijden et al., 1998; Waldrop & Firestone, 2006). 

Elles peuvent aussi être liées aux interactions entre utilisation du sol et 

caractéristiques physico-chimiques des sols, en particulier le pH, la teneur en Corg et 

le ratio C/N. Ces dernières constituent elles aussi des variables environnementales 

déterminantes dans la structuration des communautés bactériennes des sols même 

si elles apparaissent moins fréquemment significatives, notamment du fait de leur 

forte corrélation avec l’utilisation du sol. 

 

4.1.4 Étude de la TAR 
Articles [9] & [14]. 

La relation Aire-Taxon (TAR) traduit l’augmentation de la richesse taxonomique 

(SA) avec la surface échantillonnée (A). Elle permet d’estimer le turnover des 

communautés (z) en évaluant le taux d’accumulation de nouvelles espèces en 

fonction de l’augmentation de l’aire d’échantillonnage à partir d’un point de richesse 

spécifique S0. Étudiée depuis le début de l’écologie quantitative, elle est souvent 
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représentée sous la forme d’une équation d’Arrhénius (Arrhenius 1921; Gleason 

1922). 

𝑺𝑨 = 𝑺𝟎 ∗ 𝑨𝒛 

Équation 1. Équation de la relation Aire-Taxon (TAR) 

Avant le développement et le déploiement massif des techniques de séquençage 

haut débit, réaliser un dénombrement représentatif du nombre de taxons bactériens 

ou fongique dans les sols était hors de portée. Pour estimer le turnover des 

communautés microbiennes, on s’appuyait alors sur la décroissance de la similarité 

entre communautés avec l’augmentation de l’interdistance (Green et al., 2006, Harte 

et al., 2009) ; en faisant l’hypothèse que les communautés microbiennes ont un 

nombre d’individus "infini", ceci en regard du nombre d’individus chez les 

macroorganismes ; et que la valeur de z est stable à l’échelle considérée [10]. 

𝝌𝒅 = 𝝌𝑫 ∗
𝒅
𝑫

!𝟐𝒛
 ó  𝒍𝒐𝒈𝟏𝟎 𝝌𝒅 =  −𝟐𝒛 ∗ 𝒍𝒐𝒈𝟏𝟎 𝒅 + 𝒄 

Équation 2. Équation de la Décroissance de Similarité en fonction de la distance (DDR) 
χd est la similarité d’habitat entre deux sites distants de d, χD est la similarité d’habitat entre deux sites 
distants de D et z le turnover des communautés. c : constante 
 

L’étude de la relation Aire-Taxons à l’échelle 

𝝌𝒅=𝝌𝑫∗𝒅𝑫−𝟐𝒛 ó 𝒍𝒐𝒈𝟏𝟎𝝌𝒅= −𝟐𝒛∗𝒍𝒐𝒈𝟏𝟎𝒅+𝒄 

Équation 2 a permis de mettre en évidence une relation significative entre la 

similarité génétique et la distance géographique (Figure 11). 

 
Figure 11. TAR à l’échelle de la France. 

Cercles gris: Similarité génétique entre paires de sites (échelle logarithmique) en fonction de 
l’interdistance entre sites (m, échelle logarithmique) geographical distance (m); Ligne noire : modèle 
de régression linéaire pondérée de la similarité génétique en fonction de la distance géographique. Le 



Chapitre 2 

 42 

poids de chaque point est égal au nombre de points dans la classe de distance. Equation du modèle 
(P<0.001) : log10 (genetic similarity) = 0.0117*log10 (geographical distance) - 0.1464. 
 

Cette relation confirme que les communautés bactériennes des sols sont distribuées 

de manière hétérogène et structurée à l’échelle du territoire national. Ceci est en 

accord avec en accord avec d’autres études à des échelles larges (Green et al., 

2004; Horner-Devine et al., 2004; Green & Bohannan, 2006; Zhou et al., 2006; 

Martiny et al., 2006; Powell et al., 2015). La valeur du turnover (z) est estimée à 

0.006 (+/- 7 10-4, P<0.001), valeur qui est aussi en accord avec les études mettant 

en oeuvre les études méttant en œuvre la même approche (Horner-Devine et al., 

2004; Fierer et al., 2008, [15]). Néanmoins, elle est très inférieure aux nouvelles 

études de biogéographie microbienne mettant en œuvre des techniques de 

séquençage haut débit (Powell et al., 2016 ; [9]). Cette différence entre études 

s’explique principalement par l’approche choisie pour estimer la valeur du z et le type 

de données disponibles (Zinger et al., 2014 ; [9]). En effet, les techniques 

d’empreintes moléculaires sont moins résolutives que les approches de séquençage 

massif (plusieurs espèces par bandes et polymorphisme de bandes au sein d’une 

même espèce). Elles saturent donc plus vite et aboutissent alors à une sous-

estimation du turnover des communautés microbiennes [9] et le séquençage massif 

offre la possibilité de mieux estimer la valeur de z. Même si cette différence ne 

semble pas remettre en cause les conclusions entre études, les études basées sur 

les données de séquençage massif pourraient conduire à réexaminer l’importance 

relative des différents processus écologiques mis en évidence plus haut dans la 

structuration des communautés microbiennes des sols (Hanson et al., 2012, [9]). Par 

ailleurs, les valeurs de z observées avec les méthodes de NGS sont du même ordre 

de grandeur que celles observées pour les macroorganismes (0.1 – 0.8 ; Horner-

Devine et al., 2004; Drakare et al., 2006), contrairement à la relation positive 

classiquement observée en écologie entre la taille d’un organisme et la valeur du z 

(Hillebrand et al., 2001; Drakare et al., 2006). Ceci laisse supposer que le turnover 

des microorganismes du sol pourrait être, comme pour les macroorganismes, 

influencé par la diversité des habitats et leur configuration spatiale.  

Dans ce cadre, j’ai testé la relation entre le turnover des communautés 

bactériennes des sols et le turnover et la configuration spatiale des habitats 

microbiens [14]. Les habitats microbiens ont été caractérisés par les coordonnées 

des sites dans une ACP mixte (méthode de Hill & Smith) incluant les caractéristiques 
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physico-chimiques des sols, leur utilisation et les caractéristiques climatiques. Sur la 

base de cette ACP, j’ai estimé le turnover des habitats microbiens calculant la 

similarité entre habitats microbiens à l’aide de l’Équation 3 et en transposant la DDR 

( 

𝝌𝒅 = 𝝌𝑫 ∗
𝒅
𝑫

!𝟐𝒛
 ó  𝒍𝒐𝒈𝟏𝟎 𝝌𝒅 =  −𝟐𝒛 ∗ 𝒍𝒐𝒈𝟏𝟎 𝒅 + 𝒄 

Équation 2) pour estimer le turnover des habitats microbiens (zHabitat). 

 

𝐸! =  1−
𝐸𝑢𝑑!
𝐸𝑢𝑐!"#

+ 0.001 

Équation 3. Similarité entre habitats microbiens 
Ed est la similarité d’habitat entre deux sites. Eucd est la distance euclidienne entre deux sites distants 
de d et Eucmax est la distance euclidienne maximale entre sites. On y ajoute 0.001 pour prendre en 
compte le cas où la distance euclidienne entre les deux sites est maximale.  

 

Afin d’avoir une taille d’échantillon suffisante pour évaluer la relation entre le 

turnover des habitats microbiens (zhabitat) et le turnover des communautés 

bactériennes des sols (zbacteria), j’ai utilisé une approche de fenêtre glissante centrée 

sur chaque site du RMQS (rayon de la fenêtre 140km). Le résultat est présenté en 

Figure 12. 

 
Figure 12. Relation entre les turnovers des communautés bactériennes du sol et de l’habitat microbien. 
Les ronds gris représentent les valeurs estimées pour chaque site du RMQS par la méthode de la 
fenêtre glissante décrite en [15], chaque site étant au centre d’une fenêtre de 140km de rayon. La 
ligne noire correspond au modèle linéaire de type II ajusté aux donnée : Zbacteria= 0.1350 
*zhabitat+0.0036, (r2=0.65, P<0.001). Les schémas sous l’axe des abscisses et à gauche de l’axe des 
ordonnées représentent la fragmentation de l’habitat microbien et la structure de communauté 
bactérienne 
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On observe que le turnover des communautés bactériennes est positivement et 

significativement relié à celui de l’habitat microbien (r2 = 0.65). Ce résultat conduit à 

deux conclusions importantes. D’une part, plus le turnover des habitats microbiens 

augmente, i.e. plus les habitats sont diversifiés, plus le turnover des communautés 

bactériennes des sols est élevé. D’autre part, même si le turnover des habitats 

microbiens est nul, celui des communautés bactériennes des sols reste positif 

(ordonnée à l’origine du modèle linéaire). Ces observations ont permis de confirmer 

l’importance des processus de sélection environnementale et de dispersion dans la 

structuration spatiale des communautés bactériennes des sols. Par ailleurs, une 

analyse complémentaire a permis de tester l’importance de la configuration 

paysagère dans le déterminisme du turnover des communautés bactériennes des 

sols. Pour cela, au sein de chaque fenêtre, les sites ont été randomisés pour modifier 

aléatoirement la configuration spatiale des habitats sans modifier le lien entre 

communauté bactérienne du sol et habitat. Cette randomisation a été répétée 1000 

fois par fenêtre. Ceci a permis de montrer que la relation observée en Figure 12 

n’était pas due au hasard et que la valeur de la pente était bien dépendante de la 

configuration spatiale des habitats microbiens. Au final, le turnover des 

communautés bactériennes des sols est, comme celui des macroorganismes 

(MACARTHUR et al., 1967), dépendant de la diversité des habitats et de leur 

configuration spatiale. Cette relation a récemment été testée sur un échantillonnage 

spatialisé en Ecosse et a abouti au même conclusions (Powell et al., 2016). 
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4.2 Distribution spatiale et déterminisme de l’abondance, de la diversité et 
de la structure des communautés microbiennes à l’échelle du paysage 
agricole 

Articles [7] & [8]. 

Les études à l’échelle du paysage agricole s’appuient sur la zone atelier de 

Fénay. Localisé à 15km de Dijon en Côte d’Or (Région Bourgogne-Franche-Comté), 

il couvre 1200 ha dont surfaces agricoles (900ha) et de forêts (200ha). Le paysage 

de Fénay compte 278 points de mesure répartis suivant une grille systématique de 

215m de côté. Cette grille est représentative de la variabilité des sols et de la 

diversité des pratiques agricoles mises en œuvre (Figure 13). Sur ce dernier point, le 

paysage de Fénay est particulièrement bien documenté puisque les pratiques 

agricoles sur chaque parcelle y ont été inventoriées sur les 12 dernières années. Je 

les ai développées en particulier dans le cadre de la thèse de Florentin Constancias, 

thèse que j’ai co-encadrée avec Lionel Ranjard de 2011 à 2015. 

 

 
Figure 13. Variabilité des caractéristiques des sols du paysage agricole de Fénay. 
(a-e)Carte de la teneur en Carbone Organique, du pH, de la teneur en Carbonates, de la teneur en 
sables et de la teneur en argiles ; respectivement ; (f) Carte de l’utilisation des sols au regard des 
classes de pratiques agricoles : Forest : Forêts, Perrennial Crop : Cultures pérennes, Catch Crop : 
rotations incluant des cultures intermédiaires pièges à nitrates (CIPAN), Min. Tillage : Cultures 
implantées par des méthodes de travail du sol réduit sans CIPAN, Mech. Hoeing : Cultures implantées 
après un décompactage sans CIPAN, Conv. Tillage : Cultures implantées après un labour sans 
CIPAN. Les points noirs correspondent aux sites d’échantillonnage. 
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4.2.1 Abondance des communautés microbiennes des sols 
Article [8]. 

 

 
Figure 14. Cartographie de la biomasse moléculaire microbienne des sols à l'échelle du paysage de 
Fénay. 
Les noms en gras correspondent aux noms des communes incluent dans le paysage de Fénay et les 
noms en italique correspondent aux deux cours d’eau traversant le paysage. En dessous de la carte, 
le variogramme utilisé pour réaliser l’interpolation est proposé. L’article associé est référencé sous le 
numéro [8]. 

 

A l’échelle d’un paysage agricole, l’abondance des communautés microbiennes 

varie entre 2 et 380 µgADN.gsol
-1 (Figure 14). Cette forte gamme de variation est du 

même ordre de grandeur que celles observées dans d’autres études à des échelles 

plus fines allant du bloc de sol (Nunan et al., 2003), à la région (Berner et al., 2011). 

Ces variations de biomasse moléculaire microbienne du sol sont distribuées de 

manière hétérogène et structurée suivant des unités spatiales de d’environ 515m de 

rayon. Même si l’échelle considérée est plus fine que celle du territoire national, il 

subsiste là encore une forte variabilité locale comme le suggère le fort effet pépite du 

variogramme (36%). Ceci est en accord avec une étude récente montrant que les 

paramètres microbiens d’un sol peuvent varier à l’échelle de quelques centimètres 

(O’Brien et al., 2016). L’étude des déterminants de ces variations a permis de mettre 

en évidence le rôle prépondérant de la teneur en Corg (10.1%), de l’utilisation du sol 

et des pratiques agricoles avec un effet négatif des actions de travail du sol (17.3%). 

Les autres variables environnementales identifiées étaient le ratio C/N (1.5%), la 

teneur en argiles du sol (0.5%) et en carbonates (0.5%). Ces filtres sont en accord 

avec ceux identifiés plus haut à l’échelle du territoire national mais est aussi en 

accord avec la littérature qui met en avant l’importance quantitative et qualitative de 



Chapitre 2 

 47 

la matière organique pour la croissance microbienne dans les sols (Leckie et al., 

2004; De Boer et al., 2005). Au regard des échelles plus larges, la faible influence de 

la teneur en argiles du sol peut s’expliquer par la faible variabilité texturale des sols 

(principalement argilo-limoneux ou limono-argileux). L’effet de l’utilisation du sol se 

décline ici à l’échelle des pratiques agricoles. Une classification ascendante 

hiérarchique des pratiques agricoles a permis de regrouper les parcelles suivant un 

gradient de travail du sol : Forêts (pas de travail du sol), Cultures pérennes (prairies 

et petits fruits ; travail du sol réduit), Grandes cultures avec cultures intermédiaires 

pièges à nitrates (CIPAN, implantation en travail du sol réduit), Grandes cultures 

sans CIPAN (implantation en travail du sol réduit), Cultures implantées après un 

décompactage sans CIPAN, Cultures implantées après un labour profond sans 

CIPAN. La prise en compte de ces différentes catégories a permis de mettre en 

évidence que le travail du sol induisait une diminution de la biomasse moléculaire 

microbienne. Ceci peut s’expliquer par une modification de l’accessibilité à la 

ressource carbonée. En effet, en déstructurant les agrégats, le travail du sol 

augmente l’accessibilité à la ressource carbonée. Ceci favorise des taxons 

bactériens dégradant des matières labiles et ayant une dynamique de population très 

forte avec une croissance très forte tant que la ressource est disponible qui s’arrête 

dès l’épuisement de celle-ci (stratèges r). Ceci conduit à terme à une réduction de la 

biomasse microbienne ([15-16]). A contrario, des systèmes sans travail du sol 

(prairies et forêts) favorisent des microorganismes consommant des matières 

organiques plus stables, dont à croissance plus lente mais dont la dynamique de 

population est aussi plus stable à long terme (stratèges K). 

 

4.2.2 Richesse taxonomique des communautés bactériennes des sols 
Article [8]. 

La Figure 15 présente la distribution spatiale de la richesse bactérienne à 

l’échelle du paysage de Fénay. La gamme de variation est assez large puisqu’elle 

varie de 850 à 1761 OTU par échantillon de sol (95% de similarité, profondeur de 

séquençage : 10800 séquences par échantillon), ce qui est en accord avec la 

bibliographie puisque des études comparables en termes de profondeur de 

séquençage ont montré une richesse bactérienne variant de 600 à 2750 OTU par 
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échantillon de sol tant à des échelles locale (Veach et al., 2015; Hartman et al., 

2018; Tian et al., 2018; Wang et al., 2018). 

 
Figure 15. Cartographie de la richesse bactérienne des sols à l'échelle du paysage agricole de Fénay 

Les noms en gras correspondent aux noms des communes incluent dans le paysage de Fénay et les 
noms en italique correspondent aux deux cours d’eau traversant le paysage. Le variogramme sur 
lequel s’appuie l’interpolation est présenté sous la carte. L’article associé est référencé sous le 
numéro [8]. 
 

Le variogramme traduit une relation significative entre la semi-variance de la 

richesse bactérienne des sols et l’interdistance entre les sites de prélèvements, 

indiquant qu’elle est distribuée de manière hétérogène et structurée à l’échelle du 

paysage agricole. Cette structuration se traduit par des unités spatiales de 810m de 

rayon, même si la variabilité locale, en particulier intraparcellaire, reste forte puisque 

l’effet pépite est d’environ 30%. 

Pour identifier les filtres environnementaux déterminant le niveau de richesse 

bactérienne à l’échelle du paysage agricole de Fénay, les mêmes méthodologies ont 

été mises en œuvre qu’à l’échelle du territoire national. Les caractéristiques physico-

chimiques des sols expliquent la plus grande part de variance de la richesse 

bactérienne (environ 45%), devant les pratiques agricoles (3.7%). Même si les 

caractéristiques physico-chimiques des sols du paysage de Fénay présentent de 

fortes interactions les unes avec les autres, le pH du sol (5.9%), la teneur en Argiles 

(6.1%) et la teneur en carbonates (2.1%) ressortent comme les filtres les plus 

importants, ceci avec les pratiques agricoles. Comme à l’échelle du territoire 

national, l’effet positif du pH, et négatif de la teneur en argiles peut s’expliquer par la 

modification des conditions réactionnelles et la réduction de l’hétérogénéité 

environnementale à micro-échelle réduisant le nombre de niches disponibles. Par 

ailleurs, une analyse plus fine des pratiques agricoles montre que le travail du sol 

Richesse
bactérienne

(OTU)
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tend à augmenter la richesse bactérienne. Ceci s’explique bien par la théorie des 

perturbations intermédiaires. En déstructurant les agrégats, le travail du sol favorise 

la création de nouvelles niches écologiques tout en perturbant peu pour les bactéries 

du fait de leur petite taille et de leur relative protection au sein des micro-agrégats 

([12], [15]) ; contrairement aux champignons qui sont très affectés par le travail du 

sol d’après Lienhard et al. (2013). Néanmoins, cette augmentation de richesse 

bactérienne n’est pas forcément positive puisque l’on observe une augmentation des 

genres appartenant aux stratèges r. 

 

4.2.3 Structure des communautés bactériennes des sols 
Articles [7]. 

 

 
 

Figure 16. Cartographie de la structure des communautés bactériennes des sols à l'échelle du paysage 
agricole de Fénay. 
La représentation des variations de structure des communautés bactériennes des sols est réalisée en 
interpolant les scores normalisés des sites sur les deux premiers axes d’une analyse NMDS (NMDS1 
et NMDS2). Les deux cartes sont ici juxstaposées. Pour chaque carte, des couleurs différentes entre 
sites traduisent des différences en termes de structure des communautés bactériennes. Les noms en 
gras correspondent aux noms des communes incluent dans le paysage de Fénay et les noms en 
italique correspondent aux deux cours d’eau traversant le paysage. Les variogrammes sur lesquels 
s’appuient les interpolations sont présentés sous la carte. L’article associé est référencé sous le 
numéro [7]. 

 

La Figure 16 présente les variations de structure des communautés bactériennes 

des sols sur la base d’une analyse canonique (NMDS) en s’appuyant sur la distance 



Chapitre 2 

 50 

"weighted-Unifrac" pour mesurer la dissimilarité entre les échantillons. Elle s’appuie 

pour cela sur des données de séquençage massif de l’ADN extrait du sol après 

amplification ciblée de l’ADNr 16S (F479 (5’-CAGCMGCYGCNGTAANAC-3’) et 

R888 (5’-CCGYCAATTCMTTTRAGT-3’). En maximisant les différences entre les 

échantillons, elle permet d’avoir une représentation des différences relatives entre 

chaque site. Ainsi, sur les cartes de la Figure 16, deux sites présentant des couleurs 

différences ont des communautés bactériennes différentes. A l’échelle du paysage 

agricole de Fénay, la structure des communautés bactériennes varie de manière non 

aléatoire et est structurée spatialement avec des unités spatiales dont le rayon est de 

741m pour l’axe NMDS1, 524m pour l’axe NMDS2. Il est possible de distinguer des 

zones très contrastées : des zones bleues sur les deux cartes à l’est et à l’ouest de 

la zone correspondant à des zones forestières ; et une zone rouge sur la carte de 

l’axe NMDS1 localisée autour de la Sans-fond, rivière principale de la zone. Cette 

structuration spatiale est en accord avec la littérature à des échelles "équivalentes" à 

une échelle paysagère s’entendant ici comme l’étude de plusieurs écosystèmes dans 

une même zone géographique (Jia et al., 2006; Drenovsky et al., 2010) ; et à 

l’échelle de la parcelle (Bell et al., 2005; O’Brien et al., 2016). 

L’analyse de la variance de la structure des communautés bactériennes de sols 

met en évidence que la physico-chimie du sol, l’utilisation du sol et leurs interactions 

expliquent respectivement 24.0%, 6.8% et 39.9% des variations de la structure des 

communautés bactériennes des sols. Les descripteurs spatiaux expliquent quant à 

eux 2.7% des variations de la structure des communautés bactériennes des sols. 

Ainsi, la sélection environnementale semble être le premier processus structurant les 

communautés bactériennes des sols à l’échelle du paysage de Fénay. Néanmoins, 

la dispersion semble aussi importante au regard de l’effet significatif des descripteurs 

spatiaux. Cette hypothèse est renforcée par la modélisation de l’abondance relative 

des différents taxons identifiés sur la zone de Fénay qui montre que certains taxons 

sont surreprésentés dans des sites où leur abondance est estimée à des valeurs 

plus faibles au regard de leurs caractéristiques environnementales. Ceci laisse 

supposer que ces taxons sont soumis à des effets de masse maintenant des tailles 

de population élevées en dépit de conditions environnementales peu favorables ([7]). 

L’analyse plus détaillée des filtres environnementaux supportant le processus de 

sélection montre que la hiérarchie des filtres à l’échelle du paysage est : pH du sol 

(17.9%), utilisation du sol & pratiques agricoles (6.8%), teneur en carbonates (4.2%) 
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& Corg (0.6%). Cette hiérarchie est en accord avec la littérature (Drenovsky et al., 

2010 ; Dumbrell et al., 2010) et les résultats observés à l’échelle du territoire 

national. 

 

4.3 Synthèse 

L’abondance des microorganismes du sol, la richesse bactérienne (diversité α) et 

la structure des communautés bactériennes (diversité β) des sols sont toutes 

distribuées de manière hétérogène et structurée spatialement à différentes échelles : 

le territoire national et le paysage agricole. Cette conclusion peut aussi être étendue 

à d’autres communautés microbiennes, en particulier les champignons ([10], Green 

et al., 2004; Peay et al., 2007; Powell et al., 2015). Tout n’est donc sans doute pas 

partout contrairement au postulat historique de Baas Becking (1934). Le turnover 

significatif de la diversité bactérienne, comme de la diversité de champignons, dont 

les valeurs sont proches de celles des macroorganismes lorsque l’exhaustivité de 

l’inventaire taxonomique augmente (avec l’utilisation des techniques de séquençage 

massif) montre que certaines théories développées en écologie des communautés 

des macroorganismes seraient transposables en écologie microbienne. Ainsi, tant à 

l’échelle du territoire national qu’à celle du paysage de Fénay, on observe que les 

communautés bactériennes sont structurées par au moins deux processus non-

exclusifs : la sélection environnementale et la dispersion (Peay et al., 2007 ; Powell 

et al., 2016). La sélection environnementale met en jeu les caractéristiques physico-

chimiques du sol et l’utilisation du sol ; mais aussi l’hétérogénéité environnementale 

en termes de diversité et de configuration spatiale des habitats paysagère. Examiner 

en détail les filtres impliqués dans la sélection environnementale montre que, 

globalement, les mêmes variables sont identifiées à l’échelle du territoire national et 

à l’échelle du paysage : pH, texture du sol, occupation du sol/pratiques agricoles. 

Cette homogénéité entre échelles montre qu’il est sans doute possible de transposer 

les concepts et les conclusions d’une échelle à l’autre (Harte et al., 2009). Ceci offre 

la possibilité de développer des outils sur la base d’informations acquises à une 

échelle donnée et de les déployer à une échelle spatiale différente. 

Néanmoins, la compréhension de la diversité β varie fortement d’une échelle à 

l’autre et une part non négligeable de la variance de la structure des communautés 

bactériennes des sols reste inexpliquée. Ceci met en avant l’importance de 
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considérer d’autres filtres pouvant structurer les communautés microbiennes des 

sols telles que les interactions biotiques. En effet, une communauté n’est pas un 

simple assemblage de taxons indépendants mais plutôt une cohorte de taxons en 

interactions. Aujourd’hui, le déploiement du séquençage haut débit sur des 

échantillonnages de grande ampleur permet de mettre en œuvre des analyses de 

réseau de co-occurrence. Elles apportent de nouvelles connaissances en écologie 

microbienne en permettant de caractériser les relations entre les différents taxons 

microbiens en termes d’intensité et de type : synergie ou antagonisme ([4]). Ces 

approches tendent à se développer de plus en plus et montrent toute la complexité 

des interactions entre taxons microbiens dans le sol, interactions qui peuvent être 

sous la dépendance de facteurs environnementaux tels que la physico-chimie du sol 

(Delgado-Baquirezo et al., 2018), de l’occupation du sol ou des pratiques agricoles 

(O’Brien et al., 2016, Hartman et al., 2018). 

 

Suite à tous les travaux engagés sur le RMQS depuis plus de 10 ans, un ouvrage 

de synthèse est en cours de publication. Cet ouvrage naturaliste est intitulé « Atlas 

français des bactéries du sol » et a été réalisé dans le cadre du post-doctorat de B. 

Karimi (Direction L. Ranjard et N. Chemidlin Prévost-Bouré ; financement ADEME, 

INRA, AgroSup Dijon). Il dresse un état des lieux de la biodiversité microbienne des 

sols français, en particulier au travers de trois ensembles de fiches. Le premier décrit 

les caractéristiques globales des communautés microbiennes des sols (abondance, 

diversité, composition et interactions). Le second décrit pour chaque phyla bactérien 

et d’archées : son aire de répartition en France, son autécologie, et ses interactions 

avec les autres phyla au travers de la bactériosociologie, ceci par analogie à la 

phytosociologie. Le troisième identifie des habitats microbiens et en décrit pour la 

première fois la signature microbienne et leur bactériosociologie. A destination des 

étudiants, des enseignants, des chercheurs, des acteurs socio-professionnels, des 

gestionnaires de la biodiversité, et du grand public, il constitue à la fois une 

ressource pédagogique, une source d’informations pour la gestion pratique de la 

biodiversité microbienne et un outil de vulgarisation. 
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5 Développement et transfert d’outils de diagnostic de la 
qualité microbiologique des sols en appui du développement 
agricole  

Cette partie s’appuie en particulier sur les articles référencés sous les numéros [3], 

[5] & [17] et sur le projet de recherche participative AgrInnov (CASDAR IP 2012-

2015, Chef de File : Observatoire Français des Sols Vivants ; Coordination 

scientifique : L. Ranjard). Elle constitue la part finalisée de mes activités de 

recherche. 

Cette partie présente mes travaux de recherche finalisée qui se décomposent 

en deux temps. Tout d’abord, je participe au développement d’outils de diagnostic 

d’impact des pratiques agricoles puis je m’implique dans leur déploiement et leur 

mise en œuvre directement auprès des acteurs du monde agricole dans le cadre de 

réseaux de recherche participative. 

 

5.1 Développement d’un outil de diagnostic de la qualité microbiologique 
des sols 

Articles [3], [5] & [17]. 

Les études d’écologie spatiale des communautés microbiennes des sols, en 

particulier les travaux menés sur le RMQS et le paysage agricole de Fénay, mettent 

en évidence la sensibilité des communautés microbiennes (abondance et diversité) 

aux pratiques agricoles. Le RMQS étant représentatif de la diversité des sols français 

et de leur utilisation fait qu’il constitue aujourd’hui référentiel unique en son genre de 

de l’état microbiologique des sols de France. Les études de standardisation 

technique ont démontré la robustesse et la reproductibilité des mesures de biomasse 

moléculaire microbienne et de diversité des bactéries et des champignons du sol 

(Plassart et al., 2012; Terrat et al., 2012). Ainsi, les communautés microbiennes des 

sols constituent des bioindicateurs d’impact des pratiques agricoles aujourd’hui 

reconnus nationalement1,2 ([25 - 26]). 

A partir du référentiel RMQS, un outil de diagnostic de l’état microbiologique des 

sols a été construit (Post-Doctorat de W. Horrigue, dir. : L. Ranjard). Il s’appuie sur 

                                            
1 http://indicateurs-biodiversite.naturefrance.fr/indicateurs/evolution-de-la-biomasse-microbienne-des-sols-en-metropole 
2 http://indicateurs-biodiversite.naturefrance.fr/indicateurs/evolution-de-la-biodiversite-bacterienne-des-sols 
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l’évaluation de quatre indicateurs microbiens. Le premier est la biomasse moléculaire 

microbienne qui renseigne sur l’abondance des microorganismes du sol et permet 

d’évaluer un niveau d’activité microbiologique. Le second est le ratio 

champignons/bactéries (ratio entre la densité des champignons et la densité des 

bactéries) qui permet d’évaluer si la décomposition de la matière organique est 

préférentiellement médiée par les bactéries ou les champignons du sol. Les deux 

derniers correspondent à la richesse bactérienne et la richesse en champignons qui 

permettent d’évaluer le niveau d’assurance écologique (Loreau et al., 2000) associé 

aux microorganismes du sol puisque la diversité de ces est liée à la diversité, 

l’intensité et la redondance des fonctions biologiques du sol (Philippot et al., 2013; 

Fierer et al., 2014; Tardy et al., 2014). Évaluer ces quatre indicateurs nécessite de 

définir des valeurs caractéristiques. Dans le cas du ratio Champignons/Bactéries, la 

mesure réalisée par PCR quantitative en temps réel ([17]) est comparée à des 

valeurs caractéristiques issues de la littérature : un ratio compris entre 1% et 5% 

indique qu’il n’y a pas de déséquilibre entre bactéries et champignons dans 

l’échantillon (Figure 17). 

 
Figure 17. Diagramme de diagnostic du ratio champignons/bactéries. 

Les valeurs caractéristiques sont indiquées à 1% et 5%. La flèche verte positionne la valeur mesurée. 
Les couleurs indique le diagnostic : vert : bon équilibre microbien ; jaune/orange : léger déséquilibre 
bactérien (ratio <1%) ou fongique (ratio > 5%) ; rouge : déséquilibre bactérien (ratio <1%) ou fongique 
(ratio > 5%). 

 
La définition à la parcelle des valeurs caractéristiques de la biomasse moléculaire 

microbienne, de la richesse bactérienne et de la richesse en champignons met en 

œuvre trois modèles prédictifs et des résultats expérimentaux. Les modèles 

permettent d’estimer une valeur de référence (VR) de biomasse moléculaire 

microbienne, de richesse bactérienne ou de richesse en champignon à partir de la 

localisation géographique et des caractéristiques physico-chimiques du sol, ceci 

indépendamment des pratiques agricoles mises en œuvre ([3], [5]). L’équation 

générale des modèles est décrite en Équation 4. 
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Équation 4. Forme générale des modèles de diagnostic microbiologique du sol 
Y est la variable à estimer, n est le nombre de variables explicatives sélectionnées, Xi est la ième 
variable explicative, i  ∈ [1:n], βi, βij et βijk étant les paramètres du modèle. 

 
Chaque modèle a été construit pour respecter le principe de parcimonie tout en 

ayant une très bonne capacité prédictive. Les variables colinéaires ont été éliminées 

sur la base de leur corrélation (⏐r⏐>0.7) et de leur facteur d’inflation de la variance 

(VIF >4). Le R2
ajusté et le BIC (Bayesian Information Criterion) ont permis d’ajuster la 

forme des modèles (i.e. le dégré du polynôme) et une étape de cross-validation des 

modèles a été réalisée sur un sous-échantillon du RMQS indépendant du jeu 

d’apprentissage mais ayant la même distribution que le référentiel. In fine, chacun 

des trois modèles implique un jeu de variables environnementales qui lui est propre. 

Par exemple, le modèle de biomasse moléculaire microbienne implique le Corg, le pH, 

le taux d’argiles et l’altitude (en tant que proxy des précipitations annuelles 

moyennes) alors que le modèle de richesse bactérienne implique le pH, le taux 

d’argiles, le ratio C:N et la longitude (en tant que proxy du climat et de l’humidité du 

sol). Ils ne masquent pas l’effet de l’utilisation du sol ([3], [5]). L’erreur associée à la 

VR a été estimée expérimentalement à +/-20% dans le cadre de la thèse d’E. 

Bourgeois (encadrement PA Maron, co-encadrement : L. Ranjard ;Figure 18).  

 

 
Figure 18. Relation entre la biomasse microbienne moléculaire prédite par le modèle et la biomasse 
moléculaire observée sur l’échantillonnage de Fénay 
Les valeurs prédites sont issues de l’utilisation du modèle présenté en équation 3. La ligne pleine 
correspond à la droite y=x ; les lignes en pointillés correspondent à l’incertitude de mesure de la 
biomasse moléculaire microbienne (±20%). Les croix noires correspondent aux parcelles en grandes 
cultures et les triangles aux parcelles forestières.  
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estimates of microbial biomass with the polynomial model. It was
therefore important to determine the error on the model estimate
according to the measurement errors on soil pH, carbon and clay
contents (Fig. S6). Introduction of a 5% random error in pH, SOC
and clay content measurements revealed that soil pH needed to
be measured more accurately than SOC, altitude or clay content to
reduce the error on the estimated soil microbial biomass.

3.5.  Operational application of the model to diagnose soil
agricultural management

To  determine the accuracy of the polynomial model in diagnos-
ing the impact of agricultural practices on soil microbial biomass,
it was applied to a large set of soil samples collected over an
agricultural landscape at Fénay (Constancias et al., 2015a). At the
landscape scale, land use and agricultural practices were clustered
into 6 categories which were discriminated first by land cover
(forest vs. agricultural plots), second by soil tillage intensity (no
tillage, minimum tillage, mechanical hoeing, conventional tillage),
and finally by the presence of a catch crop. These clusters followed a
gradient in cropping intensity and in the diversity and persistence
of plant cover i.e., forest (forest, no tillage, no catch crop, n = 43);
perennial crop (3 frequently mowed grasslands, 3 blackcurrant and
1  Miscanthus, n = 7); catch crop (agricultural plot, minimum tillage,
catch crop, n = 22); minimum tillage (agricultural plot, minimum
tillage, no catch crop, n = 56); conventional tillage (agricultural plot,
conventional tillage, no catch crop, n = 103); mechanical hoeing
(agricultural plot, mechanical hoeing, no catch crop, n = 33).

Plotting of the predicted values vs. the measured values of
molecular microbial biomass showed an important scatter of the
points around the y = x line (Fig. 4), which indicated that for a con-
sistent number of soil samples the measured microbial biomass
was either higher or lower than the predicted values. To interpret
the results and establish a diagnosis of soil microbial status, we
considered that predicted and measured values were similar only
for the points included within the band of ±20% around the y = x
line (Fig. 4). This threshold was chosen since it corresponded to the
range of uncertainty of the method of soil DNA extraction and quan-
tification (Bourgeois et al., data not shown). It allowed three groups
of samples to be distinguished. The first group consisted of the sam-
ples for which the measured values were similar to the predicted
values and represented 44% of the total samples. For this group,
the correspondence between the measured and the predicted val-
ues indicated that the soil microbial biomass was well predicted
by the four explanatory variables taken into account in the model

Fig. 4. Relationship between the measured and adjusted values of soil microbial
biomass  in the Fènay landscape. Adjusted values were derived from the third degree
polynomial model. The black line represents the 1:1 line (y = x), dotted lines corre-
spond to measurement uncertainty of soil microbial biomass (±20%), black crosses
represent cropland soils and open triangles the forest soils.

(i.e. clay, carbon, pH, and altitude), hence suggesting no or little
impact of the type of land use on the soil microbial biomass. The
second and third groups consisted of the samples for which the pre-
dicted values were respectively significantly lower (19% of the total
samples) or higher (37% of the total samples) than the measured
values, which implied a significant impact of land use in terms of
stimulation or decrease of the soil microbial biomass.

When discriminating the samples between cropped and forest
soils, it was  clearly apparent that microbial biomass was favored in
forest soils, with 60% of the forest samples exhibiting higher mea-
sured values than predicted values (Fig. 5). This was  in agreement
with many other studies which reported higher microbial biomass
in forest soils compared to cropped soil, mainly attributed to higher
carbon content commonly occurring in forest soils (Arrouays et al.,
2001). In our study however, the observed stimulation of micro-
bial biomass might not be directly explained by soil carbon content
since this is one of the explanatory variables taken into account in
the model. In these soils, it is more likely that the observed stimula-
tion is due to the improved soil structure resulting from the higher
carbon content and absence of soil physical disturbance since these
factors are known to be associated with the improvement of soil
microbial habitats in terms of diversity and stability (Constancias
et al., 2014). In addition the absence of pesticide applications such
as (i.e. fungicides) may  also contribute to the observed stimulation
compared to cropped soils.

Contrastingly  with forest soils, cropped soils were equally dis-
tributed between the three groups of samples, with 33%, 46%
and 21% of the measured values being respectively higher, sim-
ilar to, or lower than the predicted values. This indicates that,
at the scale of the agricultural landscape at Fénay, soil microbial
biomass was impacted either positively or negatively by cropping.
Comparison of the types of agricultural managements evidenced
the following gradient around the predicted values: conven-
tional tillage = mechanical hoeing ≤ predicted values < minimum
tillage ≤ minimum tillage + catch crop < forest (Fig. 5). As men-
tioned above, the observed discrimination between the systems
cannot be directly explained by soil parameters such as carbon
and clay contents, or pH since they were included as predictive
variables in the model. The depletion of soil microbial biomass in
systems including soil tillage or hoeing more likely results from
the mechanical disruption of microbial habitats by soil disturbance
(Govaerts et al., 2007; Lienhard et al., 2013). On the other hand,
the preservation of soil structure through minimum tillage led to
an improvement of soil microbial biomass. This increase was  fur-
ther enhanced when catch crops were introduced into the rotation,

Fig. 5. Differences between predicted and measured soil molecular microbial
biomass  according to land management practices. For each boxplot, black cross rep-
resents the mean, bold line represents the median, sides of the box represents the
first and third quartile and error bars correspond to the standard error of the mean.
Open circles correspond to outliers according to the normal distribution.
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Figure 19. Exemple de diagramme de diagnostic s'appuyant sur les valeurs caractéristiques issues 

des modèles prédictifs. 
Les valeurs caractéristiques sont indiquées par VR (valeur de référence) et SC (seuil critique, 
0.7*VR). La flèche verte positionne la valeur mesurée. Les couleurs indiquent le diagnostic : vert : bon 
état ; jaune/orange : état à surveiller ; rouge : état à améliorer. 
 

Par ailleurs, les travaux expérimentaux d’E Bourgeois, de V Tardy (Thèses de 

Doctorat, encadrement PA Maron & L Ranjard) et de PA Maron ont permis de mettre 

en évidence qu’une réduction de 30% de la biomasse moléculaire microbienne et 

des richesses bactérienne et de champignons induisait une modification significative 

du fonctionnement microbiologique du sol. Sur cette base, un seuil critique (SC) a 

été défini pour la biomasse moléculaire microbienne et les richesses bactérienne et 

de champignon avec SC = 0.7*VR. La comparaison de la valeur observée à ces 

valeurs caractéristiques permet d’évaluer l’effet améliorant/dépréciant des pratiques 

considérées (Figure 19). Le diagnostic microbiologique de la parcelle est ensuite 

réalisé en agrégeant les résultats des quatre indicateurs, chaque indicateur ayant un 

poids égal. Cette intégration se fait sous la forme d’une fiche de synthèse et permet 

alors de réaliser un diagnostic de l’impact des pratiques agricoles mises en œuvre 

sur la composante microbiologique du sol de la parcelle (Figure 20). Comme nous le 

verrons dans la suite, ce diagnostic microbiologique peut être intégré dans une 

évaluation plus large des pratiques agricoles/systèmes de culture. 

 
Figure 20. Fiche de diagnostic microbiologique du sol d'une parcelle agricole. 
Les encarts correspondent respectivement à : un descriptif général, l’évaluation de l’indicateur 
biomasse moléculaire microbienne, l’évaluation de l’indicateur ratio champignons/bactéries, 
l’évaluation des indicateurs de diversité microbienne (richesse bactérienne et en champignons) ; et à 
un bilan microbiologique synthétisé dans le dernier diagramme. 

SC         VR
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5.2 Transfert des outils de diagnostic de la qualité microbiologique des 
sols 

Mes activités de recherche participatives s’appuient quant à elle sur des réseaux 

d’agriculteurs tels que celui créé dans le cadre du programme AgrInnov (Casdar 

2012-2015, coord . L. Ranjard, et article référencé sous le numéro [29]). 

 

La vision de l’agrosystème a évolué vers celle d’un agroécosystème hébergeant 

une biodiversité essentielle pour le fonctionnement des agroécosystèmes (projet 

Agroécologique pour la France, plan Ecophyto 1 et 2, programme fermes 30 000). 

Évaluer l’impact des pratiques sur la biodiversité [microbienne] des sols est 

aujourd’hui un enjeu important en agriculture pour maintenir/améliorer ce 

fonctionnement biologique. Les outils de diagnostic microbiologique adossés à des 

référentiels d’interprétation ([3], [5]) viennent répondre à ce besoin mais nécessitent 

d’être déployés à grande échelle pour identifier rapidement les pratiques permettant 

de maintenir le patrimoine biologique et ses fonctions supportant la fertilité biologique 

des sols. Les approches de recherche participative impliquant directement les 

agriculteurs offrent cette possibilité d’expérimentation massive, en complément des 

systèmes expérimentaux des instituts de recherche ou techniques, mais nécessitent 

un cadre théorique et technique pour être menées à bien.  

Pour cela, je me suis impliqué dans le projet AgrInnov (CASDAR-IP 2012-2015, 

chef de File : Observatoire Français des Sols Vivants ; coordination scientifique : L 

Ranjard, INRA ; collaboration AgroSup Dijon, ESA Angers, ISARA Lyon, IFV, ITAB, 

CA49) avec pour objectifs de : 1) Former les professionnels du monde agricole à la 

biologie des sols ; 2) Démontrer l’opérationnalité des indicateurs biologiques pour 

l’évaluation des pratiques agricoles directement à la ferme ou au domaine. Dans le 

cadre du projet AgrInnov, des formations et un tableau de bord d’indicateurs 

biologiques et agronomiques ont été co-construits avec les acteurs du monde 

agricole. Les indicateurs biologiques intégrés dans ce tableau de bord ont été choisis 

au regard de leur importance pour les acteurs du monde agricole et les formations 

ont été construites et évaluées pour maximiser l’autonomie des acteurs dans la mise 

en œuvre et l’interprétation du tableau de bord. Les indicateurs sélectionnés sont les 

indicateurs microbiens, les lombriciens et la nématofaune. Ils sont associés à trois 

indicateurs "agronomiques" : les analyses de terre, une mesure de l’état structural 

du sol (test bêche), une mesure de la dégradation de la matière organique 
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(LEVAbagMD). Les formations étaient constituées de deux sessions à 6 mois 

d’intervalle : une session de formation théorique et pratique sur la biologie des sols 

et la mise en œuvre du tableau de bord ; et une restitution des résultats en groupe 

et individuelle. 

Une fois construits, les formations et le tableau de bord d’indicateurs ont été 

déployés sur un réseau de recherche participative constitué de 125 fermes et 123 de 

domaines viticoles, réseau entièrement constitué dans le cadre du projet, les 

agriculteurs et les viticulteurs étant regroupés en fonction de leur proximité 

géographique dans des groupes de 12 à 16 personnes (Figure 21). Chaque groupe 

était suivi par un conseiller de chambre d’agriculture. Pour ma part, j’étais en charge 

du quart nord-est de la France, ce qui représentait 7 groupes de formation et 103 

agriculteurs & viticulteurs. 

 

 
Figure 21. Localisation des fermes et des domaines viticoles du réseau du programme AgrInnov. 

Chaque couleur correspond à un groupe d’agriculteurs/de viticulteurs. Les fermes sont représentées 
par des ronds et les domaines viticoles par des carrés. 

 

Ce programme constitue une réelle approche de recherche participative dans la 

mesure où les agriculteurs et les viticulteurs formés devaient mettre en œuvre le 

tableau de bord en autonomie. La démarche de co-construction et de mise en œuvre 

par des acteurs de la recherche s’est avérée efficace puisque 97% des personnes 

formées ont mis en œuvre le tableau de bord en fin de projet. Ceci démontre aussi 

l’opérationnalité des outils de diagnostic, en particulier des outils de diagnostic 
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microbiologique des sols. Par ailleurs, en association avec les acteurs du monde 

agricole, le programme AgrInnov a permis de construire deux indicateurs de 

synthèse afin d’agréger les informations issues des différents indicateurs du tableau 

de bord. Après scoring, un indicateur de patrimoine biologique/assurance écologique 

et un indicateur de fertilité biologique ont été construits (Figure 22). 

 

 
Figure 22. Indicateurs de synthèse du tableau de bord d'indicateurs du programme AgrInnov 

La page de gauche correspond à l’indicateur de patrimoine biologique/assurance écologique. Il 
regroupe l’abondance, la richesse et la diversité fonctionnelle des lombriciens ; l’abondance, l’indice 
de structure et la diversité des nématodes ; et la biomasse moléculaire microbienne et la richesse 
bactérienne et en champignons. La page de froite correspond à l’indicateur de fertilité biologique. Il 
regroupe le test bêche, le LevaBagMD, et une moyenne des scores pour les lombriciens, les 
nématodes et les microorgansimes. Ce choix a été motivé rendre les différents axes du diagramme 
indépendants les uns des autres. Pour chacune des pages, le diagramme du dessous résume le 
diagnostic sur l’indicateur de synthèse correpsondant en trois catégories : vert : bon état ; orange : 
état à surveiller ; rouge : état à améliorer. 
 

A l’échelle de l’ensemble du réseau, tous les sols présentaient une composante 

biologique. Entre 25% et 30% des parcelles échantillonnées présentaient un 

patrimoine biologique/une assurance écologique et/ou une fertilité biologique en bon 

état ; mais 15% à 20% des parcelles échantillonnées étaient à améliorer pour au 

moins un des deux indicateurs de synthèse. Le reste des parcelles était dans un état 

à surveiller (Figure 23). Cette observation indique qu’il est aujourd’hui important 

d’intégrer plus massivement les composantes biologiques dans l’évaluation de 

l’impact des pratiques agricoles et la conception des nouveaux systèmes de 

culture/production, ceci afin d’éviter la dégradation des parcelles présentant un état à 
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améliorer. Même si la taille du réseau ne permet pas de le tester statistiquement au 

regard du grand nombre de combinaisons de pratiques mises en œuvre, les résultats 

laissent supposer que l’amélioration de la composante biologique des sols pourrait 

se faire sans passer par des modifications abruptes des systèmes de culture. 

 

 
Figure 23. Distribution des parcelles entre les trois classes de diagnostic pour les indicateurs de 

synthèse patrimoine biologique/assurance écologique et fertilité biologique. 

 

La démarche choisie (co-construction et restitutions) peut être jugée comme efficace 

au regard des effets à court terme observés. En effet, une enquête réalisée 18 mois 

après la fin du projet (E. Franc, Stage de Master 2, encadrement : L. Ranjard & 

N. Chemidlin Prévost-Bouré) a permis de mesurer l’impact du programme (n=66) : 

97% des enquêtés intègrent la biologie des sols dans leurs questionnements et 

60% ont engagé des changements de pratiques (gestion des couverts végétaux, 

réduction du travail du sol ou des intrants, rotations culturales). Aujourd’hui, la 

démonstration de l’opérationnalité du tableau de bord et des formations étant faite, 

les enjeux sont focalisés sur leur déploiement massif sur un réseau participatif élargit 

afin de couvrir au maximum les expérimentations menées à la ferme/au domaine par 

les acteurs du monde agricole. 

 

Patrimoine biologique/assurance écologique
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1. Projet scientifique de l’équipe BIOCOM 
L’équipe BIOCOM "Distribution spatiale, dynamique et traduction fonctionnelle de 

la biodiversité des communautés microbiennes telluriques" créée en 2007 se 

compose actuellement de cinq chercheurs permanents (2 DR et trois MC), de deux 

personnels techniques auxquels s’associent généralement 2 à 3 personnels non 

permanents. 

Le projet scientifique actuel de l’équipe BIOCOM s’inscrit dans un contexte où 

sociétés humaines dépendent plus que jamais des biens (patrimoine biologique, 

surfaces, aliments, énergie, matériaux tels que la terre ou le bois) et des services 

écosystémiques (cycles biogéochimique, régulation du climat, cycle de l’eau…) liés 

aux sols vu leur croissance démographique et leurs besoins énergétiques. Alors que 

les sols font face à des menaces de plus en plus nombreuses (érosion, baisse de 

fertilité, pertes en biodiversité…), il y a urgence à gérer durablement les ressources 

en sols. Cette gestion durable doit associer un fonctionnement du sol permettant de 

répondre aux besoins humains en maintenant/améliorant la qualité des sols. Les 

communautés microbiennes des sols, objets d’étude de l’équipe, sont reconnues 

comme centrales dans le fonctionnement des sols : leur biodiversité assure diversité, 

intensité et stabilité des fonctions biologiques. Par ailleurs, en plus de leur valeur 

patrimoniale, les communautés microbiennes des sols sont reconnues comme des 

bioindicateurs d’impact de l’usage des sols. Malgré tout, elles se doivent encore de 

devenir incontournables dans les approches choisies pour la gestion durable des 

ressources en sols. Pour cela, il faut affiner les connaissances sur les communautés 

microbiennes des sols et donner les moyens aux utilisateurs des sols de les prendre 

en compte dans leur gestion des sols. 

Fort de ce constat, notre projet de recherche consiste en l’étude de la distribution 

spatiale et de la dynamique de la biodiversité des communautés microbiennes 

telluriques pour sa traduction en fonctionnement biologique du sol. Il est structuré en 

trois axes : 1) Étudier les processus et les filtres de la distribution spatiale des 

communautés microbiennes du sol à différentes échelles (de l’agrégat au territoire 

national) ; 2) Étudier le rôle de la diversité microbienne dans le fonctionnement 

biologique du sol ; 3) Développer et proposer des moyens opérationnels aux 

utilisateurs des sols pour évaluer la qualité microbiologique du sol et identifier 

comment orienter les communautés microbiennes indigènes pour optimiser les 
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services agro-écosystémiques fournis par le sol. La démarche associée repose sur le 

développement de concepts d’écologie des communautés microbiennes en 

s’appuyant sur la caractérisation sans à priori de leur diversité taxonomique et 

fonctionnelle par des outils de métagénômique environnementale sur l’ADN 

directement extrait du sol. Des partenariats publics ou privés, nationaux et 

internationaux permettent sa mise en œuvre à différentes échelles spatiales (de 

l’agrégat au territoire national) via des projets de recherche collaborative et 

participative. L’association de cette démarche à des approches de modélisation 

permet de produire des outils opérationnels adossés à des référentiels, outils qu’une 

offre de formation permet de transférer aux utilisateurs des sols. 

Depuis le 1er Mars 2018, j’anime le collectif de l’équipe BIOCOM. Sa double 

mission de recherche et de formation s’inscrit dans un contexte socio-économique 

qui évolue. Répondre aux enjeux agricoles en matière de gestion des sols reste 

essentiel mais cela doit s’intégrer au développement durable des filières et des 

territoires formés d’une mosaïque d’espaces agricoles et urbains. A court terme, ce 

changement d’échelles marquera une étape importante pour l’équipe qui déploiera 

ses axes de recherche sur : un nouveau milieu - les sols urbains ; une part 

croissante de réseaux de recherches participatives. L’étude des sols urbains 

s’appuiera  sur des partenariats mais se devra d’être portée par un recrutement de 

chercheur au sein de l’équipe apportant ses compétences en écologie, en 

métagénomique et en statistiques. Le développement des recherches participatives 

permettra de massifier l’acquisition des données pour affiner les référentiels et de 

développer de nouveaux outils opérationnels qui pourront s’intégrer à des portails de 

services à l’agriculture et aux territoires (e.g. Portail DRIAS pour les services 

climatiques). Pour atteindre cet objectif, il est essentiel de renforcer les forces 

techniques de l’équipe (TFR) à court terme pour assurer l’acquisition des données en 

quantité et qualité ; et à moyen terme les compétences en modélisation de systèmes 

complexes en recherche et en formation pour assurer le développement des outils et 

des services. Ce renforcement des missions de recherche viendra supporter les 

missions de formation de l’équipe. Sur le plan académique, l’implication de l’équipe 

dans les formations ingénieur et universitaires et un renforcement de la formation 

doctorale (HDR, accueil de doctorants) permettront de participer à la formation pour 

et par la recherche, notamment d’ingénieurs-docteurs d’AgroSup Dijon. Sur le plan 

finalisé, l’équipe BIOCOM répond à une demande croissante de transfert 
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technologique et de formation aux nouveaux outils de diagnostic de qualité des sols 

par les acteurs du monde agricole. A court terme, cette réponse sera maintenue 

mais devra évoluer au regard des avancées techniques et de l’importance des 

demandes. 

 

2. Projet de recherche au sein de l’équipe BIOCOM 
Mon projet de recherche au sein de l’équipe BIOCOM s’inscrit dans la nécessité 

de mieux comprendre les déterminants de la diversité microbienne pour 

accompagner une gestion durable des sols. Plus précisément, mon objectif est de 

comprendre les dynamiques spatio-temporelles des communautés microbiennes 

des sols pour les modéliser et développer des outils opérationnels transférables 

auprès des utilisateurs des sols (axes 1 et 3 du projet de l’équipe BIOCOM). Ce 

projet se justifie au regard des avancées en écologie microbiennes. D’une part, les 

études d’écologie spatiale démontrent la structuration spatiale des communautés 

microbiennes du sol sous la dépendance de processus déterministes et neutres 

(Hanson et al., 2012; Powell et al., 2015) ; tout en soulignant le rôle des interactions 

biotiques dans cette structuration (Barberán et al., 2012, [4]). Néanmoins, le 

caractère statique des études d’écologie spatiale ne permet pas d’évaluer si la 

distribution spatiale des communautés microbiennes et les processus associés 

varient dans le temps, réduisant les capacités de modélisation des communautés 

microbiennes. D’autre part, les études temporelles des communautés microbiennes 

des sols démontrent que leur dynamique temporelle est sous la dépendance de la 

diversité végétale (Buscardo et al., 2018) et de la succession des pratiques agricoles 

(Tardy et al., 2016 ; Ashworth et al., 2017 ; Degrune et al., 2017). Néanmoins, le 

caractère localisé de ces études limite la généricité de ces conclusions et leur 

déploiement à l’échelle des paysages agricoles ou du territoire national. Au final, ces 

limites restreignent leur transfert des connaissances acquises auprès des utilisateurs 

de sols. 

Dans ce contexte, j’articulerai mon projet de recherche suivant un axe fondamental, 

un axe appliqué et un axe de transfert : 

1) Axe fondamental : Comprendre la dynamique spatio-temporelle de la diversité 

microbienne des sols à l’échelle du paysage agricole; 
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2) Axe appliqué : Développer un Outil d’Aide à la Décision pour la gestion des 

communautés microbiennes des sols ; 

3) Axe de transfert : Transférer aux utilisateurs des sols les connaissances en 

écologie microbienne des sols et les outils associés pour la gestion des sols.  

 

2.1 Axe fondamental : Comprendre la dynamique spatio-
temporelle de la diversité microbienne des sols à l’échelle 
du paysage agricole 

Cet axe fondamental visera à : 1) Caractériser la dynamique spatio-temporelle des 

communautés microbiennes des sols ; 2) Évaluer la stabilité dans le temps des 

processus écologiques et des filtres environnementaux impliqués dans la 

structuration spatiale des communautés microbiennes des sols. Pour cela, 

j’associerai des approches de métagénomique environnementale pour la 

caractérisation des communautés microbiennes des sols au monitoring 

d’échantillonnages spatialisés. Cette stratégie est envisageable au regard des 

évolutions techniques en métagénomique environnementale et en 

bioinformatique qui permettent de traiter des échantillons à haut-débit. A court et 

moyen terme, je déploierai cette stratégie à l’échelle du paysage en m’appuyant 

sur deux dispositifs : 

• le paysage agricole de Fénay qui couvre 1200ha et dont le monitoring a été initié 

en 2011, poursuivi en 2016 et sera réalisé une nouvelle fois en 2018 (4.2.). 

• l’aire urbaine de Dijon Métropôle qui couvre 3350 km2 dont une majorité de terres 

agricoles. Elle fera l’objet d’un monitoring dans le cadre du projet "Dijon 

Métropole, territoire modèle du système alimentaire durable de 2030" dans le 

cadre de l’appel à projets "Territoires d'Innovation - Grande Ambition" 

(financement Caisse des Dépôts et Consignations, Chef de file : Dijon Métropôle, 

Coordination Scientifique : P. Lemanceau, INRA). Plus précisément, ce monitoring 

sera réalisé au sein de l’action "Gestion des Sols" (Coordination L. Ranjard (INRA) 

& C. Claveirole (FNE, CESE)) qui vise à adapter l’utilisation des sols à leurs 

caractéristiques et à leurs contraintes ; et pour laquelle je serai responsable des 

sols "ruraux", i.e. hors de l’agglomération Dijon Métropôle. 

 



Chapitre 4 

 66 

Ces dispositifs permettront d’identifier les échelles de temps auxquelles les 

communautés microbiennes du sol varient spatialement, de produire les premières 

cartographies dynamiques des communautés microbiennes des sols et d’évaluer la 

stabilité des processus écologiques et des filtres environnementaux (physico-chimie 

des sols, pratiques agricoles, successions végétales) impliqués dans la structuration 

spatiale des communautés microbiennes du sol. En plus des filtres 

environnementaux abiotiques ou anthropiques, le monitoring d’échantillonnages 

spatialisés permettra de gagner en connaissances sur les interactions biologiques 

dans les sols. La comparaison de réseaux d’interactions dans le temps sur un même 

dispositif permettra de mieux caractériser les interactions biologiques (synergies, 

antagonismes) au sein des communautés microbiennes des sols et d’évaluer leur 

stabilité vis-à-vis des pratiques agricoles. A moyen terme, ces interactions pourront 

être intégrées comme un filtre structurant les communautés microbiennes des sols. 

La généricité des résultats sera évaluée par confrontation à d’autres études 

effectuées à l’échelle paysagère (paysage agricole de Naizin, INRA Rennes) et de 

monitoring dans le cadre du Réseau d’Expérimentation et de Veille à l’innovation 

Agricole (REVA, organisme chef de file : Observatoire Français des Sols Vivants, 

collaborations AgroSup Dijon, ESA Angers, ISARA, IFV, CA49, CA71, CA 21, 

CA58, CA89) : Réseau participatif national d’agriculteurs de monitoring (tous les 2 à 

5 ans) des parcelles à l’aide du tableau de bord de bioindicateurs développé dans le 

programme AgrInnov (5.2).  

Cette étude renforcera mes collaborations avec plusieurs membres de mon 

équipe (L. Ranjard, S. Terrat, S. Dequiedt, B. Karimi) et de l’UMR Agroécologie 

(Plateforme GenoSol, pôle GESTAD), mais aussi avec l’Unité de Services InfoSol de 

l’INRA d’Orléans (D Arrouays, C jolivet, N Saby) et le Génoscope (P Wincker, C 

Cruaud). Elle permettra de renforcer mes collaborations avec des partenaires de 

recherche locaux et nationaux (Université de Bourgogne Franche Comté ; Supagro 

Montpellier ; CNRS ; MNHN ; UMR SAS : V. Viaud ; ESA Angers : M. 

Cannavacciulo ; ISARA Lyon : J.-F. Vian), des acteurs du monde agricole (Chambres 

d’Agriculture : J. Halska, CA71 ; V. Riou, CA 49 ; Coopératives) et du monde 

associatif (FNE ; Observatoire Français des Sols Vivants : E. D’Oiron). Par ailleurs, 

cette étude constituera un tremplin pour développer à court terme des collaborations 

internationales.  En effet, ces travaux de monitoring font l’objet d’un intérêt particulier 

des chercheurs travaillant sur la gestion durable des sols (Université de Sydney : 
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Budiman Minsasny, Professeur en sciences des sols et en modélisation des 

paysages ; Alexander McBratney, Directeur de l’Institut d’Agriculture de Sydney) et 

en écologie microbienne (Leho Tedersoo, Université de Tartu, Estonie). 

 

2.2 Axe appliqué : Développer un Outil d’Aide à la Décision pour 
la gestion des communautés microbiennes des sols 

Cet axe de recherche appliquée vise à modéliser la dynamique temporelle des 

communautés microbiennes des sols pour construire un outil d’aide à la décision à 

destination des gestionnaires des sols, ceci sur la base des informations acquises 

dans le cadre de mon axe de recherche fondamentale. Vu l’important niveau de 

diversité des microorganismes du sol, leur forte variabilité spatiale et temporelle, et le 

grand nombre d’interactions entre groupes microbiens, des modèles spatialement 

explicites et des simulations seront mis en œuvre pour modéliser la dynamique des 

communautés microbiennes des sols face aux changements de pratiques agricoles 

et en appréhender le devenir (Kant, 2015, Groffman & Jones, 2000). L’élaboration de 

ces modèles est aujourd’hui possible au travers des approches APSF (Marilleau et 

al., 2008) et des algorithmes développés dans Coupling4MAS (Hassoumi, 2015) 

permettant de combiner des modèles très différents dans leur concept, leur 

formalisme et leur fonctionnement.  

Ces modèles aboutiront à une sortie finalisée puisqu’ils constitueront la base d’un 

Outil d’Aide à la Décision (OAD) pour la gestion des communautés microbiennes des 

sols. Cet OAD viendra compléter le tableau de bord développé dans le cadre du 

programme AgrInnov en répondant à une attente forte des acteurs du monde 

agricole d’évaluer à priori les modifications de pratiques qu’ils envisagent. Il sera 

construit et validé au travers d’une approche de modélisation participative (AGILE et 

Commod; Etienne, 2010) associant différents acteurs (scientifiques et du monde 

agricole) au sein de groupes pluridisciplinaires. Le choix de cette approche est 

motivé par la nécessité d’adapter l’OAD aux besoins et aux enjeux des acteurs et 

des futurs utilisateurs, et de favoriser son acceptation (Becu et al., 2015a ; 2015b ; 

2016). Une fois construit, cet OAD sera évalué pour sa généricité et son 

opérationnalité à l’échelle de l’aire urbaine de Dijon métropôle dans le cadre du 

projet "Dijon Métropole, territoire modèle du système alimentaire durable de 2030" ; 
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et à l’échelle nationale dans le cadre du Réseau d’Expérimentation et de Veille à 

l’innovation Agricole (REVA). 

Cette étude renforcera ma collaboration avec L. Ranjard et me permettra de 

développer une collaboration avec N. Marilleau (UMI UMMISCO, IRD Bondy, et 

UMR FEMTO-ST, Université Bourgogne-Franche-Comté) dans le cadre d’un 

projet doctoral. Elle renforcera les collaborations initiées lors de la première 

campagne, en particulier avec l’INRA d’Orléans (D. Arrouays, C Jolivet & N. Saby), 

et s’appuiera sur des interactions fortes au sein de l’UMR Agroécologie (Plateforme 

Génosol, pôle GESTAD) et sur les collaborations développées au sein du REVA 

notamment avec l’ESA Angers (M. Cannavacciulo), l’ISARA de Lyon (J.F. Vian), 

l’Observatoire Français des Sols Vivants (E. D’Oiron)  ou les chambres d’agriculture 

(J. Halska, CA71 ; V. Riou, CA 49). 

 

3. Axe de transfert : Transférer les connaissances en écologie 
microbienne des sols et les outils associés pour la gestion 
des sols 

Faisant écho aux deux premiers axes de mon projet de recherche, mon axe de 

transfert se positionne à la fois au niveau académique et au niveau opérationnel. 

3.1 Transfert académique 
Le transfert académique s’inscrit dans mes activités de formation au sein 

d’AgroSup Dijon. A travers la constitution d’un collectif d’enseignants-chercheurs de 

plusieurs départements d’enseignement d’AgroSup Dijon (Agronomie, 

Agroéquipements, Elevage, Environnement ; Sciences Humaines et Sociales ; 

Sciences de l'Ingénieur et des Procédés), j’ai proposé une dominante de 3e année 

ingénieur pour la gestion des ressources naturelles (sol, eau, biodiversité). Cette 

dominante intitulée "Ressources, Données, Diagnostic, Changements Climatiques" 

(R2D2C) ouvrira en septembre 2018. Elle formera des ingénieurs opérationnels 

capables de proposer des stratégies de gestion des ressources naturelles (sol, eau, 

biodiversité) dans un contexte de changements climatiques en s’appuyant sur des 

outils d’évaluation et de diagnostic, notamment les bioindicateurs microbiens que j’ai 

contribué à développer au fil de mes activités de recherche. 
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3.2 Transfert opérationnel 
Le transfert opérationnel est orienté sur l’utilisation des bioindicateurs microbiens 

pour la gestion des sols au travers du tableau de bord AgrInnov. Il se décline en trois 

actions reliées chacune à un niveau d’organisation : les filières de production, les 

acteurs, et les territoires. 

A l’échelle de la filière, je coordonne le projet IFEP (2016-2020, financements 

CIGC et I-SITE Bourgogne Franche-Comté, partenariat CIGC, UMR Chrono-

environnement, IDELE, Conservatoire Botanique National de Franche-Comté) qui 

vise à évaluer, en filière Comté, les impacts de la fertilisation des prairies sur leur 

biodiversité et les transferts de bactéries et de contaminants du sol au lait. 

S’appuyant sur un réseau de recherche collaborative de 45 fermes le long de l’arc 

jurassien, il permettra d’aboutir à des recommandations de fertilisation des prairies 

préservant l’environnement de production et maintenant le lien entre fromage et 

terroir. Il pourra servir d’exemple à d’autres AOP pour allier développement de la 

filière et préservation de l’environnement de production. 

 

Au niveau des acteurs, je mettrai en œuvre deux actions. D’une part, je 

m’implique dans le transfert technologique des outils de diagnostic auprès des 

laboratoires d’analyse. Pour cela, je participe au projet Agro-Eco Sol (Chefs de File : 

Aurea Agrosciences, INRA et Arvalis Institut du Végétal ; Coordination scientifique : 

L. Ranjard) au titre de mon expertise sur les bioindicateurs microbiens. Ce projet est 

financé dans le cadre des Projets d’Investissement d’Avenir 3 de l’Etat qui vise à 

industrialiser les méthodes d’analyse des bioindicateurs pour pouvoir les proposer en 

prestation;  constituer une base de données pour affiner les diagnostics ; construire 

un conseil basé sur ces bioindicateurs ; et former les utilisateurs. Ceci facilitera 

l’utilisation des bioindicateurs microbiens, notamment en réduisant les coûts 

analytiques. En parallèle, je poursuivrai mes actions opérationnelles de déploiement 

des indicateurs microbiens pour le diagnostic de la qualité microbiologique des sols 

en agriculture. Ces actions seront réalisées dans le cadre du REVA par la formation 

professionnelle et le transfert d’outils. Ce réseau de recherche participative pour le 

monitoring de la qualité biologique des sols agricoles (tous les 2 à 5 ans) 

permettra d’identifier les pratiques agricoles améliorant la qualité biologique des sols 

dans une grande diversité de contextes pédoclimatiques. Il permettra aussi de 

disséminer l’OAD auprès des agriculteurs et des viticulteurs. 
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A l’échelle du territoire, je suis impliqué dans le projet "Dijon Métropole, territoire 

modèle du système alimentaire durable de 2030 au sein de l’action "Gestion des 

sols". Dans ce cadre, mon rôle sera d’assurer la coordination entre les différentes 

tâches sur les sols "ruraux" qui couvrent des thématiques allant de la caractérisation 

des sols et de la biodiversité au stockage de carbone, à la qualité des eaux et à 

l’économie ou la politique foncière. S’appuyant sur une démarche de recherche 

participative, cette action sera aussi un outil sans pareil pour disséminer l’OAD 

auprès des utilisateurs des sols. Pour cela, je collaborerai étroitement avec mes 

collègues L. Ranjard et P.-A. Maron et avec C. Claveirole  (FNE, CESE), mais aussi 

avec des partenaires de la recherche locaux ou nationaux (Université de Bourgogne 

Franche Comté, Supagro Montpellier, CNRS, MNHN), des acteurs du monde 

agricole (Chambres d’Agriculture, Coopératives) et du monde associatif 

(Observatoire Français des Sols Vivants). 
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Abstract

Although numerous studies have demonstrated the key role of bacterial diversity in soil func-
tions and ecosystem services, little is known about the variations and determinants of such
diversity on a nationwide scale. The overall objectives of this study were i) to describe the
bacterial taxonomic richness variations across France, ii) to identify the ecological pro-
cesses (i.e. selection by the environment and dispersal limitation) influencing this distribu-
tion, and iii) to develop a statistical predictive model of soil bacterial richness. We used the
French Soil Quality Monitoring Network (RMQS), which covers all of France with 2,173
sites. The soil bacterial richness (i.e. OTU number) was determined by pyrosequencing 16S
rRNA genes and related to the soil characteristics, climatic conditions, geomorphology, land
use and space. Mapping of bacterial richness revealed a heterogeneous spatial distribution,
structured into patches of about 111km, where the main drivers were the soil physico-chemi-
cal properties (18% of explained variance), the spatial descriptors (5.25%, 1.89% and
1.02% for the fine, medium and coarse scales, respectively), and the land use (1.4%).
Based on these drivers, a predictive model was developed, which allows a good prediction
of the bacterial richness (R2

adj of 0.56) and provides a reference value for a given pedocli-
matic condition.

Introduction
Numerous studies performed over the last two decades in the field of microbial ecology have
focused on variations of the soil microbial diversity under different environmental conditions
to better understand its regulation and predict the impact of perturbations [1±4]. These works
were justified by the lack of knowledge about the determinants of microbial diversity in space
and time, but also by the growing awareness of the key role of soil microbial diversity in soil
functions (C and N recycling, pathogen management, bioremediation. . .) [1,5±8] and the sup-
ply of ecosystem services. In this context, we have therefore accumulated a huge number of
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studies dealing with precise perturbations on a plot scale (e.g. [1]). Soil microbial community
as a whole and how it varies has already been examined over regional (e.g. [9]), territorial (e.g.
[10]) or continental scales (e.g. [4,11]) by several studies. One of the main pioneer works was
performed by Fierer & Jackson (2006) who described soil bacterial diversity on a continental
scale by applying DNA fingerprinting to 98 soils sampled along an environmental transect
from the north to the south of America [12]. They demonstrated that bacterial diversity was
closely related to soil characteristics and especially the pH, as recently confirmed in other stud-
ies [10,13]. But, more recently, other studies [9,11,14] have demonstrated the prevalence of
other parameters (like climate, geomorphology or land use) on bacterial distributions across
regional or global scales. For example, Maestre et al., (2015) highlighted that aridity indirectly
impacted the diversity and abundance of soil bacteria and fungi by strongly affecting soil pH,
soil organic C content, and total plant cover using data from 80 dryland sites across the globe
[11]. Another study, based on a European soil transect (72 sites showed that soil pH was the
main driver of soil bacterial community structure), and established a predictive model of soil
bacterial community structure allowing to draw a map at the European scale based solely on
this soil parameter [15]. In the same way, two recent studies have developed statistical models
to build global spatially explicit predictions of soil microbial biomass [16,17].

However, most of the studies that compared soil microbial diversity and composition were
conducted in very different types of ecosystems and soils (generally chosen with a priori),
which could have facilitated community discrimination and exacerbated the relationship with
contrasting environmental filters (soil characteristics, climatic conditions, land cover etc.). In
addition, reducing the number of environmental parameters examined and/or their range of
variation can lead to contradictory results concerning, for example, the influence of climatic
conditions on soil bacterial diversity [12,18]. Drawing a robust conclusion, as to the ecological
processes involved (deterministic vs neutral processes) or the hierarchy of environmental fil-
ters driving soil microbial diversity on a nationwide scale, currently seems impossible from
these studies. However, more recently some studies using large soil sampling on a regional
scale started to decipher the ecological processes (deterministic vs neutral processes) driving
soil microbial diversity. Recently, a study showed that habitat turnover was the primary driver
of bacterial community turnover, but its importance decreased with increasing isolation [19].
These studies paved the way for the importance of conducting new extensive studies on a
nationwide scale with high resolution sampling and without a priori to improve the robustness
and general applicability of the conclusions and then the understanding of soil microbial com-
munity regulation.

In France, the French Soil Quality Monitoring Network (ReÂseau de Mesures de la QualiteÂ
des Sols = RMQS) represents the most extensive and without a priori soil sampling survey
available to date and fulfils most of the above-cited requirements [20]. It consists of a system-
atic sampling grid (16 x 16 km) extending over the whole of France with 2,173 sites covering
an area of�5.3 x 105 km2 with a huge diversity of soil physico-chemical characteristics, plant
cover, land use, geomorphology and climatic conditions and coupled with an extensive collec-
tion of corresponding environmental data (Fig 1) [21]. In previous studies, by applying molec-
ular tools to characterize the microbial communities in all RMQS samples, we demonstrated
that soil molecular microbial biomass was heterogeneously distributed on the scale of France
with biogeographical patterns of about 160 km radius, mostly driven by the soil texture, the
pH, the organic carbon content of the soil and by the land use with a negative impact of agri-
cultural land use conversely to natural or semi natural land use [22,23]. Based on these drivers
we developed an original predictive polynomial model that provides a reference value for
microbial biomass for a given pedoclimatic condition, which can then be compared with the
corresponding measured value to provide a robust diagnosis of soil microbiological status
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[17]. By applying a DNA-fingerprinting approach, we also proved a heterogeneous distribu-
tion of soil bacterial community structure, which was independent of soil microbial biomass
distribution but driven by soil physico-chemical properties and land use [22]. By comparing
estimates of the taxa-area relationship with habitat heterogeneity, we demonstrated that the
turnover rate of bacterial diversity in soils on a nationwide scale was (i) highly significant and
strongly correlated with the turnover rate of soil habitat [24], and (ii) driven by dispersal limi-
tation as well as environmental selection, this latter including soil and land use properties [13].
Since all these studies were based on quantitative and community structure characterization of
bacterial communities, they did not provide information about bacterial diversity in terms of
richness, evenness and taxonomic composition.

The aim of the present study was to use the RMQS monitoring network to evaluate the vari-
ations and to decipher the spatial patterns of bacterial richness in soils across French national
territory. More precisely, our study focused on bacterial taxonomic richness (in terms of num-
ber of Operational Taxonomic Units or OTUs at 95% of sequence similarity, corresponding
roughly to the genus level) [1,6]. Bacterial richness was determined in all 2,173 soils samples of
the RMQS by using a pyrosequencing of bacterial 16S rRNA genes directly amplified from soil
DNA. Geostatistics was applied to these data to provide the first comprehensive map of soil
bacterial richness variation along the environmental gradients encountered in France. The
ecological processes structuring the variation of bacterial richness were identified and ranked
by variance partitioning analysis. Finally, a statistical predictive model was developed accord-
ing to the environmental filters identified. This model represents an operational tool highly
complementary with the predictive model of soil molecular microbial biomass developed pre-
viously [16,17] to establish a comprehensive diagnosis of the soil microbiological status (in
terms of abundance and diversity of soil microorganisms).

Materials andmethods
Soil sampling strategy
Soil samples were obtained from the French Soil Quality Monitoring Network (ªReÂseau de
Mesures de la QualiteÂdes Solsº = RMQS) which is a soil monitoring network based on a 16
km regular grid across the 550,000 km2 French territory [25]. The RMQS includes 2,173

Fig 1. Locations, land uses and texture of sampling sites from the French Soil Quality Monitoring
Network (RMQS). (A) Location of sampling sites in the systematic sampling grid of the French Soil Quality
Monitoring Network (RMQS) criss-crossing the whole French territory. Colour legend indicates the various
types of land use encountered in France on this scale. ªOthersº land use corresponds to sites impossible to
sample which corresponded to inaccessible sites (mountain, sea, etc.) or sites without natural soils (urban
zone, rocky zone. . .). (B) Distribution of the RMQS soils in the USDA soil texture triangle. Colour legend from
yellow to blue represents the soil pH of each RMQS soil.

https://doi.org/10.1371/journal.pone.0186766.g001
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monitoring sites, collected between 2000 and 2009, each located at the centre of a 16 x 16 km
cell (Fig 1). All sites have been geo-positioned with a precision <0.5m and the soil profile,
site environment, climatic factors, vegetation and land use described (see Table 1). In the
middle of each 16 x 16 km square, 25 individual core samples were taken from the topsoil
(0±30 cm) using an unaligned sampling design within an area of 20 x 20 m. The core samples
were bulked to obtain a composite sample for each RMQS site. The soil samples were gently
air-dried, sieved to 2mm and then stored at -40ÊCbefore analysis [23]. Physico-chemical
parameters were measured for each composite soil, e.g. particle-size distribution, pH water,
organic C, N, C/N ratio, soluble P contents, calcareous, cation exchange capacity (CEC) or
exchangeable cations (Ca, Mg). Physical and chemical analyses are available for 2,131 soils
and were performed by the Soil Analysis Laboratory of INRA (Arras, France, http://www.
lille.inra.fr/las). Available climatic data for the RMQS were annual rain, evapotranspiration
and temperature. These data were obtained for each node of a 12 x 12 km grid defined by
Meteo-France, obtained by interpolating observational data using the SAFRAN model [26].
Obtained measures for the period 1992±2004were then averaged, to integrate all transitory
effects into one value corresponding to a global effect of climate on soil microbial communi-
ties. Finally, the RMQS site-specific data were linked to the climatic data by finding for each
RMQS site on the grid of 16 x 16 km the closest node within the 12 x 12 km climatic grid.
Land use was recorded according to the coarse level of the CORINE Land Cover classification
(http://land.copernicus.eu/pan-european/corine-land-cover), which consists of a rough
descriptive classification into five classes: forests, croplands, grasslands, others and perennial
crops (corresponding to vineyards and orchards). All these data were available in the DONE-
SOL database [21].

Table 1. Statistical description of environmental parameters for RMQS soil samples. These values are based on the 1,798 sites analyzed. CEC: cat-
ion-exchange capacity; ETP: evapotranspiration.

Soil properties (unit) Minimum First Quartile Median Mean Third Quartile Maximum
pH water 3.70 5.40 6.23 6.42 7.80 8.90
Organic Carbon (g.kg-1) 2.57 13.60 19.80 26.08 30.70 243.00
Total Nitrogen (g.kg-1) 0.11 1.180 1.75 2.20 2.71 16.00
C:N 6.26 9.67 10.56 12.10 13.27 52.72
Total CalciumCarbonate (g.kg-1) 0.50 0.50 0.50 56.19 12.38 866.00
Available phosphorous (g.kg-1) 0.001 0.014 0.036 0.053 0.077 1.110
CEC (Cmol + kg-1) 0.25 5.84 10.30 14.32 20.30 70.10
Clay (g.kg-1) 5.0 154.0 213.0 248.9 325.8 819.0
Silt (g.kg-1) 2.0 280.0 406.5 410.6 540.8 819.0
Sand (g.kg-1) 7.0 152.0 287.0 340.4 502.0 985.0
Total Cd (g.100g-1) 0.01 0.12 0.20 0.30 0.35 4.10
Total Cu (g.100g-1) 0.50 8.77 13.90 19.93 22.10 491.00
Total Ni (g.100g-1) 0.50 11.72 19.70 25.20 31.50 1,530.00
Total Pb (g.100g-1) 3.06 21.40 28.20 32.97 38.00 624.00
Total Zn (g.100g-1) 2.50 43.83 64.32 74.55 90.20 1,080.00
Total K (g.100g-1) 0.02 1.06 1.44 1.60 2.01 5.40
Elevation (m) -3.0 106.0 194.5 331.1 388.8 2,540.0
Mean Annual ETP (mm) 43.38 50.45 54.31 55.67 58.61 96.11
Mean Annual Rain (mm) 45.78 62.66 71.89 76.77 84.11 183.71
Mean Annual Temperature (ÊC) -2.32 9.93 10.72 10.66 11.73 15.49

https://doi.org/10.1371/journal.pone.0186766.t001
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Molecular characterization of bacterial community diversity
Soil DNA extraction and purification. Microbial DNA was extracted and purified from

1g of the 2,173 composite soils (composed of a bulk of 25 individual core soils) sampled in
each RMQS site, using the GnS-GII procedure as described previously [27]. Crude DNA
extracts were quantified by agarose gel electrophoresis stained with ethidium bromide and
using calf thymus DNA as standard curve [23]. Crude DNA was then purified using a MinE-
lute gel extraction kit (Qiagen, France) and quantified using a QuantiFluor staining kit (Pro-
mega, USA), prior to further investigations.

PCR amplification and pyrosequencing of 16S rRNA gene sequences. A 16S rRNA
gene fragment targeting the V3-V4 regions to characterize bacterial diversity was amplified
using the primers F479 (5’-CAGCMGCYGCNGTAANAC-3’) and R888 (5’-CCGYCAATTCMT
TTRAGT-3’) [27]. 2,132 soil samples were successfully amplified from the 2,173 DNA soil
samples. The 16S PCR products were then purified using a MinElute PCR purification kit
(Qiagen, Courtaboeuf, France) and quantified using the QuantiFluor staining kit (Promega,
USA). A second PCR of 7 cycles was then duplicated for each sample under similar PCR con-
ditions, with purified PCR products as matrix (7.5ng of DNA were used for a 25µl mix of
PCR) and dedicated fusion primers (`F479/AdaptorB',`R888/MID/AdaptorA') integrating
needed adaptors, keys and multiplex identifiers at 5' extremities. All duplicated PCR products
were then pooled, purified using a MinElute PCR purification kit (Qiagen, Courtaboeuf,
France), and quantified using the QuantiFluor staining kit (Promega, USA). For all libraries,
equal amounts from 30 samples were pooled, and then cleaned to remove excess nucleotides,
salts and enzymes using the Agencourt AMPure XP system (Beckman Coulter Genomics).
100µl of TE buffer (Roche) was used for the elution. Pyrosequencing was then carried out on a
GS FLX Titanium (Roche 454 Sequencing System) by Genoscope (Evry, France).

Bioinformatics sequence analysis. Bioinformatic analyses were done using the GnS-PIPE
developed by the GenoSol platform (INRA, Dijon, France) [28]. Chosen parameters for each
step can be found in S1 Table and the details of all steps have been already described previously
[27]. Regarding the filtering step, it was then carried out to check all single-singletons (reads
detected only once and not clustered) were checked in order to eliminate PCR chimeras and
large sequencing errors produced by the PCR and the pyrosequencing, based on the quality
of their taxonomic assignments. More precisely, each single-singleton was compared with a
dedicated reference database from the Silva curated database using similarity approaches
(USEARCH), with sequences longer than 500 nucleotides, and kept only if their identity was
higher than the defined threshold (S1 Table). Finally, the number of high-quality reads for
each sample was normalized (i.e. 10,000 high-quality reads for each sample) by random selec-
tion to allow efficient comparison of the data sets and avoid biased community comparisons
(see S1 File). A total of 1,798 soil samples were finally kept for subsequent analyses.

A post-processing filtering was then applied to this global dataset to account for potentially
artefactual data. First all the homogenized high-quality reads from all samples (encompassing
a total of 17,980,000 reads) were merged and aligned. Then, as the analysis of microbial com-
munity richness relies on the construction of similarity clusters (called OTUs), we chose here
to use OTUs to examine the distribution of 16S rRNA gene sequences in our datasets. How-
ever, there is no single best definition of `species', g̀enus’ when this approach is used, because
of controversy about thresholds of similarity allowing clear differentiation of taxonomic units
[29]. Moreover, a recent study regarding the diversity of bacterial genomes demonstrated that
when the standard threshold of 97% is used, some species can fall to different OTUs due to
intragenomic or intraspecific differences [30]. So, we decided to apply the 95% threshold of
sequence similarity, usually considered as the g̀enus’ level. This clustering was realized with a
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PERL program that groups rare reads to abundant ones, and does not count differences in
homopolymer lengths. A post-processing step was then applied to remove all singleton OTUs
that occurred only once in the overall dataset, and comprised only a singleton (reads detected
only once after the dereplication step and not clustered) [27]. This post-processing step
reduced the number of total OTUs from 205,590 to 92,571 (loss of 50%), but the number of
reads only from 17,980,000 to 17,866,981 (loss of less than 1%). For each sample, the number
of deleted reads with this step was 62 ± 60 on average (minimum: 10, maximum: 1,093).
Finally, contingency tables of OTUs were obtained with the samples in lines and OTUs in col-
umns, indicating the number of reads in each OTU for all samples. The retained high-quality
reads were then used to determine OTU richness and rarefaction curves (see S2 File) [31]. All
raw data sets are publicly available in the EBI database system (in the Short Read Archive)
under project accession PRJEB21351.

Metadata analysis
Mapping using geostatistic. The geostatistical method of kriging was used to map

microbial richness and to characterize their spatial variations [32]. More precisely, as the stud-
ied variable followed a normal distribution (Kolmogorov-Smirnov test, p-value = 0.2703 for
Richness), no transformation was considered prior to modelling the spatial correlations
(S1 Fig). In conventional geostatistical analysis, an estimate of a variogram model is computed
based on the observations, which describe the spatial variation of the property of interest. This
model is then used to predict the property at unsampled locations using kriging [32]. A com-
mon method for variogram estimation is first to calculate the empirical (so called experimen-
tal) variogram by the method of moments [33], and then to fit a model to the empirical
variogram by (weighted) nonlinear least squares. We tried to fit several models and retained
the one that minimized the objective function [34]. The validity of the best fitted geostatistical
model was then assessed in terms of the standardized squared prediction errors (SSPE) using
the results of a leave one out cross validation. If the fitted model was a valid representation of
the spatial variation of the microbial property, then these errors would have a χ2 distribution
with a mean of 1 and median of 0.455 [35]. The mean and median values of the SSPE were also
calculated for 1,000 simulations of the fitted model to determine the 95% confidence limits.
The `gstat'package of R software (version 3.2.2) was used for geostatistical analysis and kriging
[36].

Variance partitioning. The relative contributions of soil physicochemical parameters,
land use (forests: 492 sites, croplands: 740 sites, grasslands: 464 sites, perennial crops, corre-
sponding to vineyards and orchards: 36 sites, and others: 36 sites), climatic conditions, geo-
morphology and space in shaping the patterns of soil bacterial richness and evenness were
estimated by variance partitioning. The Principal Coordinates of a Neighbour Matrix
approach (PCNM) was used to describe and identify the scales of spatial relationship between
samples [37]. This PCNMmethod was applied to the geographic coordinates and only
PCNMs with a significant Moran's index were selected for the variance partitioning analysis
(P<0.001). The spatial neighbourhood described by each PCNM was determined by the range
of a Gaussian variogram models [38]. All quantitative (response and explanatory) data were
standardized (centered and scaled) in order to have an approximated Gaussian and homoske-
dastic residual distribution. A two steps procedure was used to determine the environmental
parameters significantly shaping bacterial richness and to limit over fitting and to exclude co-
linear variables [39]. The first step consisted of a coarse selection of explanatory variables
included in models minimizing the Bayesian Information Criterion (BIC) and maximizing the
adjusted R2 using the regsubset function (ªleapsº package) [40]. In the second step, a forward
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selection procedure was applied to the subset of explanatory variables to identify the model
maximizing the adjusted R2 [39]. Spatial descriptors were then selected from the model residu-
als [41] using the forward selection step only since all PCNM are linearly independent. The
respective amounts of variance (i.e., marginal and shared) for bacterial richness, were deter-
mined by canonical variation partitioning and the adjusted R2 with Redundancy Analysis [39].
The statistical significance of the marginal effects was assessed from 1,000 permutations of the
reduced model. All these analyses were performed with R (http://www.r-project.org/) using
the vegan package.

Predictive modelling strategy. Three steps were assessed in order to find the best explan-
atory and most parsimonious model that explained the bacterial richness (response variable)
as a function of soil physico-chemical characteristics and geographical coordinates (climatic
data were not retained since they are rarely available, expensive to obtain, and limit the use of
the model in a diagnostic approach [17]) (explanatory variables), i) selection of the significant
explanatory variables, ii) selection of the best model form based on its predictive capacity and
cross validation, and iii) sensitivity analyses of the model. For the first step, two tools were
used to assess colinearity between the explanatory variables, namely correlation coefficients
and variance inflation factors (VIF). Only those with a correlation coefficient ranging from
-0.7 to 0.7 and with a VIF� 4 were considered in the modeling steps. The VIF values were
calculated using the vif function in the car R package [42]. This selection step allowed the
exclusion of highly collinear variables and defined a reduced explanatory dataset more com-
prehensive and of easier use for the following steps. Since the number of explanatory variables
was large (less than 50), the best explanatory variables were selected by applying the exhaustive
search method described by Miller, 2002 [43]. This approach involved using the regsubsets
function in the leaps package in R [40]. The selection criteria were the Bayesian Information
Criterion (BIC) and the adjusted coefficient of determination (R2

adj) by minimizing the first
and maximizing the second.

For the second step, the bacterial richness dataset was randomly divided into a modeling
dataset (90% of the data, 1,618 soil samples) and a cross-validation dataset (about 10% of the
data, 180 soil samples), selected by applying the KennardStone algorithm. The kenStone func-
tion of the ªprospectrº package was used to determine the distribution of the modeling and
cross-validation datasets. Different polynomial linear models were then compared, with differ-
ent numbers and types of explanatory variables as well as different degrees. Model selection
was therefore based on maximizing R2

adj, while minimizing BIC and by cross-validating the
model on the cross-validation dataset.

Since the basis of the model was linear regression, standardized regression coefficients
(SRC) were used as sensitivity index, as classically reported in the literature [44]. The regres-
sion coefficients denoted by b̂ were determined by ordinary least-squares regressions and pro-
vided information about the sensitivity of the model response to the various input-factors, and
their combinations. SRC is equal to ðsXi=sYÞ�b̂, where σXi and σY are the standard deviation of
inputs and output variables, respectively. The SRC values were determined using the ªsensitiv-
ityº package in R [45]. With this approach, the sensitivity of the model to a given variable is
high when the absolute value of SRC is high.

Results and discussion
This study provides an extensive compilation of bacterial richness from the soil environment
i) to draw the first map of bacterial richness across France with over 1,700 geo-located samples,
ii) to decipher the ecological processes (selection vs dispersal limitations) involved in such dis-
tribution and also iii) to elaborate an operational predictive model of bacterial richness
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according to soil parameters. By applying pyrosequencing technology to soil DNA from all the
composite soil samples in the French monitoring network, we were able to generate more than
17,980,000 16S rRNA sequences and to describe 92,571 different OTUs.

Soil bacterial richness variation and distribution across French national
territory
Bacterial richness recovered from the 1,798 RMQS soils, ranged from 555 to 2,007 detected
OTUs with an average value of 1,288 (± 207) OTUs and half of the RMQS soils harboured
between 1,170 and 1,424 OTUs (S1 Fig). These results are in the same order of magnitude as
those classically obtained in different soil environments, using comparable sequencing tech-
nology and sequencing depth [46,47]. Such a great variation might result from our extensive
sampling strategy, which enabled various types of soil and land uses to be compared. Another
consequence of this huge variability of soils and environmental parameters was that the cumu-
lative number of different OTUs detected did not reach the saturation even when all the 1,798
RMQS soils studied were considered (S2 Fig).

In this study we provide the first national map of soil bacterial richness with its experimen-
tal and fitted variogram (Fig 2). The results of the 10-fold cross-validation gave a mean value
of the SPPEs that is 1.021 and very close to the expected value, and a median value of 0.3922,
both values falling within the 95% confidence interval. As indicated by the parameters of the
MateÂrn function of the variogram, the observed (nugget / (nugget + sill)) ratio was high
(= 0.73), suggesting that a large proportion of the variance was unexplained. Despite the rigor-
ous standardisation of our molecular tools from soil DNA extraction to sequencing technology
[27], the unexplained variance might be partly due to methodological variability. It might also
be due to the large scale of the sampling scheme, which is unsuitable for detecting rough spatial
process at small distance as previously suggested [48].

The map obtained revealed a heterogeneous distribution of bacterial richness, which was to
a large extent spatially structured in geographical patterns defining more or less wider regions
with hot- or cold-spots (Fig 2). The fitted model gave an effective range of 111.6 km revealing
a large autocorrelation distance but smaller than those observed for molecular microbial

Fig 2. Mapping and robust variograms of soil bacterial richness on the scale of France. The colors
indicate the extrapolated values expressed as OTU per soil sample. The L andH zones visually observed on
the map correspond to Low and High bacterial richness zones on a regional scale, respectively. In the graph,
points represent the experimental variogram, and continuous lines theMateÂrn models fitted by maximum
likelihood method.

https://doi.org/10.1371/journal.pone.0186766.g002
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biomass (160km) [23]. This difference confirmed that the abundance and diversity of soil
microorganisms are not driven by the same filters as demonstrated at another spatial scale
[49].

The scale of spatial variations of bacterial richness did not correspond to the French cli-
matic distribution (Soil Atlas of Europe, climate p. 122) or to the presence of large natural bar-
riers (mountain, sea. . .; Soil Atlas of Europe, elevation p. 121) [50]. On the other hand, the
observed geographical patterns of bacterial diversity could be matched with large pedological
patterns. The distribution of French soil types in terms of physico-chemical characteristics
(http://gissol.orleans.inra.fr/programme/bdgsf/carte.php) corresponded to certain richness
hot- or cold-spots, suggesting that these soil physico-chemical characteristics had a strong
influence. For example, the cold-spots of OTUs located in North-East and in South-West
(L-zone 1, and a part of L-zone 3, respectively, Fig 2) correspond closely to the most acidic
soils in France (http://www.gissol.fr/donnees/cartes). In addition, distribution of bacterial
richness patterns could correspond to the coarse level of land cover distribution described for
France (Fig 1; http://www.statistiques.developpement-durable.gouv.fr/clc/fichiers/; Soil Atlas
of Europe, land cover p. 123) [50]. The low number of bacterial OTUs recorded in Landes,
Centre and North-East (L-zones 1, 2 and 3, respectively, Fig 2) could be related to the distribu-
tion of particular land covers, notably forest and grasslands, in these regions (Fig 1). In con-
trast, hot spots of bacterial richness seemed mainly to correspond to regions under crop
systems, such as the Brittany, the North and the South around the Mediterranean (H-zones 1,
2 and 4, respectively). These observations imply that the autocorrelation distance might be
partly driven by the influence of large patterns of soil types and coarse level of land cover dis-
tribution on bacterial diversity.

Ecological processes driving soil bacterial richness
Total variance was partitioned between five types of explanatory sets of environmental param-
eters: soil properties, land management, climate, spatial descriptors and interactions. Soil
parameters, land management, climate and their interactions are linked with ecological pro-
cesses derived from the deterministic theory and based on selection by the environment [51]
whereas spatial descriptors can be partly related to variations in unmeasured environmental
parameters [52] and/or linked with neutral processes such as dispersal limitation [53]. The var-
iance partitioning approach revealed that the total amount of explained variance of bacterial
richness was 48.2%, which is significantly lower than those observed at the landscape scale
[49]. This difference might be due to the smaller variation in soil characteristics, climate and
geomorphology on a landscape scale than on the scale of France. Variance partitioning indi-
cated a significant influence (P<0.01) of soil characteristics (18% of explained variance), spa-
tial descriptors (8.2%), land use (1.4%), climatic conditions (0.4%), but not of geomorphology
(Fig 3A). Interactions between soil characteristics, land use and climate represented also a
large proportion of the explained variance (20.4%). These observations are congruent with
recent studies evidencing the major effect of soil characteristics on bacterial richness, and con-
sequently the high impact of selection processes (due to the influence of specific environmental
parameters) shaping bacterial richness [4,46]. On the other hand, the influence of space might
be partly related to variations in unmeasured environmental characteristics [52] but also sug-
gests that dispersal limitation may be non negligible in shaping bacterial richness [13,54].

For each filter, within the sets of environmental and spatial descriptors, the marginal effect
accounted for relatively small, but significant, proportions of the total variance (from 0.4% to
11%) due to the large number of parameters involved (Fig 3B). Regarding soil characteristics,
the pH (11%) and the clay content (5.8%) were the main drivers of bacterial richness, with pH
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having a positive effect (indicated by a positive sign for the standardized coefficient) conversely
to the other parameters (Fig 3B). These results confirmed the overriding effect of pH as a
stimulating factor of bacterial community diversity at various spatial scales [15,49,55]. The sig-
nificant but negative effect of clay content might be partly explained by the decrease in hetero-
geneity at a microscale with increasing clay content, leading to a lower diversity of microbial
habitats and thus to a smaller hosting capacity for various indigenous bacterial species [56]. In
addition, the C:N ratio as well as total Potassium content had a weak (0.5%) but significant
negative effect on bacterial richness distribution, (Fig 3B). This was consistent with several
reports highlighting that soils with a high C:N ratio, corresponding to a high recalcitrance of
soil organic matter to degradation by microbes harboured a lower richness of microorganisms
[57,58]. The weak (0.4%) but positive influence of climate (temperature inÊC)and geomor-
phology on bacterial richness was in agreement with other reports observing that these distal
filters were little involved in microbial abundance and diversity distribution [12,23]. On the
other hand, at larger scales, like continental or global scales with wider ranges of parameters
(e.g. range: 2.5 to 25.7ÊCfor mean annual temperature for Zhou et al., (2016)), the temperature
can influence microbial diversity distribution (directly, or indirectly by impacting plant
cover), or the distribution of specific groups like the Cyanobacteria [14]. Altogether, these
results modulate the hypothesis that the main filters driving the biodiversity of macro- and
micro-organisms are different [24,51,59].

Independently of the other environmental variables, on this scale land use accounted for a
small proportion (1.4%) of the explained variance, in agreement with previous reports that
bacterial richness is generally poorly impacted by land use [2,60]. Even if both soil properties
and land use have discriminating effects on soil bacterial diversity, cross-effects may have
occurred, since soil pH and organic carbon content, for example, could also be dependent on
land use and especially on agricultural practices (liming and tillage, respectively; [49]). On the
other hand, less fertile soils (acidic, sandy) have been historically dedicated to forests [23]. In
addition, by comparing the signs and values of the standardized estimated coefficients of land
use categories, we demonstrated that bacterial richness was negatively impacted by natural or
semi natural land uses i.e. forests and grasslands, and positively by perennial (vineyards-

Fig 3. Variance partitioning, contribution and effect of model parameters for the distribution of
bacterial richness on the scale of France. (A) Variance partitioning of bacterial richness. The amount of
explained variance corresponds to the adjusted R2 values of the contextual groups using partial redundancy
analysis. The significance level of the contribution of the sets of variables is at least P < 0.01. (B) Model
parameters for the distribution of bacterial richness on the scale of France. Each parameter is presented with
its estimatedmodel coefficients and its marginal effect assessed by a permutation test. P<0.01: **, P<0.001:
***. Missing values indicate that the variable was not retained in the model. Sand was removed prior to model
evaluation since it was represented by the opposite of the sum of silt and clay contents.

https://doi.org/10.1371/journal.pone.0186766.g003
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orchards) or annual crop systems (Fig 3B). This observation supported a positive relationship
between bacterial richness and soil disturbance due to cropping intensity, with Vineyards-
Orchards> Crops> Grasslands> Forests, combining different types of agricultural practices
(tillage, crop protection, fertilization, crop rotation; [61]). According to the ªhumped-backº
model describing the response of the diversity of a community to environmental stress [62], a
decrease in apparent diversity may occur (i) in a highly stressed environment due to domi-
nance of particularly competitive species through selection, and (ii) in a notably unstressed
environment, due to the dominance of particularly adapted species through competitive exclu-
sion [63]. Contrastingly, moderate stress may increase apparent diversity, due to a diminution
in competitive niche exclusion and in selection mechanisms. Our results showed that soils
under annual (croplands) or perennial crop systems (vineyards/orchards) would correspond
to these conditions, as they harboured highest richness levels compared to forests and grass-
lands (considered as unstressed environments) [3,61].

The spatial descriptors of the studied area, illustrating neighbourhood relationships
between samples, corresponded to 26 significant (Principal Coordinates of a Neighbour
Matrix), each representing different spatial scales (coarse: 110 to 250km, medium: 60 to
110km and fine: 30 to 60km, Table 2). The whole variance of bacterial richness explained by
spatial descriptors was 8.2% and ranged from 0.19% to 0.74% according to PCNM. This scale
dependency may reflect the effect of unmeasured spatial gradients [52], but may also be related
to dispersal limitation of bacterial communities in regards of the large number of explanatory
variables introduced in the analysis [54,64]. The influence of the scale was ranked by compar-
ing the signs of the standardized coefficients and by cumulating the explained variance for
each scale. A larger number of PCNMs (17) describing the fine scale were involved in explain-
ing bacterial richness, with 5.25% of the cumulated explained variance, whereas those repre-
senting the coarse and medium scales were fewer (2 and 7 PCNMs with 1.02% and 1.89% of
the cumulated explained variance, respectively). At fine and medium scales, the influence of
spatial descriptors might be partly related to variations in unmeasured soil characteristics and
land use, whereas at coarse scale it might results from geomorphology or the distribution of
overall land cover (forest, grassland, mountains, sea). Our observation suggests that landscape
configuration would be a significant driver of soil bacterial richness as also demonstrated on
biodiversity turnover [24]. In addition, our analysis revealed numerous negative effects of spa-
tial descriptors on bacterial richness at medium and fine scales, thus confirming that landscape
configuration would be a significant driver and might partly affect bacterial richness by limit-
ing bacterial dispersal as also demonstrated previously [24]. Altogether, our results showed
that biogeographical patterns of bacterial richness can be explained by both selection (i.e. envi-
ronmental filters like pH or C:N) and neutral processes (i.e. dispersal limitation), each being
non-exclusive.

Predictive model of soil bacterial richness
Based on the RMQS dataset of bacterial richness and environmental parameters we have devel-
oped a predictive statistical model to provide a reference value of bacterial richness for a given
pedoclimatic condition. The linear models with the smallest BIC (-700) and the largest R2

adj

(0.34) highlighted eight environmental parameters as significant explanatory variables of the
bacterial richness, which were ranked as follows: pH> Clay content > C:N ratio> X (longi-
tude)> elevation> Corg content > Y (latitude)> Silt content (Fig 4). This observation con-
firmed and refined the hierarchy of the environmental filters obtained with variance
partitioning (Fig 3). At this step, climate data are not retained despite their significant role,
since they are rarely available and expensive to obtain, limiting the use of this model to
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compare predicted and measured values in a context of soil biological diagnosis for and by soil
users [17]. Alternatively, climatic conditions were replaced in the model by longitude, which
in France is integrative of climate and soil moisture and did not reduce the R2 of the model
and therefore its robustness [25].

First, we developed a linear polynomial regression model based only on pH as explanatory
variable, as previously described [12]. By testing the increasing complexity (from simple linear
and up to the fifth degree) of the polynomial model, we found that the model degree four gave
the best R2 (0.34) since at higher degree the R2 remained virtually unchanged (Fig 5). Never-
theless, in their study based on 100 soils, Fierer & Jackson, 2006 obtained a higher R2 (0.58)
with a degree 2. This difference might be partly explained by our deeper sampling effort, but
mostly by the genotyping technics used by these authors (T-RFLP), which could limit the vari-
ability of the estimated richness (several tens of populations) by comparison with pyrosequen-
cing technology (several tens of thousands of OTU in our case), as previously shown [4]. To
improve the model in terms of higher R2

adj and to get closer to the normality hypotheses and
to improve the variance homogeneity of the residuals [65], we tested for its ability to include
interactions between explanatory variables identified [17,65,66]. In addition to pH, we selected

Table 2. Model parameters of spatial descriptors for the distribution of bacterial richness on the scale of France. Considering that the major part of
the environmental selection wasmeasured by the previous explanatory variables (soil properties, land-use, etc.), we investigated the effect of dispersal on the
residuals of the variance partitioningmodels. To do that, the neighbourhood between sites at various classes of distancewas evaluated, using a Principal
Coordinates of Neighbour Matrix approach (PCNM). Each spatial descriptor is presentedwith its estimated model coefficients and its marginal effect assessed
by a permutation test (P<0.05). Missing values indicate that the variable was not retained in the model. Spatial components were summarized according to
the spatial scale considered: coarse, medium or fine.

Scale Spatial descriptors (PCNM) Explained variance (%) Model coefficient
Coarse [110km; 250km] PCNM13 0.28 0.19

PCNM29 0.74 -0.29
Medium [60km; 110km] PCNM58 0.30 0.19

PCNM75 0.28 -0.19
PCNM113 0.25 -0.18
PCNM120 0.23 -0.17
PCNM126 0.38 0.21
PCNM128 0.19 0.16
PCNM142 0.26 0.18

Fine [30km; 60km] PCNM188 0.47 -0.23
PCNM211 0.25 0.18
PCNM216 0.29 -0.19
PCNM264 0.56 -0.25
PCNM275 0.33 -0.20
PCNM281 0.19 0.16
PCNM296 0.22 -0.17
PCNM305 0.26 -0.18
PCNM316 0.27 -0.18
PCNM319 0.43 -0.23
PCNM327 0.46 -0.23
PCNM359 0.23 -0.17
PCNM387 0.20 0.16
PCNM426 0.19 -0.16
PCNM427 0.26 0.18
PCNM436 0.35 -0.21
PCNM466 0.29 0.19

https://doi.org/10.1371/journal.pone.0186766.t002
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only three main explanatory variables to be included in the model: Clay content, C:N ratio and
longitude (X), since the R2 of the model based only on pH was not significantly improved by
integrating additional variables (data not shown). Finally, the model developed has a R2 = 0.56
and a R2

adj = 0.58 and the following mathematical form (all parameters of the models are given

Fig 4. Hierarchy of the linear models of soil bacterial richness involving soil physicochemical,
geographical coordinates and climatic variables. The hierarchy of the linear models implying
environmental variables is given according to the R2

adj criterion (A) and the BIC criterion (B) with the
exhaustive method. Each row in this graph represents a specific model. The variables included in a given
model are represented by means of shaded rectangles. The intensity of the shading represents the ordering
of the BIC and R2

adj values according to the absolute value.

https://doi.org/10.1371/journal.pone.0186766.g004

Fig 5. Polynomial regression between the bacterial richness and soil pH for different level of
increasing complexity (from simple linear and up to the fifth degree) of themodel. (A) Grey line, simple
linearmodel, bacterial richness = 66.48*pH + 855.43; R2 = 0.15. (B) Dotted black curve, quadraticmodel,
bacterial richness = -58.55*pH2 + 818.8*pHÐ 1460.6; R2 = 0.29. (C) Dotted black curve, cubic model,
bacterial richness = 25.458*pH3±537.9*pH2 + 3751.5*pHÐ7287 .4; R2 = 0.32. (D) Black line, model degree
four, bacterial richness = 13.06*pH4±302.64*pH3 + 2499.2*pH2±8510.8*pH + 10919; R2 = 0.34. (E) Dotted
grey curve, model degree five, bacterial richness = 2.63*pH5±69.59*pH4 + 720.07*pH3±3731.7*pH2 +
10171pHÐ 11127; R2 = 0.34.

https://doi.org/10.1371/journal.pone.0186766.g005
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in the S2 Table):

Richness ¼ 1044þ 3:305 � pH4 � 0:0457 � Clay2 þ 0:0597þ 0:00298 � Clay2 � C

: N � 1:54 � 10� 6 � Clay3 � C : N þ 2:336 � 10� 5 � ðC : NÞ2 � X:

To validate the model, we evidenced the normality distribution of model residuals, which
was confirmed by the Shapiro-Wilk test of normality (P = 0.149), as well as a good homogene-
ity of the residuals tested by the Breush-Pagan test of homogeneity (P = 0.5469). In addition,
plotting the measured richness against the predicted richness using the cross-validation dataset
revealed an important scatter of the points around the y = x line (S3 Fig), which validated the
high predictive ability of the developed polynomial model. Finally, the sensitivity of the model
to measurement errors on each explanatory variable was evaluated by a sensitivity index [17].
This analysis demonstrated that the model was highly sensitive to variations in pH, clay con-
tent and C:N ratio, together with their interactions and cubic effects, which was in agreement
with the above discussion concerning the variance partitioning analysis (S3 Table). However,
one limitation of our model is the absence of variations in bacterial richness between different
years (or between seasons during one year) that can result from modifications of climatic con-
ditions, plant cover or agricultural practices. In complement to our study, it will be relevant to
validate the robustness of this model on a sampling strategy that integrates such temporal
variation.

Altogether, our study provides the first French national atlas of soil bacterial richness using
an extensive sampling survey of about 1,800 samples, and confirms the relevance of investigat-
ing microbial community on a nationwide scale to better understand the ecological processes
involved in regulating microbial richness. We showed that the distribution of bacterial rich-
ness at this scale was heterogeneous and spatially structured, mainly driven by proximal filters
such as soil characteristics and land use (both supporting a selection process) but also signifi-
cantly influenced by spatial descriptors (potentially supporting dispersal limitation in micro-
bial populations, derived from neutral theory, or the influence of unmeasured soil properties).
This nationwide spatial scale was also shown to be relevant for evaluating overall land use in
the context of a sustainable use of soil resources. Based on the referential dataset, the predictive
model developed in this study complements the one developed for molecular microbial bio-
mass [17], as both present innovative and operational mathematical tools for assessing a com-
prehensive soil microbiological status in the French pedoclimatic context. Comparison of
predicted and measured values provides a robust diagnosis of soil microbial abundance and
diversity and their evolution under environmental pressures such as agricultural practices,
industrial pollutions or more global changes. Altogether, mapping and a predictive model of
bacterial richness involving over 1,700 geo-located samples covering the French territory
could help policy makers to produce conservation policies based on soil biodiversity. Based on
this primary analysis of bacterial richness other aspects of soil bacterial beta-diversity such as
evenness, community structure, taxa-area relationships and variations in the core bacterial
taxa across France need to be investigated to have a comprehensive overview of the biogeogra-
phy of microorganisms.

Supporting information
S1 Fig. Distribution of detected bacterial OTU numbers in French soils. The curves corre-
spond to simulation of normal distributions (dotted line with estimated parameters: average:
1288.53 ± 207.39 for OTU number) and log normal distributions (black line with estimated
parameters: average: 7.1471 ± 0.1719 for OTU number). Normal and log normal distributions
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were obtained using Maximum Likelihood estimations.
(PDF)

S2 Fig. Cumulative curve of different detected OTUs according to the number of studied
soils. The thickness of the curve represents the standard deviation obtained from 1,000 cumu-
lative curves with a random selection of soils.
(PDF)

S3 Fig. Relationship between the measured and the predicted values of bacterial richness
by applying the polynomial model of degree four on the cross validation dataset (180 soil
samples). The black line represents the 1:1 line (y = x).
(PDF)

S1 Table. Bioinformatic parameters and databases used in the analysis of 16S rRNA gene
sequences.
(DOCX)
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Abstract Evaluating the quality of ecosystems in terms of

biological patrimony and functioning is of critical impor-

tance in the actual context of intensified human activities.

Microbial diversity is commonly used as a bioindicator

of ecosystems functioning. However, there is a lack of

sensitivity of microbial diversity indicators in the case of

moderate and chronic environmental degradation, such as

atmospheric deposition of pollutants, agricultural practices,

diffuse pollution by wastewater and climate change. As a

consequence, there is a need for alternative bioindicators of

soils and water quality. Here, we discuss the interest of

adopting a more integrative approach based on biotic

interaction networks beyond the simple diversity indica-

tors. We review how the various biotic interactions can be

integrated in the various microbial networks such as

trophic, mutualistic and co-occurrence networks. Then we

discuss the efficiency of microbial networks and associated

metrics to detect changes in microbial communities. We

conclude that the connectance, the number of links and the

average degree of co-occurrence networks could vary from

10 to 50% in response to minor perturbations when

microbial diversity parameters remain stable. Finally, we

analyze studies that aimed at linking microbial networks

and activity to evaluate the potential of such networks for

providing simple and operational indicators of ecosystem

quality and functioning.

Keywords Microbial interactions � Taxonomic diversity �
Co-occurrence network � Environmental quality �
Indicators � Diagnosis

Introduction

Intensification of human activities over the past 60 years of

the anthropocene has led to more rapid and extensive

changes in ecosystem structure and functioning than

throughout human history as a whole (Millennium

Ecosystem Assessment 2005; Regnier et al. 2013; Steffen

et al. 2007). In this environmental ‘‘state of emergency’’, it

becomes urgent to have sensitive and robust indicators for

identifying, measuring and monitoring the modifications of

ecosystems in response to these perturbations. Among the

physical, chemical and biological components of ecosys-

tems, the biological component is particularly sensitive to

perturbations. Sala (2000) demonstrated that up to 50% of

global biodiversity can be modified and ranked the prin-

cipal causes as follows: land use[ climate[ air pollu-

tion[ greenhouse gas emission. Within the biological

component, micro-organisms constitute a major part of the

genetic patrimony, due to their ubiquity, abundance and

their genetic and metabolic diversities, and are the princi-

pal actors in the biogeochemical processes (Fitter et al.

2005; Nielsen et al. 2011). In addition, their small size,

short generation time and genetic plasticity confer them

with a capacity for rapid adaptation to changes in the

environment. For all these reasons, they are very good

bioindicators of the impact of environmental perturbations

and of ecosystems quality (Bouchez et al. 2016).

The historically used microbial indicators are microbial

biomass and measurements of activities, such as respira-

tion, catabolic capacities, recycling of mineral elements,
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degradation of pollutants (Ritz et al. 2009). More recently,

indicators of taxonomic and functional diversities have

been developed thanks to advances in the field of molecular

biology (Bouchez et al. 2016). The many studies carried

out on these indicators have provided sufficient hindsight

regarding their sensitivity, robustness and specificity to be

aware of their limitations. Most of the current studies

involving these diagnosis tools are concerned with the

impact of high-intensity disturbances, which increase the

probability of responses by microbial indicators. However,

some studies of moderate and chronic, single or multiple,

perturbations have shown that these indicators of microbial

taxonomic diversity are not always very sensitive to detect

early modifications (Ager et al. 2010). As the need to

emphasize significant effects can often prevent the publi-

cation of research work, there are few examples in the

literature. Nevertheless, it has recently been reported that

the diversity of microbial communities associated with

terrestrial bryophytes is not sensitive to chronic atmo-

spheric pollution with particles and gazes emissions below

the thresholds of World Health Organization (Karimi et al.

2016). These indicators might therefore lead to the con-

clusion that the ecosystem remains unaltered if the per-

turbation is of intermediate intensity. In certain cases,

indicators of microbial diversity can also respond in an

unexpected way. It was shown that soil contamination with

mercury for several decades did not affect the diversity of

fungal communities but increased those of bacteria (Zap-

pelini et al. 2015). In addition, mechanical disturbance of

the soil such as tillage seems to increase bacterial diversity,

whereas a reduction in this diversity might have been

predicted, due to destruction of the soil micro-habitats

(Lienhard et al. 2014). These limitations and unexpected

results are providing a framework for the development of

new finer-tuned indicators that are better adapted to envi-

ronmental diagnosis in the current context where many

environmental perturbations are weak, complex and

chronic over the long term.

A multi-dimensional and more integrated vision of

ecosystems and their organization is provided by networks

of biotic interactions. These networks are intimately linked

to ecosystem functioning and play a crucial role in main-

taining biodiversity (Vinebrooke et al. 2004; Wardle 2006).

These relationships have been well illustrated in some

studies on macro-organisms in the context of man-induced

perturbations. Geslin et al. (2013) showed that the network

of interactions occurring between plants and their pollina-

tors exhibited a profound variation in structure along the

gradient from semi-natural, farming, suburban to urban

environments. Despite recent important methodological

advances in characterization of the microbial communities

in environmental matrices, microbial interactions networks

have been little studied and are not yet used as indicators of

the functioning and state of an ecosystem when subjected

to perturbation. However, in view of the reactivity and

diversity of these microbial interactions, and the enormous

pool of genetic and functional diversity characterizing the

microbial world, such networks could provide a precious

source of information about the ecological state of

ecosystems.

In this review, we demonstrate the interest of changing

the focus on the microbial compartment of ecosystem from

a taxonomic diversity point of view to an ‘‘interactions

networks’’ approach to gain a more integrated vision of the

relationships between taxa. Among the microbial interac-

tion networks currently the most studied, different types of

networks can be distinguished, depending on whether they

are based on a single type of relationship, e.g. trophic and

mutualistic, or on the resulting complex interactions, e.g.

co-occurrence networks. In the first section, we review the

different types of interactions occurring between micro-

organisms in ecosystems which have been used to define

the different types of networks. In the second section we

focus on co-occurrence networks, which are the most

comprehensive and simplest to implement. We then

examine existing studies on the application of such net-

works to microbial communities and summarize their

response to environmental perturbations. Thus, we deter-

mine the potential of microbial co-occurrence networks as

bioindicators of terrestrial ecosystems quality and as tool to

complement and compensate for the reported lack of sen-

sitivity or specificity of taxonomic diversity indicators.

From biotic interactions to interaction networks

Biotic interactions in microbial communities

During the course of evolution, the emergence of species

and their coexistence in space and time has led to the

establishment of multiple interactions. In fact, interactions

such as metabolism and reproduction appear to be one of

the fundamental traits of life and take on particularly

diverse forms in micro-organisms (Bertrand et al. 2011).

Interactions can be beneficial, antagonistic or neutral

regarding the impact they have on the species involved

(Lidicker 1979) (Fig. 1).

Beneficial interactions

Commensalism is the only beneficial interaction which

benefits just one of the two partners. In commensal rela-

tionships, one partner benefits from the interaction but does

not cause losses to the other partner. It is often illustrated

by biodegradation, which corresponds to the consumption

by commensal organisms of compounds produced by other
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members of the community. The commensal biodegrada-

tion of cellulose, a complex organic compound present in

numerous natural environments, is one such example

(Soundar and Chandra 1987; Kato et al. 2005).

Mutualism is a win–win situation in which both species

profit from the interaction. The genetic distance between

species is not a hindrance to the partnership, and mutual-

istic interactions can occur between plants and animals,

between bacteria and vertebrates, or between micro-or-

ganisms and plants. Symbiosis is a special case of mutu-

alism in which the interaction is indispensable to the

maintenance and growth of at least one of the two partners.

One of the most well-known examples of symbiosis is the

association between nitrogen-fixing bacteria and/or myc-

orrhizal fungi and plants (van der Heijden et al. 2008).

These micro-organisms, due to their role in biogeochemical

cycles, are, respectively, responsible for up to 80% of the

nitrogen acquired by plants each year and more than 75%

of the phosphorus, which can lead to an increase in plant

productivity as high as 50% (van der Heijden et al. 2008).

In addition, microbial mutualism can sometimes involve

trophic aspects, detoxification and toxin synthesis. This is

the case of syntrophy, an interaction in which the associ-

ation of micro-organisms with complementary metabo-

lisms facilitates their access to trophic resources. For

example, Synthropus aciditrophicus (Deltaproteobacteria)

is able to metabolize various fatty acids and aromatic acids

under anaerobic conditions, but only if hydrogenotrophic

bacteria are present in the environment (Bertrand et al.

2011). This phenomenon is also observed during the

degradation of xenobiotics where several species ‘‘help’’ to

metabolize a complex molecule into several simpler by-

products. For example, the degradation of DDT (1,1,1-tri-

chloro-2,2-bis(4-chlorophenyl)ethane involves two species

of fungi and a bacterial species which break down the

molecule into at least five by-products (Subba-Rao and

Alexander 1985).

Antagonistic interactions

The most widespread antagonistic interactions are the

predator–prey (predation) relationships. Taking all

ecosystems together, these biotic interactions have received

the most study. In terrestrial microbial ecosystems, the

most thoroughly investigated and well-known antagonistic

interactions concern the predation of bacteria and fungi by

amoebas and nematodes (Gilbert et al. 1998; Rosenberg

et al. 2009; Bonkowski and Clarholm 2012). Amoebas are

protozoans (single-celled organisms), which have a very

varied diet and variable trophic levels. Their prey can be

bacteria, micro-algae, cyanobacteria, fungi in hyphal or

spore form, other amoebas, ciliates and even micro-meta-

zoans such as nematodes (Jassey et al. 2013). As a whole,

predation relationships form the microbial loop in ecosys-

tems. In soils, this loop results in nitrogen release, which

improves biological fertility for plants.

The host–parasite relationship differs from predation in

that the parasite is physically associated with its host for at

least part of its biological cycle, whereas the predator

remains free-living. The exchanges of signals at the

molecular level are therefore spread over much longer

periods involving the host’s defence system and the para-

sites strategies of getting around these defences. For

example, Fusarium, a phytopathogenic fungus of a large

number of plant species, causes a yield loss of 30–99% in

chickpea (Navas-Cortés et al. 2000) and 45–100% in

tomato (McGovern 2015), depending on the virulence of

the Fusarium strain and susceptibility of the cultivars.

Other cases of parasitism are known between fungi and

bacteria, such as the fungus Agaricus bisporus attacked by

Pseudomonas tolaasi (Wells et al. 1996).

Two types of antagonistic interactions are not win–lose

relationships. Amensalism is an interaction in which one

partner is adversely affected without conferring an advan-

tage to the other partner. It is based on a physical or

chemical modification of the environment leading to the

release of toxic compounds or secondary metabolites from

one species, metabolites which alter the environment to the

detriment of the other micro-organisms (this is the case of

some bacteria which reduce the pH of the environment).

Competition between organisms is a lose–lose relationship

in which both partners use the same resource, whether this

is a nutrient, water or space. The partners involved have

Fig. 1 Schematic representation of the biotic interactions and their

direct effect on micro-organisms. - negative effect on micro-

organisms’ fitness; ?: positive effect on micro-organisms’ fitness
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very similar needs and use comparable, if not identical,

means to acquire their resources. Competition can occur

between species of equivalent trophic levels or between

organisms at different trophic levels, even between dif-

ferent kingdoms. One of the oldest illustrations of com-

petition is the famous experiment by G.F. Gause in 1934

who, after placing two species of paramecia P. aurelia and

P. caudatum in co-culture, formulated the law of ‘‘com-

petitive exclusion’’ for two species with similar ecological

niches (Gause and Witt 1935). In soil, bacteria and fungi

compete in the decomposition of simple organic com-

pounds, e.g. root exudates, or more complex ones, e.g.

plant tissues. This competition is sometimes expressed by

antibiosis, i.e. the emission of antibiotic by one of the

competitors, a mechanism exploited in biological control.

For example, this is the case of Pseudomonas fluorescens, a

bacterium used in the biocontrol of Fusarium, a pathogenic

fungus of several plant species (Schouten et al. 2004).

Networks of interactions

Organisms, particularly micro-organisms, are not isolated

within ecosystems and this is the same for biotic interac-

tions since one organism can be involved in many different

interactions with multiple other organisms. All these

interactions can occur simultaneously in time and space,

and constitute altogether a network of interactions. To

make the interaction networks easier to understand, they

are usually represented by just one type of relationship.

Thus, the main types of networks distinguished have been

trophic networks, also called food webs, and mutualist

networks.

Trophic networks

Trophic networks have been very widely studied and refer

solely to the feeding relationships between the consumers

and their resource(s). A given consumer can have several

resources and a resource can have several consumers. A

trophic network consists of a tangle of trophic chains with

primary producers or detritivores, namely bacteria and

fungi, at the base, followed by 3–5 heterotrophic levels: a

level of secondary consumers which consume the primary

producers or the detritivores, several levels of predators

which feed on the secondary consumers and the other

predators, and a level of predators at the top of the chain

(Neutel et al. 2002).

The different levels of consumers along this trophic

chain are able to feed on all the lower trophic levels. As

shown in Fig. 2, nematodes have a varied range of

resources and can be bacterivores, fungivores, phy-

tophages, predators or omnivores. In addition, the nutritive

resources of some micro-organisms depend on their

physiological state caused by the environmental conditions.

For example, Hyalosphenia papilio, a mixotrophic testate

amoeba found in peatlands, adapts its metabolism and diet

as a function of the prey availability by reversely changing

its behaviour from predator to primary producer (symbiotic

photosynthesis) (Jassey et al. 2013). This mixotrophic

ability is known in a large number of protozoans, such as

amoebae and ciliates.

At the microbial scale, these interactions are regarded as

the flux of carbon and nitrogen between different com-

partments and are used to measure matter and energy

transfers in biogeochemical cycles (Ducklow 1994;

Davidson and Janssens 2006). It should nevertheless be

noted that the examination of these trophic networks is

strongly dependent on modelling to determine coefficients

of assimilation between the different compartments. This

makes microbial trophic networks difficult to evaluate,

mainly theoretical, and hard to interpret in simply. There-

fore, these networks are not particularly operational and

difficult to apply as bioindicators of ecosystem quality. At

present, their use is essentially limited to theoretical

research on trophic relationships and balances of

ecosystems.

Mutualistic networks

Mutualistic networks have been little studied at the

microbial scale and those existing between plants and

pollinating insects are better known (Bersier 2007). One of

the most important mutualistic microbial networks is bio-

film, which can be defined as an agglomeration of micro-

organisms, for example bacteria, fungi, micro-algae,

amoebas and nematodes, embedded in a matrix of

biopolymers and developing on the surface of a support.

Biofilms were formed by the flow of a non-sterile liquid on

a surface. The bacteria from the liquid progressively attach

themselves to the surface and synthesize biopolymers,

mainly sugars and proteins, which are excreted in order to

protect the bacteria and strengthen their adhesion (Davey

and Toole 2000). Cooperation between the different bio-

film protagonists helps to extend and consolidate the pro-

tective matrix, and therefore to improve the defence of the

contributors as a whole. The mechanisms of interactions

within this multi-specific network are still poorly under-

stood. Nevertheless, a molecular communication mecha-

nism between the organisms has recently been described

(known as quorum sensing), which may facilitate biofilm

coordination (Ross-Gillespie and Kümmerli 2014).

Co-occurrence networks

Studying networks based on a single type of relationship

provides a simplified idea of communities and a better
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understanding of their organization. However, these net-

works do not integrate the true complexity of ecosystems

and their analysis can lead to a partial, even biased image

of the state of an ecosystem.

Unlike trophic and mutualistic networks, co-occurrence

networks provide an integrated vision of all the relation-

ships existing between micro-organisms in a given envi-

ronmental matrix. Two microbial species can interact

simultaneously in numerous ways, whether by direct routes

(as described in part I.1.) or indirectly. Like direct inter-

actions, indirect biotic interactions can be involved in

maintaining species diversity. Examples can be cited of

interactions based on the expression of complex metabolic

pathways (Levy and Borenstein 2013; Zelezniak et al.

2015), or the effect of engineering species (Jones et al.

1994), i.e. organisms which modulate, either directly or

indirectly, the availability of resources or the quality of the

habitat for other species by causing changes in the physical

and chemical state of the environment. The combined

result of all these interactions can lead to joint evolution of

the organisms in the environment (positive relationship

known as co-occurrence), their opposite evolution (nega-

tive relationship known as co-exclusion) or to the absence

of a relationship (this imply whether a true lack of inter-

action or a null combination of all interactions between the

organisms) (Gross 2008). At the community scale, these

positive or negative relationships together constitute a co-

occurrence network.

Historically, the study of co-occurrence networks was

first initiated by J.M. Diamond in 1975. By examining

communities of birds in New Guinea, he showed that the

assembly rules in species which included competitive

interactions rose to non-random patterns of co-occurrence

(Diamond 1975). Until the year 2000, co-occurrence net-

works were the subjected to great controversy. These were

mainly led by Connor and Simberloff, who demonstrated

that the patterns previously associated with competition by

Diamond could also result from random colonization

(Connor and Simberloff 1979). In 2000, Gotelli and

McCabe subjected 96 data sets to meta-analysis and con-

firmed that the co-occurrence approach effectively reflec-

ted the non-randomness of community assemblages.

However, they concluded that the patterns obtained could

not be explained by competitive mechanisms alone (Gotelli

and McCabe 2002), thus bringing 25 years of debate to an

end.

Co-occurrence networks reappeared in the literature

only in 2010 and most investigations involving this

approach were then focused on microbial communities.

In fact, most of the interactions occurring in microbial

communities cannot be individually observed, identified

or quantified due to the size of the organisms and the

Fig. 2 Example of a complex microbial trophic network in soil (Neutel et al. 2002). Arrow represents the feeding relationship between microbial

groups and sources of nutrients in the network
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complexity of environmental matrices. Nevertheless, all

these interactions can be integrated by the co-occurrence

network approach and quantified with the same molecular

tools that are used to measure taxonomic diversity.

Studies of co-occurrence networks in microbial commu-

nities have been carried out in marine environments

(Fuhrman and Steele 2008; Steele et al. 2011; Röling

et al. 2014), soil (Barberán et al. 2011; Lentendu et al.

2014; Zappelini et al. 2015; Sauvadet et al. 2016), sed-

iments (Bissett et al. 2013), the human body (Faust et al.

2012) and the plant microbiome (Karimi et al. 2016; Van

Der Heijden and Hartmann 2016). Most of these studies

are based on inventories of the taxonomic diversity of

communities obtained by high-throughput sequencing and

to a lesser extent from counts and morphological differ-

entiation observed by microscope (Sauvadet et al. 2016;

Karimi et al. 2016).

According to the graph theory, a given co-occurrence

network is constituted of nodes and links. Nodes, i.e.

objects at the ends of the lines, represent the taxa, i.e. OTU,

species, genera, families, classes, phyla or kingdoms or

functional groups. Links, i.e. the edges between nodes,

represent the significant relationships identified by statis-

tical analysis (Table 1; Fig. 3). Mathematical methods for

calculating co-occurrence relationships in microbial com-

munities are still rapidly evolving towards statistical

methods being increasingly robust to evaluate co-occur-

rence relationships and resulting in numerous methods

available in the literature in recent years. At present,

however, there is a lack of consensus and the choice of

method most often depends on the characteristics of the

data set, such as type of information, number of replicates,

number of variables, independency of the variables and

distribution of the variables

Although the statistical methods for identifying co-

occurrence relationships are increasingly robust, very few

investigations are being focused on comparing network

architecture in control and disturbed situations. It is only

very recently that such questions have been addressed

(Williams et al. 2014; Blouin et al. 2015; Zappelini et al.

2015; Sauvadet et al. 2016; Karimi et al. 2016), and a

more complex network was usually observed to be

associated with the least perturbed situation (Blouin et al.

2015; Zappelini et al. 2015; Karimi et al. 2016). Disre-

garding the statistical method used for computing them,

networks can be described through different metrics to

characterize their architecture. Some metrics are centred

on the behaviour of taxa and provide information about

the diversity and type of relationships that each one

establishes within the community while others indicate

the overall organization of the network and provide

information about the complexity of the microbial com-

munity within the ecosystem.

Metrics at the taxon scale

Several types of information are accessible at the taxon

level (Fig. 4a):

• a taxon can be present without being connected. If

connection if null, this means that its abundance is

independent from that of the other taxa, even if

interactions take place between them;

• if the taxon is connected, the number of direct linkages

that it establishes with other taxa tells us about its first

degree connections, i.e. the number of other taxa for

which the abundance or biomass will evolve simulta-

neously with it. This is an indicator of complexity at the

taxon level;

• among these connections, the proportion of positive and

negative links (P:N ratio) provides important informa-

tion about the global behaviour of the taxon. The sign

associated with the linkage tells us about the direction

of the relationship (positive or negative) between two

taxa;

• the betweenness centrality of the taxa indicates the

number of the shortest paths that pass through it among

the shortest paths existing between every pair of nodes.

The betweenness centrality of a node is independent of

its dominance within the community and, consequently,

very abundant taxa can have positions of little impor-

tance and inversely for less abundant taxa. If the node

exhibits maximum centrality within the network, it is

identified as a keystone taxon, i.e. the principal taxon

which maintains the network structure and therefore,

potentially, the functioning of the ecosystem.

Metrics at the network scale

The metrics calculated at network scale provide informa-

tion about the topology and organization of the system

(Fig. 4b). Although many different metrics can be calcu-

lated, only six allow reasonable ecological interpretations

and are used regularly:

• the number of nodes, which must be differentiated from

the specific richness, indicates the number of connected

taxons. It is also important to retain the information

about taxa that are present but not involved in a co-

occurrence relationship.

• the total number of links in the network and the

proportion of positive and negative links provide

information about the density of the interactions and

their type;

• the connectance is the number of potential links which

are realized. It measures the network complexity and

can be interpreted as the observed organization level of
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network compared to its potential organization level.

Certain authors refer to it as the interactions diversity.

From an ecological viewpoint, it would reflect the

incidence of ecosystemic processes where a greater

complexity is interpreted as a more intense activity

(Elmqvist et al. 2003; Tylianakis et al. 2010). Same

authors hypothesize that such an ecosystem would

therefore be more resilient in the case of perturbation

(Elmqvist et al. 2003; Tylianakis et al. 2010).

• the transitivity is the probability that two nodes are both

directly and indirectly, i.e. using another node, con-

nected (Girvan and Newman 2002). This metric

Table 1 Compilation of the main mathematical methods used in the literature to evaluate co-occurrence relationships in microbial communities

indigeneous from various environmental matrices

Method Acronym Description References

Pearson correlation PC Abundance similarity Faust and Raes (2012), Lupatini

et al. (2014) and Zhou et al.

(2011)

Spearman correlation SC Abundance similarity Faust and Raes (2012), Williams

et al. (2014), Kittelmann et al.

(2013), Ma et al. (2016), Widder

et al. (2014), Karimi et al. (2016)

and Zappelini et al. (2015)

Euclidean distance ED Metric distance Faust and Raes (2012)

Kullback–Leibler distance KLD Metric distance Faust and Raes (2012)

Bray–Curtis distance BC Metric distance Faust and Raes (2012)

Partial correlation Abundance similarity Faust and Raes (2012)

Generalized boosted linear model GBLM Regression Faust and Raes (2012)

Sparse regression Regression Faust and Raes (2012)

PC ? SC ? KLD ? BCD ? GBLM Combination of methods Faust et al. (2012)

Draughtboard C-board Number of species pairs that never occur together Diamond (1975), Horner-Devine

et al. (2007) and Gotelli and

Ulrich (2010)

Abundance Aggregation AA Count of pairs aggregation Gotelli and Ulrich (2010)

Variance test of Schluter Comparison of the variances of row totals with the

sum of the column variances

Gotelli and Ulrich (2010)

Morisita index of similarity Metric distance Chao et al. (2008), Gotelli and

Ulrich (2010)

Mantel test Identification of non-randomness Gotelli and Ulrich (2010)

C-score C-score Average number of draughtboard units between all

possible species pairs in a matrix

Horner-Devine et al. (2007),

Lentendu et al. (2014) and

Gotelli and Ulrich (2010)

C-score ? Spearman correlation Combination of methods Barberán et al. (2011)

Community structure index Combo Number of unique species combinations found

between pairs od sites

Gotelli and McCabe (2002) and

Horner-Devine et al. (2007)

Sparse correlations for compositional

data

SparCC Linear Pearson correlations between the log-

transformed components

Friedman and Alm (2012), Berry

and Widder (2014) and Milici

et al. (2016)

Sparse InversE Covariance estimation

for Ecological Association Inference

SPIEC-

EASI

Algorithms for sparse neighbourhood and inverse

covariance selection

Kurtz et al. 2015

Local similarity analysis LSA Analogous to a Pearson/Spearman’s correlation Steele et al. (2011) and Eiler et al.

(2012)

Extended local similarity analysis eLSA LSA with replicates Xia et al. (2011) and Chow et al.

(2014)

Fisher’s exact test Evaluation of co-occurrence for all possible

combinations of 2, 3, and 4 species communities

Zelezniak et al. (2015)

Maximal information coefficient MIC Equals the coefficient of determination (R2) of the

data relative to the regression function

Reshef et al. (2011), Bissett et al.

(2014) and Peura et al. (2015)

Cumulative hypergeometric P value Freilich et al. (2010)

Non-metric multi-dimensional scaling NMDS Strength of interactions are presented by proximity King et al. (2012)
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indicates the level of clustering within the network.

High transitivity is not incompatible with high connec-

tivity. It indicates the presence of tripartite relationships

within in the community, and more generally the

existence of redundant pathways between nodes.

• the connectedness is the capacity of a network to link

two nodes taken at random by at least one chain. This

metric takes into account both the first degree relation-

ships, i.e. without intermediate node and the indirect

relationships, i.e. with at least one intermediate node. It

is also an indicator of nodes clustering and network

modularity. A higher connectedness implies more

indirect pathways if the connectance is lower. From

an ecological point of view, connectedness is an

indicator of community cohesion. For example, a high

network connectedness can be explained by a potential

ecological niche shared by the organisms in a

community.

• the last metric corresponds to the number of individual

modules. These modules are observed if the connect-

edness is too weak and the network is divided in sub-

parts.

Taxonomic co-occurrence networks as indicators
of ecosystem biological quality

Taxonomic biodiversity, the usual indicator

for environmental diagnosis

One of the indicators commonly used to assess the impact

of natural or human-induced perturbations on the micro-

biological component of ecosystems is the measurement of

taxonomic diversity (Bouchez et al. 2016). Estimates of

taxonomic richness, Shannon diversity index and Simpson

inverse, or evenness, are used to obtain standardized,

synthetic measures of the effect of perturbations on the

observed microbial diversity in terms of taxa presence and

relative abundance (Hill 1973; Fierer and Lennon 2011).

These indicators are of major interest due to the link

between biodiversity and ecosystems functioning (Loreau

et al. 2001). This link has been established for carbon cycle

transformations such as the organic matter mineralization

(Louis et al. 2016a; Baumann et al. 2012) or the production

of methane (Ho et al. 2014), and also for key processes in

the nitrogen cycle such as denitrification (Philippot et al.

Fig. 3 Example of a bacterial

co-occurrence network in a

forest soil constructed from 16S

RNA sequencing data (Karimi

et al., unpublished data). The

points correspond to nodes

(connected taxa), the green

lines indicate positive links (co-

occurrence) and the red lines

show negative links (co-

exclusion). The size of the node

indicates the relative abundance

of the corresponding microbial

taxa
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(a)

(b)

Fig. 4 Schematic

representation of the different

metrics computed from the

biotic interactions of co-

occurence networks architecture

and the ecological meaning.

Letters indicate microbial

groups; red line indicates

negative interaction; green line

indicates positive interaction
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2013) (Fig. 5). Thus, microbial diversity is now being

integrated into new models to predict the transformations

occurring in biogeochemical cycles (Louis et al. 2016b).

Apart from its central role in nutrient cycles, microbial

diversity can also regulate other functions such as plant

diversity, carbon sequestration (Wagg et al. 2014), control

of allochthonous populations’ invasions (Vivant et al.

2013), mineralization of xenobiotic such as phenanthrene

(Hernandez-Raquet et al. 2013) or the stability of ecosys-

tem functioning in response to a perturbation (Tardy et al.

2014).

Despite its democratization in the field of ecology, the

microbial diversity may not necessarily be informative or

sensitive enough as an indicator of ecosystem state in

response to perturbations (van Bruggen 2000; Karimi et al.

2016). Four non-exclusive hypotheses can be put forward

to explain this:

• Firstly, although the microbial diversity is now known

to be huge, most studies are still being focused on

diversity that has already been identified and classified,

and which represents the most cosmopolitan and

dominant groups (Fig. 6a). These groups are therefore

organisms that are able to adapt to a wide range of

environmental conditions. Therefore, they may not be

affected by perturbations while minor populations, in

fact less readily detectable but potentially key in

ecosystem functioning, are strongly modified. Thus, a

change in diversity might not be perceptible with the

tools currently available, even if these tools are

becoming increasingly powerful.

• The second hypothesis concerns the intensity and

occurrence rate of perturbations to ecosystems

(Fig. 6b). Moderate and chronic disturbances corre-

spond to real and current situations as well as to

predictions for the future. The indicators of diversity do

not seem to be always sensitive to these realistic ranges

of disturbance, however. Indeed, in the short term, a

moderate perturbation tends to promote an adaptation

and readjustment of the diversity within microbial

communities (Tardy et al. 2015). If the diversity is

measured after this period of readjustment, no change

will be observed. Similarly, chronic perturbations can

lead to stabilization of the diversity within a commu-

nity. For example, despite one year of chronic atmo-

spheric pollution in an urban or industrial environment,

the taxonomic diversities of microbial communities

associated with terrestrial bryophytes did not differ

from those in an undisturbed rural environment (Karimi

et al. 2016).

• The third hypothesis concerns the spatial scale used for

the community and ecosystem observation (Fig. 6c).

The taxonomic diversity measured will depend on the

area sampled, in agreement with the ‘‘species–area’’

relationship (Ranjard et al. 2013), and tends to become

more homogeneous at large scales (Cusson et al. 2014).

For example, at a national scale, the impact of farming

practices represents a weak proportion of the explana-

tion of the variance in microbial diversity, but is much

more meaningful at a local scale because the soil is less

variable and therefore has less effect on the variation in

biodiversity (Terrat et al. personal communication;

Constancias et al. 2015).

• The last hypothesis concerns the indirect effects of

perturbations on diversity (Wardle 2006). When a

disturbance occurs, biotic interactions may be affected

together with organisms and in turn affect the regula-

tion of diversity (Vinebrooke et al. 2004) (Fig. 6d). One

example of this regulation involves the prey of the

mixotrophic amoeba Hyalosphenia papilio. If the

number of prey (bacteria, ciliates, fungi, etc.) is reduced

Diversity level
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e Soil organic matter decomposition (Baumann et al.2012)

Methane oxidation (Ho et al. 2014)

Denitrification (Philippot et al. 2013)

Carbon sequestration (Wagg et al. 2014)

Plant diversity (Wagg et al. 2014)

Xenobiotic mineralisation (Hernandez-Raquet et al. 2013)

Pathogen invasion (Vivant et al. 2014)

Phosphorus leaching (Wagg et al. 2014)

Fig. 5 Schematic response of

various ecosystem functions to

microbial diversity level
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by an environmental perturbation, this predatory

species uses is autotrophic ability and draws mainly

its energy from photosynthesis. The reduction in the

intensity of predation leads to a regulation of the

microbial populations and potentially to a maintenance

of diversity.

Microbial co-occurrence networks as indicator

To be relevant, a bioindicator of ecosystem state must (1)

represent the intrinsic properties of the environment, (2) be

interpretable beyond the information or measured param-

eter itself, (3) be derived from a standardized method, (4)

be operational, i.e. be easy to set up, of moderate cost, and

associated with a suitable reference system to allow inter-

pretation and diagnosis, and finally, (5) be sensitive and

specific to disturbances at scales of time and space relevant

to human activities.

Sensitivity and specificity of co-occurrence networks

The co-occurrence networks approach and associated

metrics have already been used in various studies to eval-

uate the effects of environmental disturbances. As indi-

cated in Table 2, microbial co-occurrence networks are

sensitive to atmospheric pollutions at the level of plant

mats (Karimi et al. 2016), to metallic contaminants in the

soil (Zappelini et al. 2015), to the type of land use (Lu-

patini et al. 2014; Zappelini et al. 2015) and more partic-

ularly to specific agricultural practices (Sauvadet et al.

2016). Apart from these examples, in situ experiments have

shown that microbial networks in peatlands are sensitive, in

the short term, to global warming (Karimi et al. Unpub-

lished). A temperature increase of 1 �C for only 5 years led

to a loss of complexity of the microbial co-occurrence

network and a change in the central taxon from predatory

amoeba to omnivorous ciliate. This switch is indicative of a

potential modification in the trophic level of the ecosystem.

Fig. 6 Schematic

representation of four

hypotheses to decipher the lack

of sensitivity of microbial

biodiversity indicators in

response to environmental

perturbations
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Taken together, these studies validate the sensitivity of

networks to a wide range of disturbances, including the

chronic and moderate perturbations to which ecosystems

are subjected. In situ studies carried out under complex

multi-factorial environmental conditions have revealed the

specificity of network responses to perturbation. In fact,

Karimi et al. (2016) demonstrated that the structure of the

microbial network in terrestrial bryophytes was sensitive—

within a complex cocktail of chemical molecules—to

atmospheric NO2 and to the copper associated with parti-

cles larger than 10 lm in size. Although this suggests a

definite specificity in the response of networks to distur-

bances, no clear empirical demonstration has yet been

obtained.

From metrics of co-occurrence network to indicators

Co-occurrence networks provide a single holistic vision of

ecosystems in that they integrate the direct and indirect

effects of disturbances on the diversity, taxonomic com-

position and relationships between taxa within the com-

munity (Fig. 7). This approach, despite the complexity of

the information that it synthesizes, relies on data that are

now readily acquired by high-throughput sequencing. The

mathematical implementation is relatively straightforward,

well documented in the literature, and new methods are

still being developed. Among these different methods,

Berry and Widder (2014) recommend using the Spearman

or Pearson correlation coefficient to identify the co-oc-

currence links within a community. However, the

standardization of a single method is impossible. In fact,

the choice of method still depends on the quality of the

biological data, the main aim being to reduce as much as

possible the number of false-positives. Although the

method used to construct co-occurrence networks can vary

from one study to another, the metrics for quantifying

network structure have been well defined (Figs. 4, 7).

These metrics can therefore be used as synthetic indicators,

easy to computed and interpretable from an ecological

point of view. Each metric characterizes a different aspect

of network structure and organization of the community

but, as reported in the literature, not all of them are sys-

tematically sensitive to perturbations. Table 3 summarizes

the network metrics that can be considered as relevant

bioindicators of ecosystem state, according to the type of

perturbation and the ecological interpretation of each

bioindicator.

Zappelini et al. (2015) showed that anthropization of a

soil, resulting from the addition of mercury-contaminated

sediment, had a significant effect on four metrics (linkage

density, connectance, average degree, average between-

ness) without having an impact on the connectedness

(Table 2). This response can be interpreted as a loss of

complexity, a reduced level of community organization,

but the maintenance of cohesion (same average lengths of

the chains between taxa). In contrast, Lupatini et al. (2014)

showed that the land use had an impact on connectedness

and linkage density but not on network transitivity

(Table 2). This signifies that the network was less complex,

with weaker cohesion (the chains between taxa pass by

Table 2 Compilation of the recent papers demonstrating the sensitivity of co-occurrence networks to detect changes in microbial communities

in response to perturbations in terrestrial ecosystems

Perturbation Metrics Network response

Atmospheric CO2 (Zhou et al. 2011) Density of links Ambient CO2[Elevated CO2

Transitivity Ambient CO2[Elevated CO2

Land use (Lupatini et al. 2014) Density of links Natural forest[Pasture[Field and plantation

Connectedness Natural forest\Pasture\Field and plantation

Transitivity No difference

Soil anthropization (Zappelini et al. 2015) Density of links Control[Contaminated tailings dump

Connectance Control[Contaminated tailings dump

Average degree Control[Contaminated tailings dump

Average betweenness Control[Contaminated tailings dump

Connectedness No difference

Litter quality (Sauvadet et al. 2016) Density of links Leaves(labile)[Roots(recalcitrant)

Transitivity Leaves(labile)[Roots(recalcitrant)

Atmospheric NO2 and PM10 (Karimi et al. 2016) Density of links Rural[ Industrial[Urban

Connectance Rural[ Industrial[Urban

Ratio positive/negative Rural[ Industrial[Urban
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more intermediates) but exhibited the same level of clus-

tering of the taxa into triplets. A major result in these

studies was that when an environment was disturbed the

complexity of the microbial co-occurrence network was

reduced (Table 2), as indicated by the reduction in linkage

density, connectance and average degree. These three

Fig. 7 Schematic representation of strengths and limits of microbial diversity and co-occurence network as indicators of environmental quality.

BEF biodiversity–ecosystem functioning

Table 3 Potentiallity of the co-occurence network metrics to be used as indicators of microbial response to perturbations

Metrics Ecological meaning Bioindication of…

Global

warminga
Atmospheric

pollutionb,c
Soil

anthropizationd
Land

used,e
Agricultural

practicesa,f

Linkage density Diversity of relationship in the community x x x x x

Ratio positive/

negative

Cooperation level within the community x x x x x

Connectance Organization level of community x x x x x

Connectedness Indirect relationship and level of cohesion of

the community

x x x x

Transitivity Amount of threesome taxa and multiple

pathways relationships

x x x

Average degree Complexity of the network x x x x x

Maximal

betweenness

Keystone taxon x x x x

a Karimi et al. (unpublished data), b Zhou et al. (2011), c Karimi et al. (2016), d Zappelini et al. (2015), e Lupatini et al. (2014), f Sauvadet et al.

(2016)
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metrics might therefore be suitable indicators of ecosystem

state. Until now, the only metric that has been systemati-

cally calculated and presented as an indicator of state is

linkage density and the other metrics are used less often. In

parallel, the connectedness and transitivity responses,

which provide information about the cohesion and clus-

tering into small groups, are dependent on the type of

perturbation. Thus, these metrics are also necessary as

indicators of state to measure the complete and complex

response of the network to disturbance. Although some

metrics were more usually computed, it would be more

cautious to use the largest set of indicators to better assess

the response of microbial networks to disturbance.

The studies presented here provide the first reference

values for using networks as tools for environmental

diagnosis. Altogether, they suggest, in an empirical man-

ner, that microbial networks of greater complexity are

characteristic of the least disturbed ecosystems. Neverthe-

less, for these networks to be efficient and operational

indicators of ecosystem state, appropriate reference sys-

tems taking into account the type and intensity of the

perturbations and the spatial and time scales of investiga-

tion will also need to be established for each of the envi-

ronmental matrix investigated.

Microbial network as indicator of biological

functioning?

The relationship between biotic interactions networks and

ecosystem functioning is most clearly apparent for inter-

actions centred on resources, such as trophic or mutualistic

networks (Brussaard et al. 2004), but also exists for other

functions such as the protection of roots by a complex

system of microbial interactions (Jousset et al. 2009), or the

development of specialized biofilms (Hansen et al. 2007).

Historically, the link between ecological networks and

biological functioning of the ecosystem has been studied

for macro-organisms. The interactions network approaches

applied to these organisms demonstrated that the resilience

of ecosystems and the stability of their functions are

directly linked to taxonomic diversity and to interactions

between the species (Schmid et al. 2009). Theoretical

studies showed that in the case of disturbance, interactions

are the first to be affected and thus alter the functions of the

ecosystem even before the species disappear (Valiente-

Banuet et al. 2015). Certain authors even proposed that a

modification in network structure could lead to an alter-

ation in the functioning of ecosystems and to a reduction in

their stability (resistance/resilience) in the long term

(Tylianakis et al. 2010; Vacher et al. 2016).

Therefore, the analysis of co-occurrence networks in

microbial communities could also be used as an early

indicator of the functional response of an ecosystem. In

terms of ecosystem stability, the complexity of the network

might be linked, as indicated above for macro-organisms,

to the resistance and resilience of the community to per-

turbations. The structure of the microbial network could be

an indicator of the functions of decomposition, denitrifi-

cation or linked to the production of plant biomass, just like

taxonomic diversity but with greater reactivity and sensi-

tivity. It has already been shown that a less complex

microbial network releases fewer CO2 emissions (Blouin

et al. 2015), which suggests a greater storage of carbon, but

this is the only study to link network with microbial

function.

Conclusion

Despite all the questions that remain unanswered, micro-

bial networks and particularly the co-occurrence networks

of microbial taxa provide promising tools for evaluating

the state and stability of ecosystems. Even if the link has

not yet been established between the characteristics of

microbial networks and specific ecosystem functions, net-

works might also be relevant bioindicators of functioning.

As the classically used indicators of diversity present cer-

tain limitations, co-occurrence networks could provide

complementary information about ecosystems and thus

serve as early, more sensitive bioindicators (Bouchez et al.

2016).

If future studies validate the essential points associated

with specificity, reference systems and link with function,

they should make it possible to identify impacts that have

been imperceptible until now, and possibly challenge some

practices authorized by current environmental policies

(Karimi et al. 2016). This ecosystem ‘‘imprint’’ represents

a promising workable and readily mobilized new genera-

tion bioindicators for evaluating the quality of ecosystems

in environmental diagnoses.
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Preservation  and sustainable  use  of soil  biological  communities  represent  major  challenges  in  the current
agroecological  context.  However,  to  identify  the  agricultural  practices/systems  that  match  with  these
challenges,  innovative  tools  have  to  be  developed  to establish  a diagnosis  of the  biological  status  of  the
soil.  Here,  we  have  developed  a  statistical  polynomial  model  to  predict  the molecular  biomass  of  the  soil
microbial  community  according  to  the  soil  physicochemical  properties.  For  this,  we  used  a  dataset  of  soil
molecular  microbial  biomass  estimates  and  pedoclimatic  properties  derived  from  analyses  of  samples
collected  in  the  context  of the “French  monitoring  soil  quality  network  =  Réseau  de  Mesures  de la qualité
des  Sols”  (RMQS).  This  sampling  network  has provided  2115  soil  samples  covering  the  range  of  variability
of  soil  type  and  land  use  at the  scale  of  France.  The best  model  obtained  from the  data  showed  that  soil
organic  carbon  content,  clay  content,  altitude,  and pH were  the best  explanatory  variables  of  soil  microbial
biomass  while  other  variables  such  as  longitude,  latitude  and  annual  temperature  were  negligeable.  Based
on  these  variables,  the multilinear  model  developed  allowed  very accurate  prediction  of  the soil microbial
biomass,  with  an  excellent  adjusted  coefficient  of  determination  R2

adj of 0.6772  (P <  10−3). In  addition  to

R2
adj, the  model  was  further  validated  by results  from  cross  validation  and  sensitivity  analyses.  The  model
provides  a reference  value  for  microbial  biomass  for a given pedoclimatic  condition,  which  can  then  be
compared  with  the  corresponding  measured  data  to provide  for the first  time  a  robust  diagnosis  of  soil
quality.  Application  of the  model  to a set  of soil samples  obtained  at the scale  of an  agricultural  landscape
is  presented  and  discussed,  showing  the  suitability  of  the  model  to  diagnose  of  the  impact  of particular
agricultural  practices  such  as  tillage  and  catch  crops  in field  conditions,  at least  over  the  French  nation.

© 2015  Elsevier  Ltd. All  rights  reserved.
. Introduction

Soil is the support for human constructions and agricultural
roduction. At the interface with other compartments of the bio-
phere, soil fulfills numerous functions essential for the provision
f many ecosystem goods and services necessary to the well being

f human societies (Millennium Ecosystem Assessment, 2005). It is
lso a non-renewable resource, whose physicochemical and bio-
ogical properties have been altered by overexploitation for the
evelopment of intensive agriculture and industrialization (Giller

∗ Corresponding author. Tel.: +33 380693088.
E-mail  address: ranjard@dijon.inra.fr (L. Ranjard).

ttp://dx.doi.org/10.1016/j.ecolind.2015.12.004
470-160X/© 2015 Elsevier Ltd. All rights reserved.
et al., 1997; Thiele-Bruhn et al., 2012). The increasing recogni-
tion of this situation has revealed a need to define new modes of
land management, which are adapted to the preservation and sus-
tainable use of soils (Rames et al., 2013). To attain this objective,
however, the ability to evaluate the effects of agricultural practices
on soil “biological quality” needs to be improved and the devel-
oping of a suitable set of indicators would represent a decisive
step forwards (Rames et al., 2013; Pulleman et al., 2012; Ritz et al.,
2009).

Most of the ecosystem services provided by soil results from
biological and ecological processes (i.e. nutrient cycling, soil aggre-

gation, depollution, etc.) driven by taxonomic and functional
assemblages of the indigenous biological communities (Coleman
and Whitman, 2005). Consequently, soil biological properties
are logical candidates as effective indicators of soil quality and
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A map  of DNA recovery was  produced by applying the same
04 W.  Horrigue et al. / Ecologic

ustainability (Ritz et al., 2009). To help establish a robust diag-
osis of soil quality, biological indicators have to be sensitive to
anagement changes and relevant to soil functions such as nutri-

nt cycling (Rames et al., 2013; Pulleman et al., 2012). In this
egard, soil microbial communities offer particularly great poten-
ial since (i) they provide a major contribution to organic matter
ecomposition and nutrient transformation, acting as soil “chem-

cal engineers”, and (ii) they respond with great sensitivity to
nvironmental and management-induced changes through modifi-
ation of their biomass, structure/diversity, and activity (Pulleman
t al., 2012; Sharma et al., 2011). However, good indicators also
eed to satisfy technical, practical and economic prerequisites (i.e.
o be simple, rapid, reproducible, cheap, high-throughput, etc.), and
o be associated with references. These references constitute an
perating range (low/normal/high) in which measured values are
ositioned in order to perform the desired diagnosis (Pulleman
t al., 2012; Ritz et al., 2009). Although many of the biological
ethods developed over the past twenty years for soil microbial

ommunities characterization (Maron et al., 2011) have been pro-
osed as potential indicators of soil quality, very few meet all these
riteria (Ritz et al., 2009). Most patently apparent is the lack of (i)
tandardized procedures, and (ii) references associated with these
ndicators.

In this context, determination of the microbial biomass by
uantifying the DNA extracted from soil is certainly one of the
ost promising of all the microbial indicators available. Micro-

ial biomass has long been recognized as a suitable indicator
f soil quality (Garcia and Hernandez, 1997; Horwath and Paul,
994; Harden et al., 1993). However, the procedure historically
sed for its measurement (i.e. the fumigation-extraction method;
ance et al., 1987), although standardized, was time consuming
nd laborious, and made difficult to establish of a reference sys-
em. Recently, direct extraction and quantification of DNA from
oil has been shown to be a robust, fast and easy way of esti-
ating the size of the soil microbial pool (Fornasier et al., 2014;
angneux et al., 2011; Terrat et al., 2012; Dequiedt et al., 2011;
scher et al., 2009; Marstorp and Witter, 1999). One notewor-

hy advantage of this method is that it is rapid and can be
eployed at high throughput. It was therefore used to estimate
he microbial biomass in 2115 soil samples from the French Soil
uality Monitoring Network (‘Réseau de Mesures de la Qualité
es Sols’, RMQS, Dequiedt et al., 2011), which covers the full
ange of variability of soil type and land use at the scale of the
rench national territory (Arrouays et al., 2002). From an eco-
ogical point of view, these latter studies provided new insights
nto the spatial distribution of microbial abundance, as well as of
he drivers (soil physicochemical properties/climatic factors/land
se) explaining the observed patterns. It also led to establish of a
ighly representative dataset of microbial biomass at wide spatial
cale.

Based on this reference, our aim in this study was to develop
 statistical predictive model of soil microbial biomass according
o environmental parameters including soil physico-chemical and
limatic characteristics. This model is an innovative tool provid-
ng a reference value of microbial biomass for a given pedoclimatic
ondition, which can then be compared with the corresponding
easured data to allow a robust diagnosis of soil quality. In the

ontext of environmental evaluation of land management, the
ssociation of this diagnosis with a reference range of variation,
hould provide the validation of molecular microbial biomass as

 robust and operational bioindicator of soil biological quality.
y applying our model to soil information for a given agricul-
ural landscape we also demonstrated its ability to estimate the
mpact of particular agricultural practices such as tillage and

atch crop in real soil management conditions and environmental
eterogeneity.
icators 64 (2016) 203–211

2. Materials and methods

2.1.  Soil and environmental dataset

The sampling network used in this study to obtain numerous,
representative and spatially distributed soil and environmental
data at the scale of France was the French Soil Quality Monitor-
ing Network called RMQS (“Réseau de Mesures de la qualité des
Sols”). This network is based on a 16 km × 16 km systematic grid
covering the whole of France (Arrouays et al., 2002) and includes
2115 sites, each located at the center of a 16 km × 16 km cell.
The sample of all the soils at the national scale was carried out
from 2002 to 2009. For each year, samples were collected from
March to September. During this period, samples were not col-
lected when soils were exposed to extreme climatic conditions
(i.e. drought during summer) to avoid possible biases. All sites
have been geo-positioned with a precision <0.5 m and the soil pro-
file, site environment, climatic factors and land-use described. In
the middle of each 16 km × 16 km cell, 25 individual core samples
(7 cm in diameter) were taken from the topsoil (0–30 cm)  using
an unaligned sampling design within a 20 m × 20 m area. The core
samples were bulked to obtain a composite sample for each site. The
soil samples were air-dried (controlled conditions, constant tem-
perature 30 ◦C), sieved to 2 mm and stored at −40 ◦C before analysis.
Several physico-chemical parameters were measured on each soil
i.e., particle-size distribution (3 classes: sand: 2000–50 �m, silt:
50–2 �m,  clay: <2 �m,  NF X 31-107), pH water (NF ISO 10390),
Corg (dry combustion NF ISO 10694), N (dry combustion NF ISO
13878), C:N ratio, soluble P contents (Olsen method NF ISO 11263),
CaCO3 (volumetric method NF ISO 10693), CEC (extraction with
cobaltihexamine chlorure, NF X 31-130) and exchangeable cations
(Ca, Mg,  extraction HF + HClO4, NF ISO 14689-1). Physical and
chemical analyses are available for all 2115 samples and were
performed by the Soil Analysis Laboratory of INRA (Arras, France,
http://www.lille.inra.fr/las). The climatic data were annual rainfall
(Rain  year), annual evapotranspiration (ETP year) and annual tem-
perature (Temp year), and were obtained by a spatial intersection
between the RMQS grid and the 8 km grid produced by the SAFRAN
model (Quintana-Segui et al., 2008). Land use was  recorded accord-
ing to the CORINE Land Cover classification (IFEN, http://www.
statistiques.developpement-durable.gouv.fr/) and with 7 classes:
forest, crop systems, grasslands, particular natural ecosystems,
vineyards/orchards, parkland and wild land.

2.2. Molecular microbial biomass dataset

The soil molecular microbial biomass of each RMQS sample was
determined using the Gns-GII procedure optimized by the GenoSol
platform (http://www2.dijon.inra.fr/plateforme genosol,  Plassart
et al., 2012; Terrat et al., 2015). Crude DNA extracts were resolved
by electrophoresis in a 0.8% agarose gel, stained with ethidium bro-
mide and photographed (Biocapt, Vilber Lourmat, Marne la vallée,
France). Dilutions of calf thymus DNA (BIORAD) were included in
each gel and a standard curve of DNA concentration (1000, 500,
250, 125, 62.5 to 31.25 ng) was  used to estimate the final DNA
concentration in the crude extracts (Ranjard et al., 2003). The ethid-
ium bromide intensity was  integrated with ImageQuaNT software
(Molecular Dynamics, Evry, France). The reliability of this method to
limit bias due to soil impurities that can hamper DNA quantification
has been confirmed (Ranjard et al., 2003).

2.3. Mapping of soil DNA recovery
method of geostatistical interpolation used in the previous work
of Dequiedt et al. (2011). After an appropriate transformation of

http://www.lille.inra.fr/las
http://www.lille.inra.fr/las
http://www.lille.inra.fr/las
http://www.lille.inra.fr/las
http://www.lille.inra.fr/las
http://www.lille.inra.fr/las
http://www.statistiques.developpement-durable.gouv.fr/
http://www.statistiques.developpement-durable.gouv.fr/
http://www.statistiques.developpement-durable.gouv.fr/
http://www.statistiques.developpement-durable.gouv.fr/
http://www.statistiques.developpement-durable.gouv.fr/
http://www.statistiques.developpement-durable.gouv.fr/
http://www.statistiques.developpement-durable.gouv.fr/
http://www.statistiques.developpement-durable.gouv.fr/
http://www2.dijon.inra.fr/plateforme_genosol
http://www2.dijon.inra.fr/plateforme_genosol
http://www2.dijon.inra.fr/plateforme_genosol
http://www2.dijon.inra.fr/plateforme_genosol
http://www2.dijon.inra.fr/plateforme_genosol
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he data, a robust estimation of the variogram was performed and
tted by a Matérn function. Finally, the map  of DNA recovery was
roduced after backtransforming the predicted median by ordinary
riging. The validity of the fitted geostatistical model was assessed
n terms of the standardized squared prediction errors using the
esults of a leave-one-out cross-validation.

.4. Modeling strategy

Polynomial  regression analyses were carried out to model soil
olecular microbial biomass (response variable) as a function of

oil physico-chemical characteristics, geographical coordinates and
limatic data (explanatory variables). In this approach, pH was
ransformed into [H3O+]. In order to find the best explanatory
nd most parsimonious model, the modeling steps were: first to
dentify the collinear explanatory variables to be excluded from
he analysis; second to select the best set of explanatory variables
nd the best model form based on predictive capabilities through
2
adj and cross-validation; and third to assess model robustness
egarding measurement errors on explanatory variables. Finally,
he sensitivity of the predicted microbial biomass to the model’s
arameters was evaluated and the errors associated with the errors
n explanatory variables were quantified. The whole modeling
trategy was developed in R software (R Development Core Team,
011).

Two tools were used to assess collinearity between the
xplanatory variables, namely correlation coefficients and variance
nflation factors (VIF). Only explanatory variables with a correla-
ion coefficient ranging from −0.7 to 0.7 and with a VIF ≤ 4 were
onsidered in the modeling steps. The VIF values were calculated
sing the vif function in the car package (Fox, 2008). Since the
umber of explanatory variables was not very large (<50), the best
xplanatory variables was selected according to the exhaustive
earch method described by Miller (2002). This approach involved
sing the regsubsets function in the leaps package in R (Moore,
995). The selection criteria were both the Bayesian Information
riterion (BIC) and the adjusted coefficient of determination (R2

adj),
nd involved minimizing the first and maximizing the second. Two
dditional selection criteria were considered: the Akaike Infor-
ation Criterion (AIC) and Mallows’s Cp, which lead to the same

onclusions (data not shown).
Based  on the selected set of explanatory variables, the molec-

lar microbial biomass dataset was randomly divided into a
raining dataset (90% of the data, 1879 soil samples) and a cross-
alidation dataset (about 10% of the data, 236 soil samples) using
he KennardStone algorithm in the kenStone in prospectr package
Stevens and Ramirez-Lopez, 2013). The distribution of training
nd cross-validation datasets is shown in Fig. S1. Different models
f increasing complexity were then compared, ranging from sim-
le linear models to polynomial forms of increasing degree that

ncluded interactions between explanatory variables. The polyno-
ial regression form was chosen because it had the advantage of

eing easy to implement and flexible. Nevertheless, the polynomial
egree had to be determined carefully to avoid model over-learning
ince adding higher order terms in a model improves the fit to
he data but provided poorer predictions on new datasets. Model
election was therefore based on maximizing R2

adj, while minimiz-
ng BIC and by cross-validating the model on the cross-validation
ataset. This approach was applied by using two  algorithms specif-

cally developed for this study and implemented in R. The first one

alculates the predicted soil molecular microbial biomass given the
elected explanatory variables. The second one manages data input,
xecutes the first algorithm, and retrieves predicted values directly
rom Excel® software.
icators 64 (2016) 203–211 205

2.5. Sensitivity analysis of the model

The sensitivity analysis was  used to evaluate the range of vari-
ation of model predictions according to little measurement errors
on the descriptors. The sensitivity of the model was estimated by
means of a sensitivity index. Since the basis of the model was  the
linear regression, standardized regression coefficients (SRC) were
used as sensitivity indexes, as classically observed in the literature
(Saltelli et al., 2008). The regression coefficients denoted by ˆ̌

 were
determined by ordinary least-squares regression and provide infor-
mation about the sensitivity of the model response to the various
input-factors, and their combinations. SRC is equal to (�Xi

/�Y ) ˆ̌ ,
where  �Xi

, �Y are the standard deviation of inputs and output
variables; respectively. The SRC values were determined using the
sensitivity package in R (Saltelli et al., 2000). With this approach,
the sensitivity of the model to a given variable is high when the
absolute value of SRC is high.

2.6. Validation of the model with an independent dataset

The  model developed was  used to predict microbial biomass in
264 soils sampled across an agricultural landscape for which the
soil and land use characteristics had been accurately determined
and the molecular microbial biomass estimated with the same
techniques as for the RMQS samples (Constancias et al., 2015a). The
area 13 km2 wide is located in Burgundy (Fénay, Lat: 47◦14′37′′ N,
Long: 5◦03′36′′ E, Burgundy, France) and characterized by a smaller
variability in soil properties compared to RMQS, and also by a
mosaic of different types of land-use constituted by oak-hornbeam
deciduous forests (3.86 km2) and agricultural croplands with con-
trasting cropping intensity and especially soil tillage (9.22 km2),
cultivated essentially with winter crops (winter wheat, oilseed
rape) in rotation with late-sown crops (spring barley). The site is
under continental climate, with a mean annual air temperature of
10.4 ◦C and a mean annual rainfall of 762 mm (period 1968–2011).
The sampling design covers the entire area and is based upon a
square grid with a spacing of 215 m,  which corresponds to 264
sites. All sites were sampled in September 2011. At each of the 264
sampling locations, five soil cores (core diameter: 5 cm; 0–20 cm
depth) were randomly collected over an area of 4 m2 at inter-row
for agricultural sites and at least 1 m away from trees in decid-
uous forests, then bulked, 2 mm-sieved before being lyophilized
at −80 ◦C and finally stored at −40 ◦C. Analyses of physicochem-
ical properties (pH, organic carbon, total nitrogen, CaCO3, clay,
silt and sand) were performed by the Laboratoire d’analyse des
sols d’Arras of INRA (www.lille.inra.fr/las) as described in Dequiedt
et  al. (2011). Land management practices over the entire land-
scape were summarized by means of a factorial analysis for mixed
data (Constancias et al., 2015a). This analysis was performed using
the FactoMineR package (Lê et al., 2008) and allowed the defini-
tion of land management clusters. The input data were land use,
soil tillage, crop rotation diversity (number of plant types in the
crop rotation) and pesticide treatment frequency index. Six clusters
were finally defined, mainly based on soil tillage intensity and inter-
cropping: conventional tillage, mechanical hoeing, minimal tillage,
catch crops, perennial crops, and forests.

3. Results and discussion

3.1.  Variation of molecular microbial biomass on the scale of
France
The  method of DNA extraction initially used to recover soil DNA
in large-scale RMQS soil surveys (Ranjard et al., 2009; Dequiedt
et al., 2011; Fig. S2), has recently been further improved to increase

http://www.lille.inra.fr/las
http://www.lille.inra.fr/las
http://www.lille.inra.fr/las
http://www.lille.inra.fr/las
http://www.lille.inra.fr/las
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ig. 1. Mapping of soil molecular microbial biomass at the scale of the French territ
oil  DNA and was interpolated through a standard geostatistical approach.

he yield of DNA extraction (Terrat et al., 2012) together with the
epresentativeness of the extract in terms of taxonomic diversity of
oil microbial communities (Terrat et al., 2012, 2015). This new pro-
edure (GnS-GII) was used to quantify newly the microbial biomass
rom 2115 RMQS soil samples, and provided an updated dataset of

icrobial biomass.
Although, the soil DNA yield obtained with GnS-GII was greater

han that reported by Dequiedt et al. (2011), the distribution pat-
ern observed at the scale of France was very similar (Fig. 1).
he map  obtained from a geostatistical interpolation of the recov-
red DNA confirmed the heterogeneous distribution of microbial
iomass at the scale of France reported in Dequiedt et al. (2011).
n addition, the fitted parameters of the Matérn model yielded

ood cross validation (median of standardized squared predic-
ion errors = 0.455), thereby confirming that molecular microbial
iomass is spatially organized in biogeographical patterns cover-

ng about 100 km,  similar to those reported previously by Dequiedt

ig. 2. Hierarchy of the linear models of soil microbial biomass involving soil physicoc

xhaustive method. (A) BIC criterion, (B) R2
adj

criterion. Each row in this graph represents a

f  shaded rectangles. The intensity of the shading represents the ordering of the BIC and 
il molecular microbial biomass was determined directly from the quantification of

et  al. (2011). The size of these biogeographical patches confirmed
that variation of soil types based on their physico-chemical char-
acteristics rather than changes of global climatic factors may have
a strong influence on the distribution of the microbial biomass at
the scale of France (Dequiedt et al., 2011). This finding justified
our strategy to develop a statistical predictive model of microbial
biomass based essentially on soil pedo-climatic conditions to bet-
ter evaluate the impact of land use on soil microbial abundance. In
other respects, our results evidenced that this new procedure did
not bias the difference in microbial biomass between soils. How-
ever, it proportionally increased the amount of DNA extracted from
each soil (about 6 times higher with a range of variation from 0.05
to 107 times). This difference of yield between the two  DNA  extrac-

tion procedures is explained by a better lysis of fungal populations
leading to higher recovery of fungal DNA (Terrat et al., 2015). As
a consequence, the range of variation may  be also explained by
the various fungal relative abundance between the RMQS soils. The

hemical, spatial and climatic variables according to the BIC and the R2
adj

with the

 specific model. The variables included in a given model are represented by means

R2
adj

values according to the absolute value.
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Fig. 3. Boxplot representation of the microbial biomass measured and predicted by a
multiple and by polynomial linear models of increasing complexity degree. For each
boxplot, the bold line represents the median of the values, the sides of the box repre-
sent the first and third quartiles and the error bars represent the standard deviation
of  the mean. Open circles correspond to outlier values in the normal distribution.
The  first two boxplots refer to the measured soil microbial biomass and to the soil
W.  Horrigue et al. / Ecologic

ew amounts of recovered DNA ranged from 0.1 �g DNA g−1 soil to
bout 630 �g DNA g−1 soil with a mean of 42.4 �g DNA g−1 soil.

.2. Selection of environmental descriptors as explanatory
ariables of the predictive model

The environmental descriptors that most significantly influence
oil microbial biomass were identified and ranked by apply-
ng the BIC and R2

adj methods. The multilinear model with the

owest BIC (−1409) and the highest R2
adj (0.587) involved six vari-

bles that were significantly good predictors of the molecular
icrobial biomass (Fig. 2). More precisely, the influence of the

nvironmental descriptors could be ranked as follows according
o the standardized regression coefficients: soil organic carbon
ontent (SOC) = 0.57 > clay = 0.42 > altitude = 0.23 > annual evapo-
ranspiration (ETPannual) = 0.21 > pH 0.18 > annual rainfall = 0.14. To
laborate a predictive model of microbial biomass, we selected four
xplanatory variables without retaining any climate data in spite of
heir important role (particularly that of evapotranspiration). This
hoice was motivated by our desire to keep the model as much
perational as possible. Indeed, climatic descriptors are not eas-
ly available and are expensive, which may  have precluded the
se of this model in diagnoses for and by soil users. In addition,
he robustness of the model was not significantly altered (P < 10−4)
y substituting the evapotranspiration data with pH data (R2

adj of
.539 with ETP and of 0.509 with pH) or therefore the quality of the
rediction.

Interestingly, the best environmental descriptors identified in
his study were similar to those identified in Dequiedt et al. (2011)
nd in several other studies (Bååth and Anderson, 2003; Mulder
t al., 2005; Johnson et al., 2003) at a continental scale. In a recent
tudy, Serna-Chavez et al. (2013) also identified soil moisture as

 major driver of soil microbial biomass. We  did not directly mea-
ure moisture here, but our results may  be in agreement with these
uthors since SOC and clay, two of the main drivers identified in our
tudy, are also usually highly correlated with soil moisture. In addi-
ion, it is important to emphasize that soil altitude, considered as
n important driver in our model, is integrative of environmental
arameters, especially climate and soil moisture conditions at the
cale of France (Arrouays et al., 2002).

.3. From multiple to polynomial linear models to predict
olecular microbial biomass

In  a first step, we tested the accuracy of the multiple linear model
ithout considering interactions between the four explanatory

ariables SOC, clay, altitude and [H3O+] previously identified and
anked (Fig. 2) on the 1879 samples of the modeling dataset. The
djusted coefficient of determination R2

adj was 0.5377 (P < 10−4),
hich was considered sufficient to obtain a good prediction of
olecular microbial biomass (Table S1 in supplemental informa-

ion). However, the results also showed a non-normality of the
odel residuals (Fig. S3A in SI), which was confirmed by a sig-

ificant Shapiro–Wilk test of normality (P < 10−4). Considerable
eterogeneity of the residuals was also observed (Fig. S3B in SI).
ince the residuals were not normally distributed with a mean of

 and constant variation, the multiple linear model could not be
alidated (Cornillon and Martzner-Løber, 2011).

In a second step, a polynomial regression model was chosen
ince this was expected to increase R2

adj, to get closer to the normal-
ty hypotheses and to improve the homogeneity of the residuals as

ompared to the multiple linear model. In addition, increasing the
odel complexity was also tested for its ability to include interac-

ions between the explanatory variables (Storlie and Helton, 2008).
o identify the most valuable type of model, predicted values of
microbial biomass predicted by means of a multiple linear model. The five boxplots
on the right represent the distribution of the predicted soil microbial biomass by
means of a polynomial model of increasing degree (from 2 to 6; respectively).

microbial biomass obtained by models of increasing complexity
(from a multiple linear model to a sixth degree polynomial model)
were confronted with measured values using the cross validation
dataset (this latter being represented by the 10% of the RMQS
dataset, Fig. 3). Results showed that the multiple linear model
allowed correct prediction of the overall average soil biomass con-
tent but failed to attain the high values and tended to increase the
number of negative predicted values compared to the other polyno-
mial models. Increasing model complexity did not initially improve
the quality of the prediction since the second degree polynomial
lead to a strong over-estimation of microbial biomass (Fig. 3). This
can be explained by the smaller number of parameters included in
this polynomial model compared to the other polynomial degree
together with the fact that all these parameters were positive. A
further increase of model complexity with a third degree polyno-
mial model substantially improved the quality of the prediction.
The overall average soil molecular microbial biomass and the range
of biomass variation from high to low (but not negative) values was
well reproduced (Fig. 3). Better results were obtained with the third
degree polynomial model than with the second degree polynomial
model. This can be explained by the more number of parameters
taken into account together with the fact that some of these param-
eters were negative, hence precluding over-estimation. However
the results clearly evidenced that a further increase in the degree of
the polynomial model was inappropriate since it lead to a decrease
in prediction quality (Rawling et al., 1998), mainly characterized by
an increased of the over-estimation of the soil microbial biomass
(Fig. 3). In addition, due to the general properties of polynomial
models, the coefficient estimates in polynomial models with a
degree higher than 3 were not robust due to the increased sen-
sitivity of the prediction to the removal of one or more data.

In  the light of these results, we selected the third degree poly-
nomial model since it gave the best prediction of soil microbial
biomass. This model has the following mathematical form (Eq. (1))

Y = ˇ0 +
4∑

i=1

ˇiXi +
4∑

i=1

ˇiiX
2
i +

4∑

i=1

ˇiiiX
3
i +

2∑

i=1

3∑

i=j+1

4∑

k=i+1

ˇijkXi
j Xk
+
3∑

i=1

4∑

j=i+1

ˇijXiX
2
j +

3∑

i=1

4∑

j=i+1

4∑

k=i+j

ˇijjXiXjXk + ε (1)
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Table 2
Overview of the model sensitivity analysis. The standardized regression coefficients
(SRC)  of the variables to which the model is most sensitive are presented here.
A complete sensitivity analysis is provided in Table S1. The variables are ordinated
according  to the absolute value of their associated SRC from the highest to the lowest.

Parameters SRC

Interaction (clay:pH) 2.18
Interaction (clay:carbon) 1.79
Interaction (carbon:pH) 1.23
Interaction (clay:pH2) −1.15
pH (quadratic effect) 1.05
Carbon (quadratic effect) 1.03
Carbon −0.95
Interaction (carbon:pH2) −0.84
08 W.  Horrigue et al. / Ecologic

here Y is the estimated response variable (soil molecular micro-
ial biomass) for the selected set of input factors or explanatory
ariables Xi(i ∈ {1 ; 2 ;3 ; 4}), which are SOC, clay, altitude, and
H3O+]. X2

i
and X3

i
represent the quadratic and the cubic vari-

bles, respectively. XiXj and XiXjXk are the multiplicative interaction
erms. ˛0 is the overall mean. By applying the polynomial model
o the modeling dataset of 1879 samples, we obtained an excel-
ent adjusted coefficient of determination R2

adj of 0.6738 (P < 10−5)

nd minimal BIC (-1788), which was much higher than the R2
adj of

.5847 (P < 10−5) and lower than the BIC of −1598 obtained with
he multiple linear model, respectively. In addition, we evidenced

 normality of the residuals distribution, which was  confirmed by
he P-value of the Shapiro–Wilk test of normality (P = 0.144 > 0.05,
ig. S4B), as well as good homogeneity of the residuals (Fig. S4A).
ased on these criteria, the third degree polynomial model was
alidated. Table 1 presents all the terms in the model with their
orresponding coefficients, standard error and significance. Many
erms in the model did not have a significant effect, but were con-
erved since the reference RMQS database is a monitoring network
hat can evolve by the addition of other sites and environmental
ariability, which could potentially make some of these variables
ignificant.

.4. Analysis of model sensitivity

In  the context of developing a new predictive model it was

rucial to evaluate its sensitivity to explanatory variables and to
stimate the error on the estimated microbial biomass resulting
rom measurement errors on each explanatory variable. The sensi-
ivity analysis enabled a sensitivity index to be retrieved for each

Table 1
Summary of model coefficients and significance. This table des
model  for each of its components. The standard error of each c

Drivers Coefficients ˆ̌ St

Intercept 1.831e+04 6.
Clay −1.284e+00 5.
Clay2 −4.032e−01 1.
Clay3 2.806e−04 2.
Carbon −5.541e+02 3.
Clay*carbon 1.324e+01 1.
Clay2*carbon −1.308e−03 3.
Carbon2 1.244e+00 5.
Clay*carbon2 −7.825e−02 1.
Carbon3 2.663e−02 2.
[H3O+] −6.462e+08 3.
Clay*[H3O+] 2.748e+05 1.
Clay2*[H3O+] 1.317e+03 2.
Carbon*[H3O+] 2.469e+07 1.
Clay*carbon*[H3O+] 3.507e+04 3.
Carbon2*[H3O+] −5.632e+04 7.
[H3O+]2 5.446e+12 4.
Clay*[H3O+]2 −1.458e+10 9.
Carbon*[H3O+]2 −1.750e+11 1.
[H3O+]3 −4.264e+15 2.
Altitude −2.292e+01 2.
Clay*altitude 2.898e−01 1.
Clay2*altitude −6.280e−04 1.
Carbon*altitude −1.151e+00 4.
Clay*carbon*altitude 7.013e−03 1.
Carbon2*altitude 8.390e−05 2.
[H3O+]*altitude 3.418e+05 6.
Clay*[H3O+]*altitude −3.47e+02 1.
Carbon*[H3O+]*altitude −3.231e+04 7.
[H3O+]2*altitude 7.210e+09 5.
Altitude2 5.035e−02 1.
Clay*altitude2 −1.829e−04 3.
Carbon*altitude2 2.450e−04 1.
[H3O+]*altitude2 −2.121e+01 2.
Altitude3 −9.89e−06 4.
Clay −0.74
pH −0.64

component of the model (overview of the most important compo-
nents in Table 2 and complete results in Table S1). This analysis
demonstrated that the model was  highly sensitive to variations
of clay content, carbon content and pH, together with their inter-
actions and quadratic effects. This was in agreement with the
literature since variations in clay content, i.e. following a gradi-
ent from coarse to fine textured soils, are supposed to modulate
the size of microbial habitats (Dequiedt et al., 2011; Constancias
et al., 2015a) and since variations in soil Carbon content provide an
overview of resource availability for soil microbial growth (Serna-
Chavez et al., 2013; Constancias et al., 2015a,b) while soil pH
determines the level of enzymatic activities involved in retrieving

growth substrates from the environment (Lauber et al., 2009).

The  sensitivity analysis also suggests that robust measures of
soil pH, soil carbon and clay content are required to obtain robust

cribes the coefficients ˆ̌
 of the third degree polynomial

oefficient and its significance is also provided.

andard  error t-Student P values

247e+03 2.932 3.413e−03
604e+00 −0.023 9.817e−02
888e−01 −2.136 3.279e−02
118e−05 1.325 1.854e−01
512e+02 −1.578 1.148e−04
955e+00 6.771 1.720e−11
130e−04 −0.418 0.675e+00
285e+00 0.235 0.813e+00
751e−02 −4.469 8.34e−06
197e−02 1.212 0.225e+00
860e+07 −1.674 9.41e−03
872e+04 0.147 0.883e+00
959e+03 0.445 0.656e+00
434e+06 1.723 8.51e−02
670e+04 0.956 0.339e+00
146e+04 −0.788 0.430e+00
424e+11 1.231 0.218e+00
984e+09 −1.460 0.144e+00
238e+10 −1.413 0.157e+00
025e+15 −0.210 0.833e+00
039e+01 −1.124 0.261e+00
031e−02 2.811 4.987e−04
524e−04 −4.121 3.94e−05
999e−01 −2.303 2.14e−0.3
395e−03 5.028 5.45e−07
918e−04 0.029 0.977e+00
386e+04 0.535 0.592e+00
496e+02 −0.232 0.816e+00
619e+03 −4.241 2.33e−05
466e+09 1.319 0.187e+00
521e−03 3.310 9.51e−04
245e−05 −5.636 2.01e−08
626e−05 1.507 0.132e+00
622e+01 −0.081 0.933e+00
271e−07 −2.316 2.03e−02
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stimates of microbial biomass with the polynomial model. It was
herefore important to determine the error on the model estimate
ccording to the measurement errors on soil pH, carbon and clay
ontents (Fig. S6). Introduction of a 5% random error in pH, SOC
nd clay content measurements revealed that soil pH needed to
e measured more accurately than SOC, altitude or clay content to
educe the error on the estimated soil microbial biomass.

.5.  Operational application of the model to diagnose soil
gricultural management

To  determine the accuracy of the polynomial model in diagnos-
ng the impact of agricultural practices on soil microbial biomass,
t was applied to a large set of soil samples collected over an
gricultural landscape at Fénay (Constancias et al., 2015a). At the
andscape scale, land use and agricultural practices were clustered
nto 6 categories which were discriminated first by land cover
forest vs. agricultural plots), second by soil tillage intensity (no
illage, minimum tillage, mechanical hoeing, conventional tillage),
nd finally by the presence of a catch crop. These clusters followed a
radient in cropping intensity and in the diversity and persistence
f plant cover i.e., forest (forest, no tillage, no catch crop, n = 43);
erennial crop (3 frequently mowed grasslands, 3 blackcurrant and

 Miscanthus, n = 7); catch crop (agricultural plot, minimum tillage,
atch crop, n = 22); minimum tillage (agricultural plot, minimum
illage, no catch crop, n = 56); conventional tillage (agricultural plot,
onventional tillage, no catch crop, n = 103); mechanical hoeing
agricultural plot, mechanical hoeing, no catch crop, n = 33).

Plotting of the predicted values vs. the measured values of
olecular microbial biomass showed an important scatter of the

oints around the y = x line (Fig. 4), which indicated that for a con-
istent number of soil samples the measured microbial biomass
as either higher or lower than the predicted values. To interpret

he results and establish a diagnosis of soil microbial status, we
onsidered that predicted and measured values were similar only
or the points included within the band of ±20% around the y = x
ine (Fig. 4). This threshold was chosen since it corresponded to the
ange of uncertainty of the method of soil DNA extraction and quan-
ification (Bourgeois et al., data not shown). It allowed three groups
f samples to be distinguished. The first group consisted of the sam-
les for which the measured values were similar to the predicted
alues and represented 44% of the total samples. For this group,

he correspondence between the measured and the predicted val-
es indicated that the soil microbial biomass was well predicted
y the four explanatory variables taken into account in the model

ig. 4. Relationship between the measured and adjusted values of soil microbial
iomass  in the Fènay landscape. Adjusted values were derived from the third degree
olynomial model. The black line represents the 1:1 line (y = x), dotted lines corre-
pond to measurement uncertainty of soil microbial biomass (±20%), black crosses
epresent cropland soils and open triangles the forest soils.
icators 64 (2016) 203–211 209

(i.e. clay, carbon, pH, and altitude), hence suggesting no or little
impact of the type of land use on the soil microbial biomass. The
second and third groups consisted of the samples for which the pre-
dicted values were respectively significantly lower (19% of the total
samples) or higher (37% of the total samples) than the measured
values, which implied a significant impact of land use in terms of
stimulation or decrease of the soil microbial biomass.

When discriminating the samples between cropped and forest
soils, it was  clearly apparent that microbial biomass was favored in
forest soils, with 60% of the forest samples exhibiting higher mea-
sured values than predicted values (Fig. 5). This was  in agreement
with many other studies which reported higher microbial biomass
in forest soils compared to cropped soil, mainly attributed to higher
carbon content commonly occurring in forest soils (Arrouays et al.,
2001). In our study however, the observed stimulation of micro-
bial biomass might not be directly explained by soil carbon content
since this is one of the explanatory variables taken into account in
the model. In these soils, it is more likely that the observed stimula-
tion is due to the improved soil structure resulting from the higher
carbon content and absence of soil physical disturbance since these
factors are known to be associated with the improvement of soil
microbial habitats in terms of diversity and stability (Constancias
et al., 2014). In addition the absence of pesticide applications such
as (i.e. fungicides) may  also contribute to the observed stimulation
compared to cropped soils.

Contrastingly  with forest soils, cropped soils were equally dis-
tributed between the three groups of samples, with 33%, 46%
and 21% of the measured values being respectively higher, sim-
ilar to, or lower than the predicted values. This indicates that,
at the scale of the agricultural landscape at Fénay, soil microbial
biomass was impacted either positively or negatively by cropping.
Comparison of the types of agricultural managements evidenced
the following gradient around the predicted values: conven-
tional tillage = mechanical hoeing ≤ predicted values < minimum
tillage ≤ minimum tillage + catch crop < forest (Fig. 5). As men-
tioned above, the observed discrimination between the systems
cannot be directly explained by soil parameters such as carbon
and clay contents, or pH since they were included as predictive
variables in the model. The depletion of soil microbial biomass in
systems including soil tillage or hoeing more likely results from
the mechanical disruption of microbial habitats by soil disturbance
(Govaerts et al., 2007; Lienhard et al., 2013). On the other hand,

the preservation of soil structure through minimum tillage led to
an improvement of soil microbial biomass. This increase was  fur-
ther enhanced when catch crops were introduced into the rotation,

Fig. 5. Differences between predicted and measured soil molecular microbial
biomass  according to land management practices. For each boxplot, black cross rep-
resents the mean, bold line represents the median, sides of the box represents the
first and third quartile and error bars correspond to the standard error of the mean.
Open circles correspond to outliers according to the normal distribution.
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hereby confirming the stimulation of microbial biomass under
lant cover (Lienhard et al., 2013).

The model developed in this study is an innovative mathemat-
cal tool constituting the first operational model for assessing the

icrobiological status of soil in the French pedoclimatic context.
omparison of predicted and measured values provides a robust
iagnosis of soil microbiological quality and its evolution under
nvironmental pressures such as agricultural practices, industrial
ollutions or more global changes. Now, similar investigations need
o be conducted to develop strategies for the diagnosis of microbial
iversity based on the numerous sets of massive sequencing data
idely available through the international scientific community.
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Abstract

Even though recent studies have clarified the influence and hierarchy of envi-

ronmental filters on bacterial community structure, those constraining bacterial

populations variations remain unclear. In consequence, our ability to under-

stand to ecological attributes of soil bacteria and to predict microbial commu-

nity response to environmental stress is therefore limited. Here, we

characterized the bacterial community composition and the various bacterial

taxonomic groups constituting the community across an agricultural landscape

of 12 km2, by using a 215 9 215 m systematic grid representing 278 sites to

precisely decipher their spatial distribution and drivers at this scale. The bacte-

rial and Archaeal community composition was characterized by applying 16S

rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics

tools were used to reveal the heterogeneous distribution of bacterial composi-

tion at this scale. Soil physical parameters and land management explained a

significant amount of variation, suggesting that environmental selection is the

major process shaping bacterial composition. All taxa systematically displayed

also a heterogeneous and particular distribution patterns. Different relative

influences of soil characteristics, land use and space were observed, depending

on the taxa, implying that selection and spatial processes might be differentially

but not exclusively involved for each bacterial phylum. Soil pH was a major

factor determining the distribution of most of the bacterial taxa and especially

the most important factor explaining the spatial patterns of a-Proteobacteria
and Planctomycetes. Soil texture, organic carbon content and quality were more

specific to a few number of taxa (e.g., b-Proteobacteria and Chlorobi). Land

management also influenced the distribution of bacterial taxa across the land-

scape and revealed different type of response to cropping intensity (positive,

negative, neutral or hump-backed relationships) according to phyla. Altogether,

this study provided valuable clues about the ecological behavior of soil bacterial

and archaeal taxa at an agricultural landscape scale and could be useful for

developing sustainable strategies of land management.

Introduction

Spatial patterns, based on describing the distribution of

living organisms in relation to space and environmental

heterogeneity, provide a key to understanding the structure

and function of soil biodiversity (Martiny et al. 2006). In

contrast to macro-organisms, the description of spatial

patterns of soil microorganisms is recent, but has gained

attention due to their key role in ecosystem services (Maron

et al. 2011). Soil microbial communities are known to

exhibit heterogeneous and structured spatial patterns at

various scales ranging from the microscale (soil aggregates,
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lm) to global scale (continent, >100,000 km2) (Nunan

et al. 2003; Dequiedt et al. 2009; Franklin and Mills 2009;

Lauber et al. 2009; Griffiths et al. 2011). A large body of

proof has emerged from these patterns suggesting that the

abundance, diversity and assemblages of soil microbial

communities are mainly determined by soil properties,

plant-cover and land management, rather than by geo-

graphical barriers or climate. Thus, environmental selection

(aka, niche-based process) by proximal factors would be

the main process that shapes soil microbial diversity (Dre-

novsky et al. 2010; Ranjard et al. 2013). However, other

processes based on the neutral theory have recently been

shown to successfully predict nonrandom patterns of distri-

bution (Hubbell 2001), and indicate that dispersal limita-

tion could also significantly contribute in shaping patterns

of microbial communities (Bell 2010; Stegen et al. 2012).

Although the processes and drivers shaping the bacterial

community assembly as a whole have now been deciphered,

those influencing the various bacterial taxonomic groups

which constitute the community are still little known or

understood. This has resulted in a lack of knowledge con-

cerning the ecological attributes of soil indigenous bacterial

taxa, which in turn limits our understanding and ability to

predict community composition according to surrounding

environmental conditions (Fierer et al. 2007; Maron et al.

2011) as well as our ability to link microbial diversity with

soil functioning (Maron et al. 2011). Regarding applied

ecology, this absence of knowledge is hampering the devel-

opment of sustainable ecosystem management strategies

based on soil microbiological resources (Levin 1992).

Spatial ecology, based on applying meta-analysis

approaches under a wide range of environmental conditions,

is providing useful information about the ecological attri-

butes of indigenous soil bacterial taxa. Various authors have

used spatially explicit approaches to show that the relative

abundances of several bacterial taxa display contrasting pat-

terns, thereby highlighting their distinct ecological attributes

and confirming the ecological coherence of bacterial taxon-

omy (Philippot et al. 2009; King et al. 2010). Fierer et al.

(2007) used meta-analysis approaches to differentiate soil

bacterial taxa into ecologically meaningful categories based

on the r-/K-selection continuum, with r-strategists maximiz-

ing their intrinsic rate of growth when resources are abun-

dant while K-strategists are better adapted to compete and

survive when resources are limited (Pianka 1970). However,

all these studies were conducted on contrasting (a priori)

environmental gradients, and did not provide precise

insights into the role and ecology of bacterial taxa or of the

complexity of the potential ecological niches occupied by

bacteria. To be able to draw conclusions about the different

processes involved in community assembly, it is now crucial

to decipher more precisely and with greater genericity the

ecological attributes of soil microbial taxa by studying their

distribution at different scales and integrating the different

environmental parameters involved such as soil types, land

use, climate, geomorphology, and space.

In a previous study (Constancias et al. under revision), the

distribution of microbial abundance and bacterial commu-

nity diversity (richness, evenness and Shannon’s index) was

investigated across a landscape of 12 km2, offering an oppor-

tunity to decrypt the relative influence of soil properties and

land management in shaping soil bacterial communities. The

landscape, as compared to larger scales, was characterized by

a smaller variability in soil properties and also by a mosaic of

different types of land use constituted by forest and agricul-

tural plots with contrasting cropping intensity. Soils

(n = 278) were sampled within a systematic sampling grid

covering the entire landscape. Soil physicochemical properties

and land management characteristics were determined for

each sample. Bacterial diversity was characterized by massive

inventory of the 16S rRNA gene sequences amplified from

soil DNA. In addition to demonstrating the heterogeneous

and spatially structured distribution of microbial abundance

and diversity across the landscape, variance partitioning

revealed that bacterial richness is mainly driven by soil tex-

ture and pH whereas land management is a strong determi-

nant of microbial abundance and bacterial evenness.

Altogether this previous study demonstrated the relevance of

the landscape scale for deciphering microbial distribution

patterns and processes, and for evaluating the effects of land

management strategies on soil microbial resources.

In the present study we focused on the distribution of

the composition of bacterial and Archaeal communities

and of the various taxonomic groups constituting the com-

munity across the landscape. The following questions were

addressed: are all taxa heterogeneously distributed at this

spatial scale? Do they exhibit the same patterns? Which

drivers or ecological attributes characterize each bacterial

and archeal taxon at this scale? To answer these questions,

a geostatistical approach was used to map and describe the

spatial variability of community structure and taxa, and a

variance partitioning approach was applied to identify and

rank the ecological attributes for each taxon. Spatial de-

scriptors were also integrated into the analysis to better

interpret their relative contributions to taxa variation

across a landscape and to examine other neutral processes

shaping bacterial and archeal taxa distribution.

Materials and Methods

Site, sampling strategy, and data collection

The study was carried out on a monitored landscape of

13 km² located in Burgundy, France (F�enay, Lat:

47°14037″N, Long: 5°03036″E) characterized by deciduous

oak-hornbeam forests (3.86 km2) and intensive agricul-
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tural croplands (9.22 km2) mainly under winter crops

(winter wheat, oilseed rape) in rotation with late-sown

crops (spring barley). The whole area is flat or slightly

sloping, under a continental climate with a mean annual

air temperature of 10.4°C and a mean annual rainfall of

762 mm (period 1968–2011). Land management practices

were clustered into six categories (from forest to agricul-

tural plots with a gradient of cropping intensity).

The sampling design, based on a square grid with spac-

ing intervals of 215 m, covered the entire landscape and

corresponded to 248 sites. It also included 30 additional

sites positioned within the grid for exploring the variation

over distances less than 215 m. All sites were sampled in

September 2011. At each of the 278 sampling locations,

five soil cores (core diameter: 5 cm; 0–20 cm depth) were

randomly collected from a 4 m2 area in the inter-row for

agricultural sites and at least 1 m away from trees, then

bulked, and 2 mm-sieved before being lyophilized at

�80°C and finally archived at �40°C.
Samples were randomized before physicochemical and bac-

terial community characterizations to avoid any batch effect.

Analyses of physicochemical properties (pH, organic carbon,

total nitrogen, CaCO3, clay, silt and sand) were carried out by

the Laboratoire d’analyse des sols d’Arras of INRA (http://

www.lille.inra.fr/las) as described in Dequiedt et al. (2009).

Pyrosequencing of 16S rRNA gene
sequences

Soil microbial DNA was extracted using the GnsGII proce-

dure developed by Plassart et al. (2012). Crude DNA was

then purified using a MinElute PCR purification kit

(Qiagen, Courtaboeuf, France) and quantified using the

QuantiFluor staining kit (Promega, Madison, USA), prior

to further investigations.

The 16S rRNA V3-V4 gene region was targeted for

amplification, using primers F479 (50-CAGCMGCYGCNGT

AANAC-30) and R888 (50-CCGYCAATTCMTTTRAGT-30) in
a nested PCR strategy to add the 10-bp multiplex identifier

(MID) barcode as initially described by Plassart et al. (2012).

Equal amounts of each sample were pooled, and all further

steps (adapter ligation, emPCR and 454-pyrosequencing)

were carried out by Beckman Coulter Genomics (Danvers,

MA) on a 454 GS-FLX-Titanium sequencer (Roche Applied

Science, Indianapolis, Indiana).

The raw data sets are publicly available in the EBI data-

base system (in the Short Read Archive) under project

accession no. PRJEB5219.

Bioinformatics analysis

The generated sequences were subjected to bioinformatic

analysis using the GnS-PIPE developed by the GenoSol

platform (INRA, Dijon, France) and initially described by

Terrat et al. (2012). After an initial quality filtering step

(>350 bp, no base ambiguity), reads were aligned with

infernal alignments that use the secondary structure of

the 16S rRNA gene (Cole et al. 2009) and clustered at

95% sequence similarity into operational taxonomic units

(OTU). This clustering step was done using a custom

PERL program that does not consider differences in

homopolymer lengths, which can cause the main 454-py-

rosequencing errors (Balzer et al. 2011). Each sample was

then randomly rarefied at a sequencing depth of 10,800

quality sequences to allow rigorous comparison of the

data. Community structure was characterized using

weighted UniFrac distance (Lozupone and Knight 2005)

calculated with the PycoGent package (Knight et al. 2007)

on a phylogenetic tree computed using FastTree and the

most abundant sequence to represent each OTU. Quality

reads were used for taxonomy-based analysis by similarity

approaches using USEARCH (Edgar 2010) against the

corresponding Silva database (Quast et al. 2013).

Metadata analysis

Environmental variability of the studied landscape

The variability of soil physicochemical properties across

the studied area was assessed by subjecting the data to

principal component analysis (PCA). Land management

practices over the entire landscape were summarized by

performing a factor analysis for mixed data to define land

management clusters using the FactoMineR package (Lê

et al. 2008) with land use, soil tillage, crop rotation diver-

sity (number of plant types in the crop rotation), and the

pesticide treatment frequency index, as data input. These

clusters followed a gradient in cropping intensity based

on soil disturbance and in the diversity and persistence of

plant cover that is, Forest (forest, no-tillage, no catch-

crop, n = 44); Perennial plant cover (three frequently

mown) grasslands, three blackcurrant (Ribes nigrum) and

one Miscanthus (Miscanthus giganteus), n = 7); Catch

Crop (agricultural plot, minimum tillage, catch-crop,

n = 22); Minimum tillage (agricultural plot, minimum

tillage, no catch-crop, n = 57); Mechanical hoeing (agri-

cultural plot, mechanical hoeing, no catch-crop, n = 33)

and Conventional tillage (agricultural plot, conventional

tillage, no catch-crop, n = 104).

Ordination of microbial community structure

Differences in community structure between samples were

visualized by applying the weighted UniFrac metric and

Nonmetric multi-dimensional scaling (NMDS). Soil phys-

icochemical parameters and the relative abundance of the
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most dominant bacterial and archeal phyla and Proteo-

bacteria classes were incorporated into the analysis by

vector fitting against the bi-plot ordination of community

structure. Significance of the vectors was assayed by 999

permutations. Only the most significant (P < 0.001) vec-

tors harboring a correlation ≥0.20 relative to the two

NMDS axes were represented.

Interpolated mapping

A geostatistical method was used to map soil physico-

chemical properties (i.e., sample scores on the first three

principal components of the PC Analysis conducted on

physicochemical characteristics), microbial community

structure (i.e., sample scores on the two axes of the

NMDS analysis run on the weighted UniFrac distance

matrix) and the relative abundance of the most discrimi-

nant bacterial and archeal phyla and Proteobacteria clas-

ses. As these variables did not follow the strictly required

Gaussian distribution, they were first transformed using

the nonparametric rank-order (or normal scores) trans-

formation prior to considering the spatial correlations

(Juang et al. 2001). It is usual, in geostatistical analysis, to

compute an estimate of a variogram model based on the

observations which describe the spatial variation of the

property of interest. This model is then used to predict

the property at unsampled locations using kriging

(Webster and Oliver 2007). A common requirement for

variogram estimation is first to calculate the empirical

(so-called experimental) variogram by the method of

moments (Matheron 1965), and then to fit a model to

the empirical variogram by (weighted) nonlinear least-

squares. We also investigated an alternative method which

uses maximum likelihood to estimate the parameters of

the model directly from the data, on the assumption that

this displays a multivariate normal distribution. We

selected the Mat�ern model which can simultaneously

describe several spatial processes (Minasny and McBrat-

ney 2005). The validity of the fitted geostatistical model

was assessed in terms of the standardized squared predic-

tion errors method (SSPE) using the results of a leave-

one-out cross-validation. If the fitted model provides a

valid representation of the spatial variation of the soil or

microbial property, then these errors display a v2 distri-

bution which has a mean of 1 and median 0.455 (Lark

2002). The mean and median values of the SSPE were

also calculated for 1000 simulations of the fitted model to

determine the 95% confidence limits. An ordinary kriging

estimation was performed in the standardized-rank space

and the kriging estimates were then back-transformed

into the original space. The geostatistical analysis gstat

and GeoR R package for variograms analysis and kriging

were used (Ribiero and Diggle 2001).

Variance partitioning of community dissimilarity
and of the relative abundance of bacterial and
archaeal taxa

Partial regression models were conducted to estimate the

contribution of physicochemical parameters, land manage-

ment and space in determining variation in community dis-

similarity as well as the spatial distribution of bacterial and

archaeal taxa. Among the eight measured physicochemical

properties, silt was removed because of co-linearity with

sand and clay, and nitrogen content because of its correla-

tion with organic content (r = 0.92, P < 0.001). In addition

to the six retained physicochemical properties and the clus-

ters summarizing land management intensity, space was

characterized by using a Principal Coordinates of a Neigh-

bour Matrix approach (PCNM). The PCNM method was

applied to the geographic coordinates and yielded 76

PCNM, representing the multiple spatial scales that the

sampling scheme could perceive (Ramette and Tiedje

2007). Quantitative response and explanatory data were,

respectively, log-transformed and standardized to provide

an approximated Gaussian and homoscedastic residual dis-

tribution. For each taxon, physicochemical and land man-

agement variables were selected by multiple regression

analysis using a stepwise selection procedure, which maxi-

mized the adjusted R² (in order to maximize the explained

variation by the model) and minimized the Akaike Infor-

mation Criterion (AIC, in order to discard previously

retained variables that reduced the overall predictive

power). Spatial descriptors were then selected from the

model residuals, in order to strictly identify the spatial

autocorrelation that did not correspond to spatially struc-

tured environmental variables. These selection steps enabled

us to exclude those variables that did not contribute signifi-

cantly to the explained variation (P < 0.001), thereby limit-

ing overfitting and problems due to co-linear variables

(Ramette 2007). The respective effects of each explanatory

variable, or combinations thereof, were determined by (1)

partial regression for the relative abundance of taxa and (2)

distance-based redundancy analysis (db-RDA, Ramette and

Tiedje 2007; Bru et al. 2010). The statistical significance was

assessed by 999 permutations of the reduced model. All

these analyses were performed with R (http://www.r-pro-

ject.org/) using the vegan package (Oksanen et al. 2011).

Results

Landscape heterogeneity of environmental
parameters

The studied landscape was characterized by alkaline fine-tex-

tured soils with a mosaic of different types of land manage-

ment constituted by forest (18% of the area) and agricultural
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plots (82% of the area, Fig. 1A) subjected to contrasting agri-

cultural practices. Land management was clustered into six

categories to depict land management intensity (from forest

to agricultural plots with a gradient of land management

intensity – see Materials and Methods and Fig. 1A).

Most of the soils were silty (median 56.7%) or clayey

(median 34.3%) with alkaline pH (median 8.0, Table S1).

Organic carbon and total nitrogen contents were highly

correlated (r = 0.92, P < 0.001) and ranged from 1.74 to

174 and 0.835 to 14.6 g � kg�1, respectively (Table S1).

Soil properties were spatially structured in patches rang-

ing from 600 to 900 m (Table S2), which reflected both

the distribution of land management categories and the

variations in pedological patterns (Fig. 1A and B). Due to

the local chalky limestone characteristics, all soils located

along the “Sans Fond” riverbed exhibited similar specific

features (higher organic carbon, nitrogen and CaCO3

contents, coarser texture and higher pH, Fig. 1) whatever

the type of land management. On the other hand, sam-

ples under forest land management located at the West of

the studied area and along the “Grand Foss�e” riverbed

exhibited significant lower pH and higher organic carbon

and nitrogen contents and C:N ratio (P < 0.05 in all

cases, Fig. 1A, yellow patches B). Agricultural plots in the

conventional-tillage and mechanical hoeing clusters were

mainly situated between the villages of “Chevigny” and

“F�enay” whereas most plots in the minimum tillage clus-

ter (with or without catch crop) were found to the

extreme south-west and south-east. The forests plots were

mainly situated beside the two rivers (“La Sans Fond”

and “Grand Foss�e,” Fig. 1A).

Microbial composition variation and
mapping across landscape

Pyrosequencing of 16S rRNA genes yielded a total of

5 9 106 sequences (10,800 quality sequences per sample),

allowing taxonomic identification of the major bacterial

and archaeal groups constituting the community in each

soil sample. The NMDS ordination of Weighted UniFrac

distance between samples revealed significant variation in

community composition between soil samples across the

(A)

(B)

Figure 1. Maps of environmental characteristics of the F�enay landscape. (A) Maps of land management clusters including the samples location,

the two rivers and the local villages in the studied area. (B) Maps of samples scores on the three-first axes of the principal component analysis

conducted on the physicochemical data set: red green blue RGB color chart, Principal Component1: red, PC2: green, PC3: blue. This approach

summarizes the physicochemical properties of the studied area on a single map. Correlations between axes and variables are represented to the

right of the map in a triangular diagram to match the color chart. Mat�ern model semi-variograms of the related PC axis used to produce robust

kriging are provided beside the map.
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landscape (Fig. 2A). The NMDS stress of 0.09 confirmed

that bacterial community could be accurately described in

only two dimensions.

Vector fitting of the environmental parameters against

the ordination plot of NMDS revealed that bacterial com-

position discrimination on the first axis was mainly

explained by pH (R2: 0.82, P < 0.001), and silt content

(R2: 0.20, P < 0.001), whereas the main environmental

parameters involved in discrimination on the second axis

were soil organic carbon (R2: 0.61, P < 0.001), CaCO3

(R2: 0.36, P < 0.001) and also silt contents (R2: 0.20,

P < 0.001) (Fig. 2A). In addition, the bacterial communi-

ties under forests strongly differed from croplands on

both axes in accordance with the lower pH, higher

organic carbon content and higher C:N ratio (Fig. 2A).

No significant discrimination was observed in relation to

the cropping intensity associated with the different agri-

cultural land management clusters.

More precisely, the db-RDA analysis revealed that

physicochemical data, land management and space

explained 73% of the variation in community composi-

tion. This analysis confirmed that soil physicochemical

characteristics and land management practices strongly

contributed to community variation (24%, P < 0.001 and

7%, P < 0.001, respectively) and also revealed the signifi-

cant marginal effect of space in shaping community varia-

tions (3%, P < 0.001).

Mapping of NMDS1 scores revealed a heterogeneous

distribution of bacterial composition constituted by large

patches with an effective range of 741 m (Fig. 2B, Table

S2). The bacterial community compositions were similar

at the center of the studied area (i.e., all along the “Sans-

Fond” riverbed and around the “Chevigny,” “Fenay” and

“Saulon-La-Rue” local villages), and contrasted with the

communities located at the extreme West and at the East

(i.e., around the “Grand Foss�e” riverbed) of the landscape

(Fig. 2B). The NMDS2 map exhibited smaller patches

with a range of 574 m (Fig. 2C, Table S2) and strong

variations in community composition to the West and

East of the studied area (Fig. 2C). The robustness of these

interpolated maps was supported by the cross validation

statistics (Table S2).

The taxonomic affiliations at the phylum level, according

to 16S rRNA gene sequences, revealed that the soils were

generally dominated by a-Proteobacteria (mean relative

abundance 23.6%, Table S1), c-Proteobacteria (11.3%),

Actinobacteria (11.2%), d-Proteobacteria (10.8%), Bacter-

oidetes (8.4%), Acidobacteria (6.0%), and Firmicutes

(5.5%). The bacterial and archaeal taxa involved in the bac-

terial community discrimination on the NMDS analysis

were identified by vector fitting against the ordination plot.

The main taxa explaining the community composition dis-

crimination across this landscape were: on the first NMDS

dimension, a-Proteobacteria (R2 = 0.78, P < 0.001), Ver-

rucomicrobia (R2=0.49; P < 0.001), Nitrospirae

(R2 = 0.26; P < 0.001) as well as d-Proteobacteria

(A)

(B)

(C)

(D)

Figure 2. Nonmetric multidimensional scaling (NMDS) analysis derived

from the Weighted Unifrac metric. (A) Ordination plot of the bacterial

community structure. Vectors overlay were constructed based on the

physicochemical properties (light red) and the relative abundance of

discriminative phyla and Proteobacteria classes (black). Only significant

correlations (≥0.20 with P < 0.001)) are displayed. The angle and

length of the vector indicate the direction and strength of the variable.

Maps of the bacterial community structure based on the sample scores

on NMDS first (B) and second dimension (C), thus, reflecting the

community composition reduced to only two dimensions. The color

scale to the left of each map indicates the extrapolated sample scores

on the corresponding NMDS axis. (D) Semi-variograms of the

transformed sample scores of NMDS1 (grey points and line for

experimental and model variograms, respectively) and NMDS2 (black

points and line, for experimental and model variograms, respectively).
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(R2 = 0.76; P < 0.001), Chloroflexi (R2 = 0.53; P < 0.001),

Bacteroidetes (R2 = 0.42; P < 0.001), Planctomycetes

(R2 = 0.39; P < 0.001) on the second NMDS dimension.

Forest samples were distinguished by a higher relative

abundance of a-Proteobacteria, Verrucomicrobia, d-Prote-
obacteria and Planctomycetes, and a lower relative abun-

dance of Actinobacteria, Choloroflexi, Gemmatimonadetes,

Firmicutes, Bacteroidetes, and Nitrospirae (Figs. 2A and

S2).

Bacterial and archaeal phylum variation and
mapping across landscape

The relative abundance of each bacterial phylum consti-

tuting the community on the krigged maps was interpo-

lated by geostatistical approach. These maps evidenced a

heterogeneous distribution of all the studied phylum,

supported by the cross validation statistics (Table S2),

with an effective patch range between 149 and 1147 m

(Fig. 3). As smaller spatial autocorrelation ranges were

recorded for c-Proteobacteria and Acidobacteria than in

our usual sampling grid (i.e., <200 m, Table S2 vs.

215 m), no interpolated mapping was performed for these

two bacterial taxa.

Four major patterns could be distinguished for phyla

across the F�enay landscape and were ranked according to

patch size. a-Proteobacteria, Bacteroidetes and Nitrospirae

exhibited similar and “spotty” distributions, corroborated

by autocorrelation ranges around 500 m, and low v-

parameter values confirming raw spatial processes at smal-

ler distances (Table S2). The maps of Fibrobacteres, Armat-

imonadetes, Gemmatimonadetes, Crenarchaeota, and b-
proteobacteria across the landscape were patchier (Figs. 3

and S1) with a spatial autocorrelation range around 600 m

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 3. Maps of the relative abundance of most discriminative bacterial phyla and Proteobacteria classes across the F�enay landscape according

to Figure 2A. (A) a-proteobacteria; (B) Actinobacteria; (C) Chloroflexi; (D) Bacteroidetes; (E) Nitrospira; (F) Planctomycetes; (G) Verrucomicrobia

and (H) d-proteobacteria. The color scale to the left of each map indicates the extrapolated relative abundance values. Semi-variograms used to

describe and model the spatial pattern are provided beside each kriged map (experimental semi-variogram; points and models; lines).
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(Table S2). Planctomycetes, d-Proteobacteria, Chloroflexi,
Chlorobi, and Actinobacteria exhibited a spatial autocorre-

lation range around 700 m (Table S2), with high relative

abundances for Planctomycetes, d-Proteobacteria and

Chlorobi, versus a lower relative abundance for Actinobac-

teria all along the “Sans Fond” riverbed (Figs. 3B, F, H and

S1). Finally, the distributions of Firmicutes, Tha-

umarchaeota, Verrucomicrobia, and Elusimicrobia were

relatively smooth describing large patches (autocorrelation

ranges around 1000 m, Table S2). More precisely, Firmi-

cutes and Thaumarchaeota exhibited similar spatial distri-

butions, which contrasted with the distribution of

Verrucomicrobia (Figs. 3 and S1).

Variance partitioning of bacterial and
archaeal taxa distribution

A data set for soil physicochemical properties, land man-

agement and space was then used to partition the vari-

ance in taxa variation across the landscape. This approach

demonstrated that between 10% and 73% of the total

amount of variance could be explained according to taxa

(Fig. 4). The highest amount of explained variance was

observed for d-Proteobacteria, a-Proteobacteria, Chloro-

flexi, Gemmatimonadetes, and Verrucomicrobia (from

57% to 73%, Fig. 4), whereas variations in c-proteobacte-
ria and Acidobacteria were weakly explained (10% and

24%, respectively, Fig. 4).

Soil physicochemical parameters were the most impor-

tant predictors for 10 out of the 19 phyla studied, and

explained up to 47% of the total variance (Fig. 4). On

the other hand, Chloroflexi, Armatimonadetes, Gemmati-

monadetes, and Firmicutes were mainly influenced by

land management, which explained between 30% and

44% of their variation (Fig. 4). Interestingly, the varia-

tions in a few bacterial phyla, including Actinobacteria, b-
Proteobacteria, Chlorobi, and Elusimicrobia could not be

significantly explained in terms of land management

(Fig. 4). Except for Planctomycetes, residual spatial auto-

correlation was significantly involved in bacterial taxa

variations and explained significant amounts of variance

(from 2.4% to 24% Fig. 4). Moreover, only spatial

parameters were involved in explaining the variation of c-
Proteobacteria and Acidobacteria (10% and 24%, respec-

tively, Fig. 4).

The marginal effects of each parameter within the sets

of soil characteristics were ranked according to the

respective amounts of variance explained, and to their

Figure 4. Partitioning of the variation of the bacterial phyla across the F�enay landscape according to environmental and spatial parameters. NVar

is the number of explanatory variables retained after selecting the most parsimonious explanatory variables (by minimizing the Akaike Information

Criterion and maximizing the adjusted R2). Bacterial phyla and Proteobacteria classes are ranked from the most to the least abundant. The

explained variance corresponds to the adjusted R2 values of the contextual groups of parameters ( : physicochemical characteristics, : land

management, : space and : shared amount of variance between physicochemical properties and land management, using partial regressions).

The significance level of the contribution of the sets of variables is indicated as follows; ns: not significant; P < 0.05: *; P < 0.01: **; P < 0.001:

***. Missing values indicate that no variable of the relating group was retained in the model.
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standardized estimated coefficients, which indicated a

positive or negative influence on bacterial and archaeal

taxa variations. Only a small number of parameters were

involved in explaining the distribution of phyla belonging

to b-Proteobacteria, Chlorobi, and Firmicutes, (Fig. 5),

whereas a larger number of parameters were involved in

determining the variation of phyla such as a-Proteobacte-
ria, d-Proteobacteria, Verrucomicrobia, and Fibrobacteres

(Fig. 5). Soil pH contributed in explaining the variation

in 14 of the 19 studied phyla and explained the highest

amounts of variance (Fig. 5). More precisely, pH was

positively correlated with the relative abundance of d-Pro-
teobacteria, Bacteroidetes, Planctomycetes, and Tha-

umarchaeota but negatively correlated with that of a-
Proteobacteria, Verrucomicrobia, and Fibrobacteres

(Fig. 5). Clay and sand contents were involved in explain-

ing variations in nine of the 19 studied phyla, but were

only significant in explaining b-Proteobacteria variations

through their negative influence on its relative abundance

(Fig. 5). CaCO3 content negatively impacted the variation

of Actinobacteria, but positively affected that of d-Proteo-
bacteria, Chlorobi and Elusimicrobia (Fig. 5). Soil organic

carbon content and C:N ratio were involved in a small

number of phyla variations and explained small amounts

of these variations.

Land management was not included in the filter-rank-

ing due to the impossibility of determining the relative

contributions of each category. However, comparison of

the signs and values of the standardized estimated coeffi-

cients highlighted the contrasting influences of land man-

agement intensity on taxa variation. A positive

relationship was observed between cropping intensity

Figure 5. Contribution and effect of physicochemical and land management variables in the distribution of bacterial phyla. The respective

significant contribution of each variable is represented by the height of the shape and was calculated by taking into account all other variables

using partial regression models and adjusting the R2 values. The color was scaled to depict the value of the standardized partial regression

coefficients (green, positive, red negative effect). c-Proteobacteria and Acidobacteria are not represented since no significant contribution of any

physicochemical or land management variables explained their variations in the data set. Bacterial taxa are ranked according to their overall

relative abundance in the data set.
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(from forest to conventional tillage) and variations in

bacterial and archaeal taxa belonging to Bacteroidetes,

Firmicutes, Chloroflexi, Gemmatimonadetes, Tha-

umarchaeota, Crenarchaeota, and Fibrobacteres (Fig. 5).

On the contrary, a negative influence of cropping inten-

sity was observed for d-Proteobacteria, Planctomycetes,

and Verrucomicrobia (Fig. 5). An unusual response was

observed for Nitrospira in that the response curve was

hump-backed and centered on catch crop and minimum

tillage (Fig. 5).

Discussion

Although spatial patterns of microbial diversity have been

well documented from micro-scale (e.g., Constancias

et al. 2014) to continental scale (e.g., Fierer and Jackson

2006) these studies did not provide significant insights

into the processes and ecological attributes regulating bac-

terial composition and the populations constituting the

whole community. Here, we focused on an agricultural

landscape to determine the relative influence of land

management intensity and soil physicochemical parame-

ters on soil bacterial and archeal community composition

and populations.

First, our study provided original maps of bacterial and

archaeal community composition revealing significant

spatial patterns and emphasizing that microbial commu-

nities are not randomly distributed at the landscape scale

as previously observed at other scales (King et al. 2010).

Visual comparison of the patches obtained for commu-

nity composition and environmental characteristics

revealed significant matches suggesting a significant influ-

ence of both land management and soil characteristics.

This was statistically confirmed by the variance partition-

ing analysis, which also revealed that space explained a

significant part of soil microbial community variation.

This result implies that neither deterministic processes

(environmental selection) nor neutral processes (dispersal

limitation) are exclusive in explaining community compo-

sition variation (Martiny et al. 2011; Ranjard et al. 2013).

A similar observation was reported for macroorganisms

(Martiny et al. 2006), and for microorganisms at territo-

rial or continental scales (Martiny et al. 2011; Ranjard

et al. 2013) and more recently, it has been shown that

models based on the neutral theory are able to predict

the distribution patterns of microorganisms (Sloan et al.

2006; Woodcock et al. 2007).

Among the soil properties, pH was one of the most sig-

nificant drivers of bacterial composition. Fierer and Jack-

son (2006) suggested that pH imposes significant and

direct physiological stress on bacterial cells, selecting the

best-adapted ones. The primary role of pH on bacterial

community diversity and composition has been demon-

strated in numerous studies over the past decade (e.g., Fi-

erer and Jackson 2006; Rousk et al. 2010; Shen et al.

2013). In our case, even if pH exhibited weak variability

(mean of 7.7, with a median of 8.0) across the landscape,

it mainly influenced bacterial community variations. On

the other hand, this small pH variation made it possible

to show that texture, organic carbon content and C:N are

also important drivers of bacterial community structure.

Soil texture has been shown to control habitat number

and diversity in terms of hosting and protecting microbial

communities against several abiotic and biotic stresses,

including desiccation and predation from protozoa, for

example (Ranjard and Richaume 2001). Covariations

between bacterial community composition and organic

carbon content and C:N ratio confirmed the influence of

nutrient quantity and quality on microbial community

composition (Dequiedt et al. 2009). This covariation

could result from competition between bacterial popula-

tions for different types of soil organic matter according

to their copiotrophic/oligotrophic attributes (Bernard

et al. 2007; Fierer et al. 2007).

Organic content, C:N ratio and pH are strongly

impacted by land management and especially agricultural

practices (Arrouays et al. 2001). This is coherent with the

strong discrimination of bacterial communities observed

between forest and croplands, which exhibited differences

in soil characteristics. The influence of agricultural land

management, which had been separated into different

clusters based on cropping intensity and soil disturbance

by tillage, did not reveal any significant discrimination of

bacterial community composition between these clusters.

This result is not in agreement with previous experimen-

tal trials where tillage intensity was shown to be an

important driver of soil microbial communities (Acosta-

Mart�ınez et al. 2010; Lienhard et al. 2013). Therefore, soil

characteristics rather than agricultural practices have a

stronger influence on bacterial community composition

at a landscape scale and only important modifications in

land management type would impact bacterial commu-

nity composition (Lauber et al. 2008; Kuramae et al.

2012).

By characterizing the distribution of bacterial and ar-

chaeal taxonomic groups at the landscape scale, we were

able to compile, for the first time, original maps for the

19 most abundant phyla constituting the community.

These maps revealed a heterogeneous and spatially struc-

tured distribution for all taxa except the Acidobacteria

and c-Proteobacteria phyla. The absence of significant

spatial patterns for these two taxa might be partly due to

the low pH variability across the landscape as pH is

known to be an important driver for them (Lauber et al.

2008; Lauber et al. 2009; Nacke et al. 2011). It is interest-

ing to note the contrasting distribution patterns of each
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bacterial taxon across the landscape, with patches ranging

from 493 to 1147 m depending on the taxon. Different

types of distribution patterns, characterized by large,

medium or small patch size, could be distinguished at

this scale. Bacterial taxa such as Bacteroidetes, Nitrospira,

and a-Proteobacteria exhibited spatial patterns character-

ized by small patches (about 500 m), which partly

matched with the distribution of land management types

across the landscape. Fibrobacteres, Armatimonadetes,

Gemmatimonadetes, Crenarchaeota, and b-Proteobaceria
were distributed in larger patches (around 600 m), which

matched both the distribution of land management clus-

ters and physicochemical characteristics. Contrastingly,

the spatial patterns of taxa including Chlorobi, Actinobac-

teria, Planctomycetes, and d-Proteobacteria were charac-

terized by an intermediate patch size (about 700 m)

which matched with soil characteristics and geomorphol-

ogy, especially in the case of the “Sans fond” river loca-

tion. Finally, taxa belonging to Thaumarchaeota,

Verrucomicrobia, Elusimicrobia, and Firmicutes exhibited

larger patches across the landscape (about 1000 m),

which also matched with variations in soil characteristics

and geomorphology. These contrasting patterns suggest

that different drivers contrastingly shape bacterial taxa

across the landscape. It also suggests that bacterial taxa

might be differentially influenced by neutral processes

(i.e., dispersal capabilities).

Variance partitioning analysis of bacterial and archaeal

taxa variation revealed that soil physicochemical charac-

teristics and land management mainly contributed in

explaining the spatial distribution of 16 of the 19 taxa.

This suggests that the main process shaping the distribu-

tion of bacterial and archaeal taxa across the landscape is

environmental selection determined by physicochemical

properties and land-use. Repeated reports of the strong

influence of local soil environmental heterogeneity had

led to the conclusion that selection was the only process

shaping soil microbial communities (Fierer and Jackson

2006; Rousk et al. 2010). Interestingly, we systematically

recorded a significant contribution of space in explaining

the distribution of bacterial and archaeal taxa (except for

Planctomycetes), which suggests that dispersal may also

contribute to producing the observed patterns. However,

demonstrating the influence of a dispersal process in

shaping the distribution of soil microbial communities

and populations is neither easy nor frequent in microbial

ecology with few studies using appropriate sampling

designs and modeling approaches (Hanson and Fuhrman

2012). In our case, the contrasting contribution of space

depending on the taxa could result from different dis-

persal capabilities, which would include their abilities for

passive dispersal and to successfully settle in locations

characterized by contrasting environmental conditions

(Hanson and Fuhrman 2012). This differential contribu-

tion of space could also result from mass effects with

populations being maintained at particular locations by

the constant emigration of individuals from distant hot-

spots (Leibold et al. 2004). This could be especially

important for phyla with spatial patches outside the range

of soil physicochemical characteristics and land manage-

ment practices (e.g., Nitrospirae, Bacteroidetes, Firmicutes

and Elusimicrobia). On the other hand, the relatively

poor impact of space in determining the distributions of

bacterial and archaeal taxa belonging to a-Proteobacteria,
Planctomycetes, Crenarchaeota, and Verrucomicrobia

could reflect the weak impact of dispersal-mediated pro-

cesses. This is in agreement with the size of the patch,

which matches with physicochemical variability across the

landscape.

Unsurprisingly, pH emerges as the filter exhibiting the

most important correlation with the distribution of most

of the phyla, thus confirming its strong influence on the

community composition as a whole. a-Proteobacteria, d-
Proteobacteria, Planctomycetes, and Verrucomicrobia

were strongly correlated with soil pH (both positively and

negatively). The acidophilic attributes of some genera

belonging to a-Proteobacteria and Verrucomicrobia and

the basophilic attributes of some genera belonging to

Planctomycetes and d-Proteobacteria are coherent with

the correlation between these taxa and pH reported in

recent studies (Nacke et al. 2011). Soil texture, repre-

sented by clay or sand contents, was the second most

important soil driver for b-Proteobacteria, Bacteroidetes,
and Chloroflexi. This suggests that some taxa are better

adapted to live in less protected and oligotrophic habitats

represented by coarse textured soils whereas others live in

more protected and copiotrophic habitats represented by

fine textured soils (Dequiedt et al. 2009; Constancias

et al. 2014). More precisely, b-Proteobacteria were nega-

tively influenced by clay content indicating that coarse

textured soils are more favorable habitats for this taxon.

These observations confirmed the affinity of some genera

belonging to b-proteobacteria and Bacteroidetes for a dis-

turbed environment and matched with their ecological

attributes as r-strategists (Cleveland et al. 2007). Soil

organic carbon content and C:N ratio, representing tro-

phic quantity and quality, were less shared drivers of the

bacterial and archaeal taxa and explained smaller amounts

of their variation. This contrasts with Fierer et al. (2007),

who demonstrated experimentally that most of the bacte-

rial phyla could be simply described according to their

copiotrophic and oligotrophic attributes. This discrepancy

could result from the low variations in soil organic con-

tent and C:N ratio that occurred across the studied land-

scape. Nevertheless, the spatial distribution of d-
Proteobacteria, Chlorobi and Actinobacteria was mainly
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influenced by soil organic content. More precisely, d-Pro-
teobacteria and Chlorobi were positively influenced

whereas Actinobacteria was negatively affected by trophic

quantity, thus confirming the respective copiotrophic and

oligotrophic behaviors of some genera belonging to these

phyla (Cleveland et al. 2007; Pascault et al. 2013).

The confrontation of soil bacterial and archaeal taxa

variation with land use revealed that a-Proteobacteria, Fi-
brobacteres, and Bacteroidetes phyla were strongly

impacted by a coarse level of land use discrimination

(forest vs. croplands). These observations confirmed

recent studies which highlighted a greater relative abun-

dance of Fibrobacteres, Bacteroidetes, and a lower relative

abundance of a-Proteobacteria in agricultural soils as

compared to forest ecosystems (Jangid et al. 2008; Nacke

et al. 2011; Shange et al. 2012). Similarly, the distribu-

tions of d-Proteobacteria, Planctomycetes, Verrucomicro-

ba, and Gemmatimonadetes were impacted by an

increasing cropping intensity represented by crops versus

forest and perennial crops. Planctomycetes and d-Proteo-
bacteria, which have been described as K-strategists,

(Buckley et al. 2006; Pascault et al. 2013) might have an

advantage under less disturbed environmental conditions.

In the F�enay landscape, the catch crop mainly consisted

in leguminous plants that could explain the observed eco-

logical optimum of Nitrospirae, which includes taxa

known to interact with plant communities. Bacterial and

archaeal taxa including Bacteroidetes, Thaumarchaeota,

Crenarchaeota, Armatimonadetes, and Fibrobacteres

exhibited their ecological optima at the highest level of

land management disturbance, represented by conven-

tional tillage. Bacteria belonging to the Bacteroidetes

phyla have been recently described as r-strategists and

stress resistant which could explain their affinity for

highly disturbed soil environments (Eilers et al. 2010).

However, Thaumarchaeota, Crenarchaeota, Armatimona-

detes, and Fibrobacteres are usually pooled as minor taxa

(<1%), and therefore, to date, we do not possess any sig-

nificant knowledge about their ecological attributes. Nev-

ertheless, our study suggests that they can be considered

as r-strategists.

Altogether, by studying bacterial community composi-

tion and taxa distribution at a landscape scale, we evi-

denced that the distribution of each taxon, as well as the

community composition as a whole, is heterogeneous and

spatially structured. The results of our study also empha-

size that environmental selection may not be the only

process that explains patterns of soil microbial commu-

nity distribution. The selection process results from soil

physicochemical filters (pH, texture and nutrient status),

to a large extent, but also from disturbance intensity aris-

ing from human activities. Even though our study did

not directly demonstrate that the influence of space was

exclusively due to dispersal limitation of the populations

constituting the community, our data would support this

hypothesis. In addition, a spatial approach was used to

complete and define new ecological attributes for most of

the taxa identified. Further investigations should now be

devoted to the spatial patterns of fungal communities to

fully depict the mechanisms and drivers of soil microbial

biodiversity, and a more thorough analysis of the link

with soil functioning.
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Abstract

Despite the relevance of landscape, regarding the spatial patterning of microbial

communities and the relative influence of environmental parameters versus

human activities, few investigations have been conducted at this scale. Here, we

used a systematic grid to characterize the distribution of soil microbial commu-

nities at 278 sites across a monitored agricultural landscape of 13 km². Molecu-

lar microbial biomass was estimated by soil DNA recovery and bacterial

diversity by 16S rRNA gene pyrosequencing. Geostatistics provided the first

maps of microbial community at this scale and revealed a heterogeneous but

spatially structured distribution of microbial biomass and diversity with patches

of several hundreds of meters. Variance partitioning revealed that both micro-

bial abundance and bacterial diversity distribution were highly dependent of

soil properties and land use (total variance explained ranged between 55% and

78%). Microbial biomass and bacterial richness distributions were mainly

explained by soil pH and texture whereas bacterial evenness distribution was

mainly related to land management. Bacterial diversity (richness, evenness, and

Shannon index) was positively influenced by cropping intensity and especially

by soil tillage, resulting in spots of low microbial diversity in soils under forest

management. Spatial descriptors also explained a small but significant portion

of the microbial distribution suggesting that landscape configuration also shapes

microbial biomass and bacterial diversity.
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Introduction

Soil microorganisms are the most abundant and diverse

living organisms on earth and are key players in the biogeo-

chemical cycles. However, the environmental factors

shaping soil microbial community abundance and assembly

are still unclear, which limits our understanding of the role

of soil biodiversity in ecosystem services (Gardi et al. 2009).

Since the 18th century, ecologists studying macroorganisms

have often used spatial approaches to better understand the

processes and filters which drive the magnitude and the

variability of biodiversity (Martiny et al. 2006). More

recently, microbial ecologists have found that these

approaches can also be applied to soil microorganisms

(Ettema and Wardle 2002). Consequently, the number of

soil microbiology studies integrating a spatial dimension

has increased considerably during the last decade. These

studies have systematically demonstrated a significant spa-

tial structuring of microbial communities over multiple

spatial scales (i.e., that the high spatial variability/heteroge-

neity of microbial community characteristics is not ran-

domly distributed in space), such as: the microscale (from

lm2 to mm2, Nunan et al. 2003), plot scale (from m2 to

hundreds of m2; Rousk et al. 2010), regional scale (from

km2 to hundreds of km2, Dequiedt et al. 2009; Drenovsky

et al. 2010) and global scale (ca. >100 000 km2; Dequiedt

et al. 2011; Griffiths et al. 2011; Fierer and Ladau 2012;

Serna-Chavez et al. 2013). All these scales are relevant to

better understand the ecology of soil microorganisms and

the determinism of their diversity as they represent the

multiple levels of spatial heterogeneity in the soil matrix,

climatic conditions, geomorphology, and land use that

drives soil microbial diversity (Ettema and Wardle 2002).

Even if the sets of environmental variables were not

always completely similar among the studies at the differ-

ent spatial scales, each of them allowed the identification of

environmental filters shaping soil microbial communities.

On a broad scale, environmental filters involved in the dis-

tribution of microbial communities were identified as soil

type, with a significant effect of pH, carbon content and

soil texture, as well as of additional factors such as land use

and climatic conditions (Fierer and Jackson 2006; Bissett

et al. 2010; Pasternak et al. 2013). At the soil microscale,

factors such as porosity (Chenu et al. 2001) conditioning

carbon substrate and nutrients availability as well as the

level of protection of aggregates for microorganisms to sur-

rounding perturbations (Constancias et al. 2013), were

identified as drivers of microbial community variation

between the different microhabitats. At the intermediate

plot scale, proximal factors such as pH (Rousk et al. 2010),

organic carbon content (Saetre and B�a�ath 2000), texture,

and land management (Philippot et al. 2009) have been

highlighted as important drivers. Altogether, these studies

suggested that although similar environmental drivers are

involved in shaping microbial communities at every scale,

particular filters may have a significant influence at a par-

ticular scale. In this context, it is now crucial to investigate

an up scaling approach and provide a generic response to

the question: which filter for which scale?

Considering the added complexity of shaping soil

microbial diversity while up scaling, a gap remains in our

knowledge of community distribution at the landscape

scale, that is, intermediate between the plot and territory

scales. This scale is relevant since it may integrate a strong

variability in soil types potentially close to that of a region

and because it is the scale of human activities at which land

use and agricultural practices are integrated. Microbial

investigations at this particular spatial scale are rare and

have focused on particular homogeneous ecosystems in

terms of land management. Zinger et al. (2011) focused on

Alpine natural ecosystems to decipher the influence of

plant cover, soil physicochemistry and space in determining

soil microbial communities. Other studies focused on an

agricultural landscape, but were limited to a restricted

mosaic of experimental plots and did not integrate land-

scape variability or spatial configuration (Enwall et al.

2010; Wess�en et al. 2011). Altogether, they have highlighted

the need for investigations on a landscape scale to better

understand the impact of land management versus soil

physicochemical characteristics on indigenous microbial

communities. Landscape is also the scale for human activi-

ties and decision makers, and a deeper understanding of

the relative influence of land use and habitat heterogeneity

on below ground soil diversity could be helpful to formu-

late management strategies for a sustainable land use.

The present study was designed to map and characterize

the spatial variation of the soil microbial community across a

landscape and to rank the environmental and land use filters

influencing this distribution. The studied landscape consisted

of forest and arable plots under various types of agricultural

management. Soils (n = 278) were sampled within a system-

atic sampling grid (spacing of 215 m) covering the entire

landscape (13 km2). Physicochemical characteristics and the

type of land management were precisely referenced for each

soil. Soil molecular microbial biomass was determined from

the DNA yield of each soil sample (Dequiedt et al. 2011) and

bacterial diversity by massive inventory of the 16S rRNA gene

sequences amplified from this soil DNA. Geostatistical

approach was used to explain the spatial variability in micro-

bial abundance and diversity and to provide prediction

maps. The relative contributions of land management, soil

physicochemical characteristics, and space in determining

microbial abundance and bacterial diversity distribution

were identified and ranked by variance partitioning. We

hypothesized that land management, especially agricultural

practices, would be the main drivers of microbial abundance
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and diversity at the landscape scale, due to smaller variations

of soil physicochemical characteristics than at wider scales.

Spatial descriptors were also integrated into the analysis to

better decipher their relative contributions to community

variation across landscape and to consider other neutral pro-

cesses in community distribution.

Experimental Procedures

Site description, sampling strategy, and
data collection

The study was carried out on a monitored landscape cover-

ing 13 km2 in Burgundy (France, Lat: 47°140N, Long:

5°030E), characterized by oak hornbeam deciduous forests

(3.86 km2) and intensive agricultural croplands (9.22 km2).

The site is under continental climate, with a mean annual

air temperature of 10.4°C and a mean annual rainfall of

762 mm (period 1968 – 2011). The whole area is situated

on deep calcisol (IUSS Working Group, WRB 2006) of

mainly silty or silty clay texture and is slightly sloping.

Croplands were planted with winter crops (winter wheat,

oilseed rape) in rotation with late sown crops (spring bar-

ley). Crop species and management practices were recorded

from 2004 to 2011 over the whole study area.

The sampling design covers the entire landscape and is

based upon a square grid with spacing of 215 m which cor-

responds to 248 sites. It also includes 30 additional observa-

tions positioned randomly within the grid, which permit

exploration of the variation over distances less than 215 m

(10–100 m from the closest site). All sites were sampled in

September 2011. At each site, five soil cores (core diameter:

5 cm; 0–20 cm depth) were collected on a surface of 4 m2

at inter row for agricultural sites and at least 1 m away

from trees, then bulked and sieved through 2-mm mesh.

Samples were lyophilized at �80°C and stored at �40°C in

the soil conservatory of the GenoSol platform (http://

www2.dijon.inra.fr/plateforme_genosol). Samples were

randomized prior to analysis to avoid batch effects. Physi-

cochemical analyses (pH, organic carbon, total nitrogen,

CaCO3 and texture) were performed as described by

Dequiedt et al. (2011). Soil organic carbon was determined

by loss on ignition method (https://www6.lille.inra.fr/las/

Methodes-d-analyse/Sols/04.-Carbone-Azote-Matieres-Or-

ganiques/SOL-0402-Perte-au-feu-a-1100-C.).

Molecular characterization of soil microbial
communities

Soil DNA extraction, quantification and
purification

DNA was extracted and purified from the 278 soil samples

using the GnS-GII procedure as described by Plassart et al.

(2012). Crude DNA extracts were quantified by agarose gel

electrophoresis stained with ethidium bromide and using calf

thymus DNA as standard curve, reported to be reliable for

estimating microbial biomass in Dequiedt et al. (2011). Crude

DNA was then purified using a MinElute gel extraction kit

(Qiagen, Courtabeoeuf, France) and quantified using Quanti-

Fluor staining kit (Promega, Madison, Wisconsin, USA),

prior further investigations.

PCR amplification and pyrosequencing of 16S
rRNA gene sequences

Amplification targeted the 16S rRNA V3-V4 gene region

using primers F479 and R888 and a nested PCR strategy

to add an 10-bp multiplex identifier (MID) barcode, as

initially described by Plassart et al. (2012). Equal amounts

of each sample were pooled, and all further steps (adapter

ligation, emPCR and 454-pyrosequencing) were carried

out by Beckman Coulter Genomics (Danvers, MA, http://

www.beckmangenomics.com/) on a 454 GS-FLX-Tita-

nium sequencer (Roche, Basel, Switzerland). The raw data

sets are publicly available in the EBI database system (in

the Short Read Archive) under project accession no.

PRJEB5219.

Bioinformatics sequence analysis

The bioinformatics analyses were performed using the

GnS-PIPE at the GenoSol platform Terrat et al. (2012).

Sequences obtained after an initial quality filtering step

(>350 bp, no base ambiguity), were aligned with Infernal

alignments using a secondary structure of the 16S rRNA

gene (Cole et al. 2009), and clustered at 95% sequence sim-

ilarity into operational taxonomic units (OTU). Clustering

was done with a custom PERL program that does not take

into account differences in homopolymer length, which

can constitute one of the major 454 sequencing errors (Bal-

zer et al. 2011). Procedure details are provided in Table S1.

A subsample of 10,800 quality sequences for each sample

was randomly selected to allow rigorous comparison of the

data. Bacterial diversity was characterized by OTU richness,

evenness, and Shannon index (Haegeman et al. 2013).

Metadata analysis

Clustering of land cover and agricultural practices
into land management categories

In order to summarize the land management practices

over the entire landscape, a factor analysis for mixed data

was used to define land management clusters using the

FactoMineR package (Lê et al. 2008) with input data such

as land use, soil tillage, crop rotation diversity (number
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of plant types in the crop rotation), pesticide treatment

frequency index.

Interpolated mapping

A geostatistical method was used to map physicochemical

data and microbial communities and to characterize their

spatial variations. As the studied variables do not follow a

required Gaussian distribution, they were first trans-

formed using the non parametric rank order (or normal

scores) transformation prior to considering the spatial

correlations (Juang et al. 2001). Conventionally in geosta-

tistical analysis, an estimate of a variogram model is com-

puted based on the observations which describe the

spatial variation of the property of interest. This model is

then used to predict the property at unsampled locations

using kriging (Webster and Oliver 2007). A usual method

for variogram estimation is first to calculate the empirical

(so called experimental) variogram by the method of

moments (Matheron 1965), and then to fit a model to

the empirical variogram by (weighted) nonlinear least

squares. We investigated also an alternative method which

uses maximum likelihood (ML) to estimates parameters

of the model directly from the data, on the assumption

that it is a multivariate normal distribution. We retained

the Mat�ern model which can describe various spatial pro-

cesses (Minasny and McBratney 2005). The validity of the

fitted geostatistical model was assessed in terms of the

standardized squared prediction errors (SSPE) using the

results of a leave one out cross-validation. If the fitted

model is a valid representation of the spatial variation of

the soil or microbial property, then these errors have a v2

distribution which has a mean of 1 and median 0.455

(Lark 2002). The mean and median values of the SSPE

were also calculated for 1000 simulations of the fitted

model to determine the 95% confidence limits. The

ordinary kriging estimation was performed in the stan-

dardized rank space and then the kriging estimates were

back transformed into the original space. We used the

geostatistical analysis gstat and GeoR R package for vario-

grams analysis and kriging (Ribiero and Diggle 2001).

Variance partitioning

The relative contributions of soil physicochemical parame-

ters, land management (Fig. 1), and space in shaping the

patterns of soil microbial abundance and bacterial diver-

sity were estimated by variance partitioning. A Principal

Coordinates of a Neighbour Matrix approach (PCNM)

was used to describe and identify the scales of spatial rela-

tionship between samples (Dray et al. 2006). This PCNM

method was applied to the geographic coordinates and

yielded 76 PCNM with significant Moran index

(P < 0.001), representing the spatial scales that the sam-

pling scheme could perceive (Ramette and Tiedje 2007).

The spatial neighborhood described by each PCNM was

determined from Gaussian variogram models (Bellier et al.

2007). All quantitative (response and explanatory) data

were standardized in order to have an approximated

Gaussian and homoskedastic residual distribution. To

determine the environmental parameters significantly

shaping bacterial communities, a stepwise selection proce-

dure was first applied to all physicochemical and land

management variables by maximizing the adjusted r2 while

minimizing the Akaike Information Criteron (Ramette

2007). Spatial descriptors were then selected from the

model residuals (Brocard et al., 2004). These selection

steps were done to limit over fitting and to exclude co lin-

ear variables (Ramette 2007). The respective amounts of

variance (i.e., marginal and shared) were determined by

canonical variation partitioning and the adjusted r2 with

RDA (Ramette 2007) for microbial biomass, bacterial rich-

ness, evenness, and Shannon’s diversity index. The statisti-

cal significance of the marginal effects was assessed from

999 permutations of the reduced model. All these analyses

were performed with R using the vegan package (Oksanen

et al. 2011). All these analyses were performed with the R

free software (http://www.r-project.org/).

Results

Landscape variability and distribution of
environmental characteristics

Most soils (70%) in the studied landscape were silty

(median 56.7%) or clayey (median 34.3%) with alkaline

pH (median 8.0, Table 1). Organic carbon and total

nitrogen contents were highly correlated (r2 = 0.92,

P < 0.001) and ranged from 1.74 to 174 and 0.835 to

14.6 g.kg�1, respectively (Table 1). Geostatistical mapping

of the environmental variables revealed a heterogeneous

distribution of soil characteristics across the landscape,

which was spatially structured (Fig. 1). High values of soil

organic carbon content were systematically found under

forest and in agricultural plots beside the “La Sans Fond”

and “Grand Foss�e” rivers (Fig. 1A). Acidic soils were

mainly located at the north east of “F�enay” village and in

the western part of the studied area. Alkaline soil zones

were found near the “La Sans Fond” river (Fig. 1B),

together with high sand and CaCO3 contents (Fig. 1C–E).
The validity of the spatial predictions of soil characteris-

tics was confirmed by the results of the cross-validation.

All the indicators (median and mean of the SSPEs) fall

within the 95% confidence intervals (Table S2). The fitted

models gave effective ranges from 611 to 839 m, depend-

ing on the soil parameters (Fig. 1, Table S2), indicating
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that all soil characteristics were spatially structured in

patches of several hundreds of meters.

Land use and agricultural practices were clustered into

six categories (from forest to agricultural plots with a gra-

dient of cropping intensity; see materials and methods)

and mapped across the landscape. Six clusters were identi-

fied and discriminated first by land cover (forest vs.

agricultural plots), secondly by soil tillage intensity (no till-

age, minimum tillage, mechanical hoeing, conventional till-

age) and finally by the presence of a catch crop. The

(A) (B)

(C) (D)

(E) (F)

Figure 1. Maps and variogram soil and land use characteristics observed at the scale of the F�enay Landscape. Map of (A) soil organic carbon

content, (B) soil pH, (C) CaCO3, (D) sand content, (E) clay content, and (F) land management clusters. Points indicate the sampling locations.

Min., minimum; mech., mechanical; conv., conventional. For each kriged map the color scale to the left of each map indicates the extrapolated

values expressed as g.kg�1 of sample excepted for pH. Points represent the experimental variogram, continuous lines the Mat�ern models fitted by

maximum likelihood method. Geostatistics and cross-validation parameters are provided in Table S2.
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pesticide treatment frequency index and crop rotation

diversity (number of plant types) were not discriminating.

These clusters followed a gradient in cropping intensity

and in the diversity and persistence of plant cover, that is,

Forest (forest, no tillage, no catch crop, n = 44); Perennial

crop (three frequently mowed grasslands, three blackcur-

rant and 1 Miscanthus, n = 7); Catch crop (agricultural

plot, minimum tillage, catch crop, n = 22); Minimum till-

age (agricultural plot, minimum tillage, no catch crop,

n = 57); Conventional tillage (agricultural plot, conven-

tional tillage, no catch crop, n = 104); Mechanical hoeing

(agricultural plot, mechanical hoeing, no catch crop,

n = 33).

Agricultural plots in the conventional tillage and

mechanical hoeing clusters were mainly situated between

the villages of “Chevigny” and “F�enay” whereas most

plots in the minimum tillage cluster (with or without

catch crop) were found to the extreme south west and

south east. The forests plots were mainly situated beside

the two rivers (“La Sans Fond” and “Grand Foss�e”,

Fig. 1F).

Landscape distribution of molecular
microbial biomass

The amount of DNA recovered from the 278 soils of the

landscape ranged from 2.28 to 372.0 lg DNA.g�1 dry soil

(Table 1). The mean recovery was 65.2 lg DNA.g�1dry
soil with most soils (90%) yielding concentrations below

126 lg DNA.g�1dry soil. The map of microbial biomass

highlighted its heterogeneous distribution and revealed

high values under forest and under agricultural plots close

to the “Grand Foss�e” river, at the west of “Chevigny” and

“Saulon-La-Rue” and at the extreme east of the F�enay

landscape (Fig. 2A). The validity of the spatial prediction

is confirmed by the cross-validation results (Table S2).

The fitted model gave an effective range of 521 m (Fig. 2,

Table S2) confirming the spatial structure of microbial

biomass in patches of several hundreds of meters across

the F�enay landscape. Moreover, the small value of the m
parameter indicated a rough spatial process over small

distances (Table S2).

Landscape distribution of bacterial diversity

Pyrosequencing of 16S rRNA genes yielded a total of 5.106

sequences (10,800 quality sequences per sample). The rare-

faction curves of bacterial OTU confirmed that our

sequencing effort allowed a fine description of the bacterial

diversity in each soil sample (data not shown). Bacterial

richness across the F�enay landscape ranged from 850 to

1,761 OTU with a mean of 1,276 OTU (Table 1). Most

soils (85%) exhibited a bacterial richness between 1,100

and 1,480 OTU (Table 1). Soil bacterial evenness ranged

from 0.64 to 0.83 with a mean of 0.77 and most samples

(90%) exhibited an evenness value >0.74. Shannon index

ranged from 4.43 to 6.17 with a mean of 5.2. Eighty percent

of the soils gave values between 5.3 and 5.9 (Table 1).

Visual examination of maps of bacterial richness, even-

ness, and Shannon index evidenced a heterogeneous dis-

tribution and broad similar patterns (Fig. 3A–C).
However, a more precise inspection revealed several dif-

ferences between bacterial diversity parameters with hot-

spots of bacterial richness located all along the “Sans

Fond” river as well as at the east of “Chevigny” and “Sau-

lon-La-Rue” villages (Fig. 3A). Bacterial evenness was dis-

tributed in more numerous and smaller patches than

bacterial richness, with high values located between the

“F�enay” and “Saulon-La-Rue” villages and cold spots in

Table 1. Summary statistics of soil characteristics (n = 278).

Mean (SD) Median [min; max]

Physicochemical

Organic carbon (g.kg�1) 21.9 (15.8) 17.1 [1.7; 174]

Total nitrogen (g.kg�1) 2 (1.3) 1.6 [0.8; 14.6]

C:N ratio 10.7 (1.6) 10.4 [1; 22.2]

pH 7.7 (0.7) 8.0 [4.7; 8.4]

CaCO3 (g.kg�1) 84.6 (161.2) 3.3 [0; 835]

Clay (%) 33.3 (9.5) 34.3 [8; 61.7]

Silt (%) 57.9 (9.6) 56.7 [35.5; 86.2]

Sand (%) 8.8 (4.8) 7.4 [2; 29.3]

Microbial characteristics

Microbial biomass 65.2 (55.9) 48.5 [2.28; 372.0]

Bacterial richness 1276.2 (145.3) 1262.0 [850; 1761.0]

Bacterial evenness 0.8 (0.02) 0.8 [0.7; 0.8]

Bacterial Shannon index 5.5 (0.2) 5.5 [4.5; 6.1]
Figure 2. Map and variogram of soil molecular microbial biomass

observed at the scale of the F�enay landscape. The color indicates the

extrapolated values expressed as lg of DNA.g�1 of soil sample. Points

represent the experimental variogram, and continuous lines the

Mat�ern models fitted by maximum likelihood method. Geostatistics

and cross-validation parameters are provided in Table S2.
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the north east of “Chevigny” (Fig. 3B). The interpolated

map of Shannon diversity index showed an intermediate

distribution between bacterial richness and evenness with

hotspots of diversity along the “Sans Fond” river as well

as at the east of “Saulon-La-Rue”, whereas cold spots were

found in the north east of the landscape (Fig. 3C).

The results of the cross-validation confirmed the valid-

ity of the spatial predictions of the bacterial diversity

(Table S2). The fitted Mat�ern models showed effective

ranges of 807 m, 521 m, and 758 m for bacterial richness,

bacterial evenness, and Shannon index, respectively

(Fig. 3, Table S2). The small values of m parameter indi-

cated rough spatial processes of bacterial diversity over a

small distance (Table S2).

Variance partitioning of microbial
community

The partial regression models demonstrated a systemati-

cally significant influence of soil characteristics, land

management, and spatial descriptors on microbial bio-

mass and bacterial diversity variation. The total amount

of explained variance was 78.1% for microbial biomass,

and 54.6%, 74.4%, and 73.1% for bacterial richness, even-

ness, and Shannon index, respectively (Fig. 4). Soil char-

acteristics were the best predictors of microbial biomass

(21.4%), bacterial richness (43.7%), and Shannon diver-

sity index (29.3%) whereas land management was the best

descriptor of bacterial evenness (32.4%, Fig. 4) which was

not explained by the spatial variations of the environmen-

tal variables. Physicochemical parameters and land man-

agement clusters jointly explained a large amount of the

total variance (from 4.8% to 34.2%, Fig. 4) that could

not be tested.

The marginal effects of each filter within the sets of soil

characteristics and spatial descriptors were ranked accord-

ing to their respective amounts of variance explained, and

to their standardized estimated coefficients (Table 2). For

each filter, the marginal effect accounted for relatively

(A)

(B)

(C)

Figure 3. Maps of (A) bacterial richness, (B) bacterial evenness, and

(C) bacterial Shannon index parameters measured on the scale of the

Fenay landscape. The color indicates the extrapolated values. Points

represent the experimental variogram, and continuous lines the

Mat�ern models fitted by maximum likelihood method. Geostatistics

and cross-validation parameters are provided in Table S2.

Figure 4. Variance partitioning of molecular microbial biomass and

bacterial diversity parameters. The amount of explained variance

corresponds to the adjusted r2 values of the contextual groups using

partial redundancy analysis: soil physicochemical characteristics;

land management space; shared amount of variance between

soil characteristics and land management that could not be tested.

The significance level of the contribution of the sets of variables is

indicated as follows **P < 0.01 and ***P < 0.001. NVar is the number

of explanatory variables retained after selecting the most

parsimonious explanatory variables (by minimizing the AIC, akaike

information criterion).
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small, but significant, proportions of the total variance

(from 0.1% to 10%) due to the large number of parame-

ters involved. Regarding the soil characteristics, organic

carbon content (10.1%), C:N ratio (1.5%) and clay con-

tent (0.5%) were the main drivers of microbial biomass,

with organic carbon and clay content having a positive

effect (indicated by a positive sign for the standardized

coefficient) and C:N ratio a negative effect (Table 2). The

positive influence of soil organic carbon might be partly

explained by the fact that microbial biomass represents a

proportion (between 2% and 5%) of soil organic matter.

On the other hand, pH, clay, and CaCO3 contents were

the main drivers of bacterial richness, evenness, and Shan-

non index (explained variance ranging from 0.8% to

6.1%) with pH and CaCO3 having a positive influence

and clay content a negative influence (Table 2).

Land management was not included in the filter rank-

ing since it was impossible to determine the relative con-

tributions of each category. However, comparison of the

signs and values of the standardized estimated coefficients

highlighted a contrasting influence of forest and perennial

crops vs. annual crops (Table 2). More precisely, increase

of the microbial biomass by land management categories

followed the sequence: Forest>Perennial crops>Catch
Crop�Conventional tillage>Mechanical Hoeing>Mini-

mum Tillage. An opposite trend was highlighted for bac-

terial diversity parameters with annual croplands having a

positive influence and forest and perennial crops having a

negative one (Table 2), following the sequence: Mechani-

cal Hoeing>Catch Crop>Conventional Tillage>Minimum

Tillage>Perennial Crops>Forest (Table 2).

The spatial descriptors of the studied area corre-

sponded to 76 significant PCNM vectors, each represent-

ing different spatial scales (coarse, medium, and fine,

Table 2). The variance explained by spatial descriptors,

independently of environmental variables, ranged from

0.3% to 1.6% of the total variance. Spatial descriptors

representing coarse and medium scales were mainly

involved in microbial biomass and bacterial diversity dis-

tribution. Fine scale descriptors were only involved in

bacterial evenness and Shannon index. The influence of

the scale was ranked, as described above, by comparing

the signs of the standardized coefficients. Both positive

and negative influences of spatial descriptors were high-

lighted to explain variations in microbial biomass whereas

only negative influences were highlighted for bacterial

diversity. Therefore, microbial biomass distribution was

mainly explained by coarse (PCNM11, 804 m radius) and

medium scales (PCNM25 and PCNM15, 670 and 630 m

radius), the coarse scale having a positive influence and

the medium scale a negative one. A negative effect on

bacterial richness was also highlighted at the scales of

PCNM11 (804 m radius) and PCNM24 (624 m radius). A

larger number of PCNMs were involved in explaining

bacterial evenness and Shannon variations, describing

coarse scale (PCNM3 and PCNM2, for bacterial evenness

and Shannon, respectively), medium scale (PCNM21 for

both evenness and Shannon), and fine scale (PCNM59

and PCNM44, respectively).

Discussion

Most recent studies of soil microbial biogeography have

highlighted the major contribution of proximal soil charac-

teristics as drivers of microbial community (Fierer and Jack-

son 2006; Griffiths et al. 2011). However, the considerable

soil heterogeneity occurring on a wide scale may mask other

drivers associated with human activities, such as agricultural

or industrial practices (Fierer and Ladau 2012). Here, we

studied microbial distribution across a landscape, which

represents the scale of human activities, to better identify

and rank environmental versus land management drivers.

The landscape studied was mainly characterized by

alkaline silty soils and a mosaic of different types of land

management constituted by forest (18% of the area) and

agricultural plots with contrasting agricultural practices

(82% of the area). The soil characteristics were spatially

structured in patches ranging from 600 m to 800 m,

which matched the variations in pedological patterns

(data not shown) and the distribution of land manage-

ment categories (Fig. 1). Indeed, lower pH and higher

organic carbon, nitrogen contents and C:N ratio were

recorded under forest as classically observed (Arrouays

et al. 2001). Soil characteristics also matched with land-

scape geomorphology and especially with the “Sans fond”

river. Regarding land management, the forest plots were

located along the two rivers whereas the agricultural plots

distribution did not match with either landscape geomor-

phology or pedological patterns.

The amount of soil DNA recovered from the 278 soils

under study was within the range classically obtained in

soil environments with various soil protocols (Plassart

et al. 2012). The great range of variations recorded across

the landscape was similar to that observed on the French

territory scale (Dequiedt et al. 2011), thus supporting the

considerable variability of microbial biomass at both local

and global scales. Geostatistical predictions of DNA recov-

ery provided the first map of microbial biomass at this

scale. As indicated by the variogram model parameters, the

heterogeneous distribution of microbial biomass showed

significant spatial organization into patches of several hun-

dreds of meters (about 521 m in radius, Fig. 2). A similar

heterogeneous and spatially structured distribution was

observed at both smaller and larger scales with patches

ranging from several millimeters at the soil microscale

(Nunan et al. 2003), several tens of meters at the plot scale
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(Berner et al. 2011; several hundreds of kilometers at the

territory scale (Dequiedt et al. 2011), to several thousands

of kilometers at the earth scale (Serna-Chavez et al. 2013).

Visual comparison of maps of microbial biomass and

environmental characteristics suggested that microbial

abundance was influenced by both land management and

soil characteristics. Microbial biomass hot spots matched

with forest plots, and cold spots with croplands, which

also corresponded to the distributions of soil organic car-

bon contents and C:N ratio. Variance partitioning of

microbial biomass revealed that soil characteristics were

the main drivers, as previously reported on a larger scale

(Dequiedt et al. 2011; Serna-Chavez et al. 2013). More

precisely, organic carbon content and C:N ratio were the

primary drivers influencing microbial biomass with a

positive and negative effects, respectively. This is consis-

tent with several reports that organic carbon availability

and soil organic matter recalcitrance to degradation by

microbes are related to the abundance of microorganisms

(Leckie et al. 2004; de Boer et al. 2005). However, a weak

influence of clay content was also recorded, which is not

consistent with environmental filters hierarchy observed

on a broader scale (Dequiedt et al. 2011). This difference

might partly be explained by the smaller variation in soil

texture measured on our landscape scale, as compared to

the French territory scale (Coefficient Variation

[CV] = 16.5% vs. 43.6%; respectively) and contrary to

the variations in quantity and quality of organic carbon

(CV = 72.1% vs. 80.0%, and 37.1% vs. 15.0%, respec-

tively, Ranjard et al. 2013).

Analysis of the marginal effect of land management cate-

gories revealed a negative impact of croplands on microbial

biomass but not of forests (Table 2). This could be due to

the high organic matter content of soil under forest man-

agement as compared to the low organic carbon content

observed in soils under conventional crops (Arrouays et al.

2001). Comparison of the types of agricultural manage-

ments revealed differences only between perennial and non

perennial crops, thus, confirming the stimulation of micro-

bial abundance under permanent and diversified plant

cover (Lienhard et al. 2014). However, no difference in the

effects of tillage regime were observed, which contrasts with

recurrent reports of a significant loss of microbial biomass

with increased soil disturbance (Govaerts et al. 2007; Lien-

hard et al. 2014). This discrepancy could result from the

covariation of tillage regimes with certain soil characteris-

tics in our landscape (e.g., soil organic carbon and texture),

which might have increased the amount of variance

explained by interaction between land management and

soil characteristics, and hampered our evaluation of the

impact of particular agricultural practices.

Characterization of bacterial diversity by pyrosequenc-

ing of 16S rDNA from soil DNA revealed significant spa-

tial variations in bacterial richness, evenness, and

Shannon index across the landscape which were in agree-

ment with other studies covering variations in physico-

chemical and land management characteristics at similar

or broader spatial scales (Nacke et al. 2011; Shange et al.

2012). Geostatistical interpolation showed spatial patterns

characterized by patches of 807 m (richness), 521 m

(evenness), and 758 m (Shannon index). The maps of

bacterial richness and microbial biomass did not match,

confirming that microbial abundance and diversity can be

influenced by different drivers (Fierer and Jackson 2006;

Dequiedt et al. 2009, 2011). These different patterns

might be partially related to the contribution of fungi,

protozoa, and other eukaryotes to the DNA pool, which

may be under the dependence of drivers different from

those of bacterial biomass. Hot spots of richness seemed

to occur in the vicinity of the “Sans fond” river, suggest-

ing a strong influence of landscape geomorphology but

also of soil characteristics since the soils all along this

river were alkaline with high soil organic carbon and sand

contents. Spatial distributions of bacterial evenness and

Shannon index were fairly similar to richness but smaller

patches were also apparent, suggesting an impact of other

environmental filters. Variance partitioning confirmed the

different determinisms of richness and evenness, with

richness being mainly influenced by soil characteristics

and evenness by land management. This is congruent

with recent studies evidencing the major effect of soil

characteristics on bacterial richness (Lauber et al. 2009;

Kuramae et al. 2012; Rodrigues et al. 2013). Our results

support that soil characteristics influence the number of

species by modulating soil habitat heterogeneity whereas

land management mostly influences bacterial population

equilibrium by modulating environmental perturbation.

Focusing more precisely on soil characteristics, our

study emphasized the overriding effect of pH as a stimu-

lating factor of bacterial community diversity (richness,

evenness, and therefore Shannon index) at various spatial

scales (Fierer and Jackson 2006; Green and Bohannan

2006; Rousk et al. 2010). Clay content also appeared to

be a significant driver of bacterial richness, evenness, and

Shannon index variation but had a deleterious effect.

Thus, fine textured soil harbored a large microbial bio-

mass, due to its more extensive microhabitats leading to a

high carrying capacity, but only a small number of bacte-

rial species, due partly to the reduced heterogeneity lead-

ing to a lesser diversity of microbial habitats at the soil

microscale (Carson et al. 2010; Chau et al. 2011). In

addition, the reduced evenness might result from the

increase of competitive exclusion between populations

due to the high homogeneity of soil microhabitats. This

observation might be also partly explained by the high

level of protection provided by fine texture soil for the
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bacterial community against environmental perturbations

(Chenu et al. 2001; Constancias et al. 2013), leading to a

decreased population equilibrium through a diminution

of selection process between populations (Giller et al.

1998; Bressan et al. 2008).

Independently of other environmental variables, land

management accounted for a small proportion (3.7%) of

the explained variance for bacterial richness, in agreement

with previous reports that bacterial richness is generally

poorly impacted by land use (Enwall et al. 2010; Kuramae

et al. 2012). Interestingly, bacterial richness was lower in

forest soils (mean of 1191 OTUs) than in crop soils (mean

of 1297 OTUs), whereas microbial biomass was strongly

stimulated under forest (159 lg DNA.g�1 soil for forest

soils vs. 47 lg DNA.g�1 soil for crop soils). A similar and

more significant trend was observed in the positive effect of

crop soils on evenness and Shannon index (0.73 vs. 0.78 for

forest and crop soils evenness, respectively; 5.16 vs. 5.58 for

forest and crop soils Shannon index, respectively). These

diversity parameters were positively related, in crop soils,

to the gradient of increased soil disturbance by tillage. This

stimulatory effect of tillage on soil bacterial diversity may

be related to the degree of perturbation induced by this

agricultural practice (Acosta-Mart�ınez et al. 2010; Lienhard

et al. 2014). According to the “hump back” model between

biodiversity and the intensity of environmental perturba-

tion, which suggests that the greatest biodiversity is

obtained with moderate environmental perturbation due

to a diminution in competitive niche exclusion and selec-

tion mechanisms occurring between populations (Giller

et al. 1998), our results emphasize that crop soils under

conventional tillage and mechanical hoeing would corre-

spond to these conditions (Lienhard et al. 2014).

Spatial descriptors, illustrating neighborhood relation-

ships between samples, systematically accounted for the

smallest significant contribution to microbial biomass and

diversity distributions at coarse (800–1280 m), medium

(630–800 m), and fine scales (440–630 m). In agreement

with Hanson et al. (2012), the influence of spatial descrip-

tors might be partly related to variations in unmeasured

soil characteristics at the medium scale, whereas it might

result from landscape configuration at the coarse and fine

scales. The coarse scale represents the global distribution of

forest vs. crop patches, and the fine scale represents the dis-

tribution of individual agricultural plots subjected to par-

ticular practices. These results suggest that landscape

configuration would be an additional driver of soil micro-

bial biomass and bacterial diversity distribution. This

hypothesis is in agreement with Ranjard et al. (2013), who

demonstrated the influence of territory heterogeneity and

configuration in shaping bacterial diversity turnover. In

addition, our analysis revealed a systematically negative

effect of spatial descriptors on bacterial diversity, which

suggests that landscape configuration might partially affect

bacterial diversity by limiting bacterial dispersal. This result

supports the hypothesis that the selection and dispersal

limitation of microbial populations are not exclusive as

suggested by Hanson and Fuhrman (2012).

Altogether, our study provides the first map of micro-

bial biomass and bacterial diversity across an agricultural

landscape, and demonstrated the heterogeneous but spa-

tially structured distribution of the microbial community

at this scale, mainly driven by proximal filters such as soil

characteristics and agricultural practices. Our results

therefore confirm that the landscape is an appropriate

scale for robust evaluation of the influence of agricultural

land management on soil microorganisms. This spatial

scale is also shown to be relevant for modifying and

improving human activities in the context of a sustainable

use of soil resources. Further analyses are now required to

measure and link soil microbial activities with microbial

diversity and to identify and better define the bacterial

groups and their ecological attributes at this scale.
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ORIGINAL ARTICLE

Improving soil bacterial taxa–area relationships assessment
using DNA meta-barcoding

S Terrat1, S Dequiedt1, W Horrigue1, M Lelievre1, C Cruaud2, NPA Saby3, C Jolivet3, D Arrouays3,
P-A Maron1,4, L Ranjard1,4,6 and N Chemidlin Prévost-Bouré5,6

The evaluation of the taxa–area relationship (TAR) with molecular fingerprinting data demonstrated the spatial structuration of
soil microorganisms and provided insights into the processes shaping their diversity. The increasing use of massive sequencing
technologies in biodiversity investigations has now raised the question of the advantages of such technologies over the
fingerprinting approach for elucidation of the determinism of soil microbial community assembly in broad-scale biogeographic
studies. Our objectives in this study were to compare DNA fingerprinting and meta-barcoding approaches for evaluating soil
bacterial TAR and the determinism of soil bacterial community assembly on a broad scale. This comparison was performed on
392 soil samples from four French geographic regions with different levels of environmental heterogeneity. Both molecular
approaches demonstrated a TAR with a significant slope but, because of its more sensitive description of soil bacterial
community richness, meta-barcoding provided significantly higher and more accurate estimates of turnover rates. Both
approaches were useful in evidencing the processes shaping bacterial diversity variations on a broad scale. When different
taxonomic resolutions were considered for meta-barcoding data, they significantly influenced the estimation of turnover rates but
not the relative importance of each component process. Altogether, DNA meta-barcoding provides a more accurate evaluation of
the TAR and may lead to re-examination of the processes shaping soil bacterial community assembly. This should provide new
insights into soil microbial ecology in the context of sustainable use of soil resources.
Heredity advance online publication, 8 October 2014; doi:10.1038/hdy.2014.91

INTRODUCTION

Soils are highly complex ecosystems and are considered as one of the
Earth’s main reservoirs of biological diversity. Bacteria account for a
major part of this biodiversity, and it is now clear that such
microorganisms have a key role in soil functioning processes (for
example, control of nutrient cycles, and directly influence plant,
animal or human health; Nemergut et al., 2011). However, many of
the environmental factors regulating the diversity of below-ground
bacteria, still need to be investigated, which limits our understanding
of the distribution of such bacteria at various spatial scales (Hanson
et al., 2012).
Until recently, most biogeographic studies have been devoted to

plants and animals, providing insights into the ecological processes
(dispersal, selection, ecological drift and speciation), which shape the
community assembly and dynamics of macroorganisms (Nemergut
et al., 2011, 2013; Hanson et al., 2012). For microorganisms, the first
biogeographic hypothesis was developed by Baas Becking in 1934:
‘Everything is everywhere, but, the environment selects’, implying that
microbes would be homogeneously distributed on a broad scale and
among various environments. Interestingly, the number of microbial
biogeography studies has increased exponentially over the last decade
because of progress with molecular tools for routine application and
broad-scale sampling networks involving several hundreds of samples

(Maron et al., 2011; Hanson et al., 2012). These studies are providing
overwhelming evidence that microorganisms display biogeographic
patterns, but that much remains to be described and understood about
the ecological processes contributing to these biological distributions
as well as their relative importance (Hanson et al., 2012; Ranjard
et al., 2013).
The oldest and most relevant way to discriminate the spatial

processing of microbial diversification is to evaluate the taxa–area
relationship (TAR). The first TAR was reported by Arrhenius (1921)
as a power–law relationship between species richness (SA) in an area A
and local species richness (S0) and area (A):

SA ¼ S0A
z ð1Þ

In this equation, z represents the rate at which new species are
sampled as the sampling area is increased. This has been extended to
microorganisms by taking equation (1) and deriving a similarity
distance–decay relationship between community similarity between
sites and geographic distance between sites (equation 2):

wd ¼ wD
d

D

� ��2z
ð2Þ

In this equation, z is the same parameter as in equation (1) and is
commonly considered as a turnover rate. χd and χD are the
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community similarities between sites located d meters and D meters
apart from each other. This derivation is based on two assumptions:
that community size is infinite and that z is steady (Rosindell et al.,
2011). For microorganisms, the infinite community size hypothesis
may hold because soil microbial communities are commonly assumed
to be very large and diverse, and the average abundance per microbial
taxa is high (Harte et al., 2009). On the contrary, the hypothesis of z
remaining steady across scales, which assumes self-similarity as a
probability rule for the spatial distribution of taxa abundance across
spatial scales (Harte et al., 1999), may not hold for soil microbes.
Consequently: (i) it may be assumed that the similarity distance–decay
relationship is equivalent to the TAR and (ii) the z estimates and
subsequent conclusions may vary across scales but can be assumed
constant for a given scale.
Nevertheless, beyond the debate concerning the form of the TAR

equation, this relationship is assumed to result mainly from: (i) the
accumulation of species as the sampling area is increased because of
the increased number of different habitats sampled (corresponding to
the selection process); (ii) population dynamics, with greater possibi-
lities for colonization and speciation but lower extinction rates in
larger areas, corresponding to dispersal limitations and ecological drift
processes; and (iii) speciation processes within the considered organ-
isms (Hubbell, 2001; Zinger et al., 2014). Challenging the widespread
idea that microorganisms exhibit a cosmopolitan distribution, TAR is
now commonly used in a majority of microbial biogeographical
studies to assess microbial community turnover rate and its relative
potential dependence on ‘dispersal’ and ‘selection’ (Angel et al., 2010;
Martiny et al., 2011; Ranjard et al., 2013; Wang et al., 2013; Zinger
et al., 2014). The estimated turnover rates for microbial communities
in most studies range from 0.002 to 0.26 (Horner-Devine et al., 2004;
Green and Bohannan, 2006; Woodcock et al., 2006), and are generally
much lower than those estimated for macroorganisms (classical range:
0.1–0.25; Horner-Devine et al., 2004). In addition, Ranjard et al.
(2013) have shown that selection and limited dispersal are not
mutually exclusive and that a non-negligible proportion of bacterial
community variation on a broad scale might be explained by the latter.
Although these studies demonstrated a significant spatial structuring

of bacterial communities into biogeographical patterns, they were
mainly based on molecular approaches with limited resolution, such as
fingerprinting methods (Angel et al., 2010; Ranjard et al., 2013), or
low-depth sequencing (Martiny et al., 2011). Nowadays, high-
throughput sequencing technologies (for example, 454 pyrosequencing
or Illumina) are readily available to assess microbial diversity with
greater precision and provide huge amounts of taxonomic informa-
tion, based on hundreds of thousands of ribosomal RNA (rRNA) gene
sequences (here designated DNA meta-barcoding) from a single
metagenomic DNA (Maron et al., 2011). Increasing use of these
technologies in biodiversity investigations raised methodological and
conceptual insights to ecologists (Wang et al., 2013; Zinger et al.,
2014). Regarding biogeography studies, it has raised the question of
the potential gain offered by the greater resolution of the DNA meta-
barcoding approach, as compared with fingerprinting, in providing a
deeper understanding of the determinism of microbial community
assembly on a broad scale (Terrat et al., 2012; Lienhard et al., 2013).
Recently, Van Dorst et al. (2014) incorporated various spatial scales
and demonstrated the similar capacities of DNA fingerprinting and
meta-barcoding to discriminate bacterial communities and to correlate
with environmental variables at a local scale, but the greater resolution
of DNA meta-barcoding at a global scale. This underlines the
importance of adopting DNA meta-barcoding to support studies on

broad to global scales, and to reexamine the processes involved in
community assembly.
Our objectives in this study were to compare soil bacterial TAR and

the determinism of soil bacterial community assembly on a broad
scale using both approaches, namely DNA fingerprinting (Automated
RISA fingerprinting, ARISA data set in the following) and DNA meta-
barcoding (454 pyrosequencing, NGS data set in the following), to
characterize soil bacterial diversity. Four geographic regions in the
RMQS data set (‘Réseau de Mesures de la Qualité des Sols’= French
Monitoring Network for Soil Quality, covering 2200 soils over the
whole of France using a systematic grid 16 km×16 km) were selected
along a gradient of environmental heterogeneity, representing a total
of 392 soils. As the meta-barcoding approach can provide taxonomic
information at different resolutions, multiple operational taxonomic
unit (OTU) clustering thresholds (80 to 97%) were used. The
similarity between two communities was determined with the
Sørensen index based on the amount of shared OTUs, irrespective
of their relationship (Green et al., 2004). In each region, the soil
bacterial community turnover rates (z) were estimated using the
above-described similarity distance–decay relationship (equation 2).
A distance-based redundancy analysis was used to partition bacterial
community variance according to pedo-climatic characteristics, land-
use and spatial variables. Our main hypothesis was that DNA meta-
barcoding would provide a more robust estimation of TAR and a
better understanding of the processes involved in bacterial community
assembly on a broad scale than molecular fingerprinting.

MATERIALS AND METHODS

Sampling design
Soil samples were provided by the soil genetic resource conservatory of the

GenoSol platform (http://www2.dijon.inra.fr/plateforme_genosol/) and

obtained from the soil storage facility of the RMQS. The RMQS database

consists of soil samples obtained from a regular 16-km grid across the

550 000 km2 of metropolitan France and was designed to monitor soil

properties (Arrouays et al., 2002). The baseline survey comprises 2200 sites

(each corresponding to a composite soil sample obtained from 25 soil cores)

and was started in 2001 and completed in 2009. No temporal effect has been

observed (data not shown). The 392 sites analyzed in this study were organized

into four geographic regions: Brittany (124 sites), Burgundy (109 sites), Landes

(52 sites) and South-East (107 sites) with contrasting soil type, land-use (coarse

level of the CORINE Land Cover classification; IFEN, http://www.ifen.fr;

7 classes: forest, crop systems, grasslands, particular natural ecosystems,

vineyards/orchards, parkland and wild land), climate (Quintana-Segui et al.,

2008) and geomorphology (Supplementary Table S1). The sites within a region

were at least 16-km apart. For each soil, the following pedo-climatic

characteristics were examined: particle-size distribution, pH in water (pHwater),

C:N ratio, organic carbon (Corg), N, soluble P, CaCO3 and exchangeable cation

(Ca, K and Mg) contents, sum of annual temperatures (°C) and annual rainfall

(mm). Physical and chemical analyses were performed by the Soil Analysis

Laboratory of INRA (Arras, France), which is accredited for such analyses by

the French Ministry of Agriculture.

DNA molecular fingerprinting data (fingerprint data set)
The subset of 392 soil samples was selected from the DNA fingerprinting data

and methods (DNA extraction, purification, quantification and automated

ribosomal intergenic spacer analysis), originally described and analyzed in the

study by Ranjard et al. (2013). After automated ribosomal intergenic spacer

analysis, contingency tables were derived from the fingerprints with samples in

lines and bands (referred to as OTUbin in the following) in columns with a

maximum of 100 bands per sample to avoid taking into account artefactual

bands because of image analysis.
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DNA meta-barcoding data (NGS data set)
Soil DNA extraction, purification and quantification. Microbial DNA was
freshly extracted from soils using a procedure optimized by the GenoSol
platform named GnS-GII (Plassart et al., 2012; Terrat et al., 2012). The main
difference between the GnS-GII and the DNA extraction procedure used in
Ranjard et al. (2013) is the grinding step. However, both of these DNA
extraction methods can provide a representative picture of the community with
DNA molecular fingerprinting approaches (Plassart et al., 2012), but not if
high-throughput sequencing technologies, with their greater resolution, are
used (Terrat et al., 2012). μl Aliquots of crude DNA extracts were loaded onto
polyvinylpolypyrrolidone microbiospin minicolumns (BIO-RAD Laboratories,
Marnes-la-Coquette, France) and centrifuged for 4min at 1000 g and 10 °C.
Eluates were then collected and purified for residual impurities using the
Geneclean Turbo kit (MP-Biomedicals, New-York, NY, USA). Purified DNA
extracts were then quantified using the PicoGreen staining Kit (Molecular
Probes, Paris, France).

Pyrosequencing of 16S rRNA genes. Microbial diversity (bacteria and archaea)
was determined for each soil by 454 pyrosequencing of ribosomal genes. A 16S
rRNA gene fragment targeting the complete hypervariable regions V4
(576–682) and V5 (822–879) (numbering based on the Escherichia coli system
of nomenclature (Brosius et al., 1978)) with an appropriate size (about 450
bases) for 454-pyrosequencing was amplified using the primers F479 (5′-CAGC
MGCYGCNGTAANAC-3′) and R888 (5′-CCGYCAATTCMTTTRAGT-3′).
Homemade bioinformatic programs have been developed to search large
DNA sequence databases for the presence of primers, including degeneracies,
as coded by the IUPAC rules, and also additional mismatches in order to test
primer improvement. The sequences investigated were SILVA, and direct
extraction of every small subunit rRNA sequence from EMBL using acnuc, and
also a dedicated reference database of 18S eukaryotic sequences, which had
been thoroughly analyzed and annotated (Supplementary Table S2) for in silico
match analysis. For each sample, 5 ng of DNA were used for a 25 μl PCR
conducted under the following conditions: 94 °C for 2min, 35 cycles of 30 s at
94 °C (denaturation), 30 s at 52 °C (hybridization) and 1min at 72 °C
(elongation), followed by 7min at 72 °C (final elongation). The PCR products
were purified using a MinElute gel extraction kit (Qiagen, Courtaboeuf, France)
and quantified using the PicoGreen staining Kit (Molecular Probes). A second
PCR of nine cycles was then conducted under similar PCR conditions with 5 ng
of purified PCR products and 10-base pair multiplex identifiers, designed and
validated by ROCHE (http://www.liv.ac.uk/media/livacuk/centreforgenomicre-
search/The_GS_FLX_Titanium_Chemistry_Extended_MID_Set.pdf) and added
before the 5′ position of the primers, and after the 3′ positions of the adapters
to specifically identify each sample and avoid PCR bias. Finally, the PCR
products were purified and quantified as described above. Pyrosequencing was
then carried out on a GS FLX Titanium (Roche 454 Sequencing System) at
Genoscope (Evry, France).

Bioinformatic analysis of 16S rRNA gene sequences. Bioinformatic analyses were
done using the GnS-PIPE initially developed by the GenoSol platform (INRA,
Dijon, France; Terrat et al., 2012), and recently optimized. The parameters
chosen for each bioinformatic step can be found in Supplementary Table S3.
First, all the 16S raw reads were sorted according to the multiplex identifier
sequences. The raw reads were then preprocessed (filtered and deleted) based
on: (a) their minimum length, (b) their number of ambiguities (Ns) and
(c) their primer sequences. A PERL program was then applied for rigorous de-
replication (that is, clustering of strictly identical sequences). The de-replicated
reads were then aligned using Infernal alignments, and clustered into OTUs
using a PERL program that groups rare reads with abundant ones, and does not
count differences in homopolymer lengths (here, a cluster is defined by the
most abundant read, known as the centroid, and every read in the cluster must
have similarity above the given identity threshold with the centroid). A filtering
step was then carried out to check all single-singletons (reads detected only
once and not clustered, which might be artifacts, such as PCR chimeras) based
on the quality of their taxonomic assignments. More precisely, each single-
singleton was compared with a dedicated reference database from the Silva
curated database using similarity approaches (USEARCH), with sequences
longer than 500 nucleotides, and kept only if their identity was higher than the

defined threshold (Supplementary Table S3). When several reference sequences
were found (defined maximum of 10), a taxonomic consensus was derived, that
is, a read was assigned to a given taxonomy only if a majority of similar reference
sequences had the same description. Finally, in order to compare the data sets
efficiently and avoid biased community comparisons, a homogenization step of
kept reads per sample was carried out, to a value close to the lowest observed
among samples (9410 reads), by random selection (Gihring et al., 2012). The
global analysis of soil samples was then computed by merging all homogenized
high-quality reads from each sample into one global file before subsequent
analyses. As the global analysis of bacterial community structure and diversity
relies on the construction of similarity clusters (or OTUs) of 16S rRNA gene
PCR amplicons (Horner-Devine et al., 2004), we chose to use OTUs to examine
the distribution of 16S rRNA gene sequences in our data set. However, there is
no single best definition of ‘species’, ‘genus’, etc… when this sequencing
approach is used, (because of controversy about thresholds of similarity allowing
clear differentiation of taxonomic units), so we applied the following thresholds
of sequence similarity: 80, 85, 90, 95 and 97% (Rosselló-Mora and Amann,
2001; Nemergut et al., 2011). Such multiple OTU definitions are analogous to
comparing different taxonomic resolutions. The retained high-quality reads were
then used to determine the OTU composition of samples at each level of
similarity. Finally, contingency tables of OTUs were obtained with samples in
lines and OTUs in columns, indicating the number of reads in each OTU for all
samples. OTUs were also taxonomically assigned using the information from
high-quality reads (Supplementary Table S4). The raw data sets are available in
the EBI database system under project accession number PRJEB6290.

Data set post-processing. Two filtering steps were applied to the NGS
contingency tables of OTUs to eliminate potentially artefactual data (because
of sequencing errors or PCR chimeras for example). The first step consisted of
removing OTUs that occurred only once in the overall data set, considered as
experimental artifacts. The second filtering step was designed to avoid up-
weighting the importance of rare OTUs in the data set (as the contingency
tables would be converted into binary tables for statistical analyses). This
filtering step consisted of changing the value for the sample in the global OTU
to 0 if two conditions were verified: (i) for each OTU in the global contingency
table, if the reads of one sample representedo1% of the total abundance of the
OTU and (ii) if the reads from the given OTU for the analyzed sample
represented o0.1% of the total number of cleaned sequences identified in the
sample. This second filtering step made it possible to remove less information
than a single filter, which removed OTU representing o0.1% of the total
number of cleaned sequences identified in the sample (Supplementary
Table S5). The contingency tables of OTUs (with samples in lines and OTUs
in columns) were then converted into binary tables for subsequent analyses.
OTU richness was compared between the raw data set and the filtered data set
to evaluate the effects of the filters.

Statistical analyses
Evaluation of congruence between ARISA and 454 sequencing data sets. In order
to evaluate if ARISA and 454 sequencing data sets were comparable, the correlation
between the distance matrices derived from each data set (Sørensen index) was
tested by means of Mantel test (mantel function in vegan package in R).

Environmental heterogeneity. The level of environmental heterogeneity
between regions was determined by applying a multivariate analysis on mixed
data using the ade4 package in R (http://cran.r-project.org/web/packages/ade4/
index.html) with soil pedo-climatic characteristics, land-use and geomorpholo-
gical data (elevation). Quantitative data were centered and scaled and qualitative
data were converted into weighted binary variables (weight equal to 1/n; n being
the number of classes for the qualitative variables). Differences between the four
regions were examined by between-group analysis and a Monte-Carlo
permutation test (1000 permutations). The environmental heterogeneity in
each region was determined from the site dispersion on the factorial map.

Evaluation of bacterial community composition turnover rate. The turnover
rates (z) for bacterial community composition were derived from the slope of
the TAR as described in Ranjard et al. (2013) following the method
described in Harte et al. (1999) and by applying equation (3), which is the
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log-transformation of equation (2):

log 10ðwdÞ ¼ ð�2 � zÞ � log 10ðdÞ þ b ð3Þ
where χd is the observed Sørensen’s similarity between two soil samples that are
d meters apart from each other; b is the intercept of the linear relationship and
z the turnover rate of the community composition. In this study, z is assumed
to be constant, that is, independent of d. The z estimate and its 95% confidence
interval were derived from the slope (−2*z) of the relationship between
similarity and distance by weighted linear regression. The overlap of the 95%
confidence intervals was used to test for significant differences in turnover rates
between regions or methods.

Variance partitioning of community assembly according to environmental filters
and space. The relative importance of residual spatial autocorrelation, pedo-
climatic characteristics and land-use in determining community composition
turnover was tested by db-RDA (Legendre et al., 2005; Legendre and Fortin,
2010). Quantitative data were centered and scaled. Residual spatial autocorrela-
tion was considered by introducing spatial variables into the analysis. These
spatial variables were constructed from site coordinates (x, y, elevation) to
reveal potential spatial trends at scales larger than the region, and from
principal coordinates of neighbour matrices eigenfunctions in each region
(pcnm function in vegan package, http://cran.r-project.org/web/packages/
vegan/index.html). Only principal coordinates of neighbour matrices with a
significant Moran index (Po0.001) were selected. Land-use corresponded to
the CORINE Land Cover classes (IFEN, http://www.ifen.fr) recoded into
dummy variables. Pedo-climatic characteristics consisted of climate and all
the physico–chemical variables except sand. The most parsimonious model was
obtained by forward selection from null to full model. The marginal effects of
each set of filters were tested with an analysis of variance (ANOVA)-like
permutation test for canonical analyses (anova.cca function in vegan package,
http://cran.r-project.org/web/packages/vegan/index.html).

RESULTS

Environmental heterogeneity
The four regions were selected for their contrasting environmental
heterogeneity as demonstrated by principal component analysis of

mixed data (Figure 1a). This multivariate analysis resulted in the
discrimination of the four regions on both axes (Monte-Carlo
permutation test, Po0.001). On the first axis, Landes was significantly
discriminated from Brittany, Burgundy and South-East, and these three
regions were discriminated from each other on the second axis. The
environmental heterogeneity differed strongly between regions, the
Landes sites being less dispersed on the factorial map than the Brittany
or Burgundy sites, which were less dispersed than those of the South-
East. Figure 1b shows that the four regions could mainly be
distinguished according to land-use (for example, 86% of the Landes
sites are forest sites), a restricted set of soil physico–chemical character-
istics (sand and silt contents, pHwater and CaCO3 content, P content
and C:N ratio) and by differences in elevation. Climatic conditions did
not have a significant role in discrimination between regions.

Post-processing and taxonomic resolution on NGS data
Post-processing steps were applied to the NGS data set in order to
account for potentially artefactual data. The effects of the filters were
assessed by comparing OTU richness in the raw and filtered data sets.
OTU richness at the 80% similarity threshold ranged from 20 to 171
OTUs in the raw data set and from 10 to 126 OTUs in the filtered data
set. It increased with the increasing similarity threshold in the
clustering analysis to reach a maximum at 97% sequence similarity.
At this level of sequence similarity, OTU richness ranged from 106 to
4687 OTUs in the raw data set and from 44 to 1641 OTUs in the
filtered data set (Table 1). The filtering steps reduced the number of
OTUs considered by 34 to 48%. This reduction was similar for each
region and harbored only a slight increase as the similarity threshold
increased, ranging from 34 to 45% at the 80% sequence similarity
threshold, and from 39 to 48% at the 97% sequence similarity
threshold.
Regarding the raw data set, the four regions could be ranked

according to the median OTU richness across all sites:

Figure 1 Environmental heterogeneity between the Brittany, Burgundy, Landes and South-East regions. (a) Factorial map representing the sites considered
respectively to their region of origin in a principle component analysis on mixed data. Green open opened circles: Brittany; blue open opened squares:
Burgundy; red crosses: Landes, black filled circles: South-East. (b) Correlation circle of the principle component analysis on mixed data. Monte-Carlo
permutation test (1000 permutations) was significant (Po0.001).
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Landes≈BurgundyoBrittany≈South-East (Po0.05, χ2 test), whatever
the clustering threshold. The same ranking of the different regions was
obtained with the filtered data set, indicating that the overall trends in
the diversity indices were not affected by the filtering steps adopted.

TAR evaluation
Mantel test comparisons between the distance matrices derived from
the ARISA and 454 sequencing data sets (Sørensen index), highlighted
significant correlations between these two data sets (0.28oro0.62,
Po0.001). These significant correlations showed that the two data sets
were congruent and could be compared with one another (data not
shown).
DNA fingerprinting (ARISA) and meta-barcoding were compared

for their assessment of community turnover rate (z) using the
Sørensen dissimilarity index on binary data. The estimated z ranged
from 0.007 to 0.046, from 0.009 to 0.063, from 0.009 to 0.08 and from
0.013 to 0.09 in the Brittany, Burgundy, Landes and South-East
regions, respectively (Figure 2). Except in Landes, the estimated z with
the ARISA data set was always lower than the values obtained with the
NGS data set, irrespective of the similarity thresholds used. In
addition, z increased significantly with the sequence similarity thresh-
old used for the clustering of OTUs, except between 95 and 97%
similarity. Furthermore, the coefficients of variation of z were
systematically smaller with the NGS data set than with the ARISA
data set in every region and for every clustering level except in Landes
at 80% similarity. Indeed, in Landes, the coefficients of variation for z
ranged from 26 to 46% with NGS and were 40% with ARISA. For the
three other regions, the coefficients of variation of z ranged from 8 to
12% with NGS and from 10 to 17% with ARISA. The same trend was
observed when the four regions were compared with one another,

except at the 85% similarity threshold where z was higher in the
South-East than in Brittany, Landes and Burgundy (Figure 2). No
significant differences were observed between these three regions.
A similar trend was observed with the ARISA data set. Finally, no
significant differences between regions were observed at a similarity
threshold of 85%.

Variance partitioning of community assembly
The relative importance of the sets of spatial variables, land-use and
pedo-climatic characteristics on variations in bacterial community
assembly was used to compare the DNA meta-barcoding and
fingerprinting approaches for their capacity to help understanding
observed biological patterns.
The amount of variance in bacterial community assembly explained

by spatial and environmental parameters ranged from 19.5% to 23.0%,
23.3% to 31.6%, 7.2% to 29.8% and 23.7% to 30.6% in Brittany,
Burgundy, Landes and South-East, respectively, according to the
molecular approach adopted (DNA fingerprinting vs DNA meta-
barcoding) (Figure 3). In each region, slightly higher amounts of
community variance were explained for the ARISA data set than for the
NGS data set. In addition, similar amounts of community variance were
explained between the different thresholds of sequence similarity used
for OTUs clustering in the NGS approach with the Sørensen index
(from 80 to 97% similarity levels, data not shown) in a given region.
All groups of explanatory variables (pedo-climatic characteristics,

land-use or spatial variables) were selected with the ARISA and NGS
data sets, independently of the Sørensen index (Figure 3). However,
the land-use and spatial variables were not selected in Landes with
NGS, whereas they were selected with ARISA. Comparison of variance
partitioning of the ARISA and NGS data sets with the Sørensen index

Table 1 OTU numbers in the raw and filtered data sets

Clustering threshold Region (n) OTU richness Removed OTUs (%)

Raw data set Filtered data set

Min Median (± s.d.) Max Min Median (± s.d.) Max

80% Burgundy (109) 36 68 (±16.6) 115 20 39 (±11.5) 70 43

Brittany (131) 45 92 (±17.9) 152 29 57 (±13.5) 125 38

Landes (54) 43 60 (±19.3) 120 27 39 (±12.7) 90 34

South-East (108) 20 86 (±21.0) 171 10 48 (±17.2) 126 45

85% Burgundy (109) 83 156 (±37.4) 241 44 88 (±25.2) 153 44

Brittany (131) 105 211 (±39.3) 360 52 123 (±29.9) 274 42

Landes (54) 94 144 (±61.8) 435 62 90 (±43.8) 321 38

South-East (108) 33 211 (±42.6) 377 15 120 (±33.6) 263 43

90% Burgundy (109) 183 344 (±84.9) 577 91 181 (±55.0) 367 47

Brittany (131) 217 488 (±99.9) 869 125 260 (±62.7) 478 47

Landes (54) 201 343 (±188.5) 1361 136 223 (±133.8) 935 35

South-East (108) 56 485 (±95.2) 835 22 277 (±71.6) 483 43

95% Burgundy (109) 428 841 (±188.8) 1376 245 435 (±110.0) 828 48

Brittany (131) 473 1171 (±227.0) 1862 316 628 (±127.2) 1106 46

Landes (54) 475 875 (±496.1) 3423 356 570 (±247.4) 1622 35

South-East (108) 93 1165 (±209.6) 1638 33 669 (±128.9) 997 43

97% Burgundy (109) 669 1273 (±267.2) 2061 415 666 (±147.7) 1131 48

Brittany (131) 758 1752 (±306.4) 2620 494 904 (±143.7) 1392 48

Landes (54) 712 1360 (±691.1) 4687 541 832 (±249.4) 1641 39

South-East (108) 106 1725 (±294.4) 2236 44 959 (±163.7) 1295 44

Abbreviation: OTU, operational taxonomic unit.
For the raw and the filtered data sets, the median number of OTUs identified per site, its minimum and its maximum were determined per region at each clustering threshold considered in this
study. The s.d. of the mean is given in brackets. The percentage of OTUs removed by filtering steps was estimated by dividing the median number of OTUs in the filtered data set by the median
number of OTUs in the raw data set.
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revealed slightly different results for some regions when groups of
explanatory variables were ranked according to their marginal effect.
In the Brittany, Burgundy and Landes regions, pedo-climatic
characteristics explained the highest amount of variance (10%,
12.5% and 7–15%, respectively) whatever the molecular approach or
dissimilarity index whereas spatial variables accounted for a system-
atically higher variance with the ARISA data set than with the NGS
approach (Figure 3). For the South-East region, the use of ARISA or
NGS data sets led to different hierarchies in the groups of explanatory
variables. With the ARISA data set, pedo-climatic characteristics
explained the highest amount of variance (11%), followed by spatial
variables (8.7%) and land-use (4.8%). With the NGS data set, spatial

variables were the most important (9.2%), followed by land-use and
pedo-climatic characteristics (5.5% and 4.8%, respectively).

DISCUSSION

The four regions considered in this study followed a gradient of
environmental heterogeneity: low level (Landes region), medium level
(Brittany and Burgundy) and high level (South-East) as observed by
means of the dispersion of sites according to regions in the multi-
variate analysis on mixed data. Most of these differences were related
to variability of environmental parameters reported in the literature to
be involved in shaping soil microbial diversity: land-use (Drenovsky
et al., 2010), soil characteristics (texture, pH, P content and C:N ratio;

Figure 2 Comparison of ARISA and NGS approaches for the estimation of soil bacterial community turnover rate. Comparisons of each approach were
performed within each region: (a) Brittany; (b) Burgundy; (c) Landes; (d) South-East. Percentages indicate the level of similarity considered in the NGS
approach. Letters indicate significant differences between turnover rates in each region at the 5% probability level.

Figure 3 Variance partitioning of community composition with ARISA and NGS approaches in Brittany, Burgundy, Landes and South-East. Four groups of variables
were considered: pedo-climatic characteristics (light grey), land-use (dark grey), spatial descriptors (black), which stand for residual spatial autocorrelation and
interactions between the three sets of filters (white). Interactions between the three groups of variables were estimated but could not be tested for their significance.
Percentages indicate the level of similarity considered in the NGS approach. Significance codes: ns: P40.05; *: Po0.05; **: Po0.01; ***: Po0.001.
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Fierer and Jackson, 2006; Dequiedt et al., 2011; Lienhard et al., 2013)
and to a lesser extent climate (Fierer and Jackson, 2006). This
environmental heterogeneity had been shown to affect the soil
bacterial community turnover rate (z, slope of the TAR in the
similarity distance–decay relationship, Harte et al., 2009; Ranjard
et al., 2013). These four regions therefore provided a valid sampling
design for determining whether DNA meta-barcoding, as compared
with molecular fingerprinting, would provide a more accurate
estimation of TAR and a better understanding of the processes
involved in bacterial community assembly on a broad scale.
A preliminary step in the comparison of DNA meta-barcoding and

fingerprinting approaches was to post-process the data according to
molecular analysis steps specific to each method. For DNA finger-
printing, this was handled by setting a fixed number of OTUbin to be
considered during the band profiles analysis (Ranjard et al., 2001,
2013). For the NGS approach, methodological biases (for example,
PCRs or sequencing errors), which might generate OTUs of low
abundance and equally represented across samples, were removed by
bioinformatic filters (Quince et al., 2011) and by two post-processing
steps. These steps allowed the preservation of information on the ‘rare
biosphere’ while removing artifacts (Kunin et al., 2010; Terrat et al.,
2012; Supplementary Table S5), conversely to the classical
post-processing step (removal of all low abundant OTUs).
As the data were analyzed as presence–absence data, these steps
seemed a relevant consensus to avoid up-weighting the importance of
rare and specific OTUs in the data set (Van Dorst et al., 2014; Zinger
et al., 2014), while conserving a fine description of bacterial commu-
nity assembly (Supplementary Table S3). These post-processing steps
led to the conservation of at least 6000 sequences per sample, which
was higher than those used in a recent study (ca 4000 reads per
sample, Zinger et al., 2014). This study demonstrated that community
z was weakly affected by the sequencing depth per sample unless it was
shallow (o500 sequences), and that it was independent of the number
of reads between samples (Zinger et al., 2014).
In this context, DNA fingerprint and meta-barcoding approaches

were compared for their estimation of soil bacterial community z.
Both approaches associated with the Sørensen index demonstrated
significant z estimates, which were in accordance with those classically
observed in the literature with fingerprinting or low-depth sequencing
data (Green et al., 2004, 2006; Horner-Devine et al., 2004; Bell et al.,
2005; Woodcock et al., 2006; Martiny et al., 2011; Ranjard et al., 2013;
Zinger et al., 2014). Interestingly, the z estimates observed with the
DNA meta-barcoding approach were higher than those obtained with
ARISA, although the OTUbin richness in the ARISA data set was
similar to the OTU richness in the NGS data set for low clustering
thresholds (from 80 to 90% similarity). Moreover, the coefficients of
variation of z estimated with the DNA meta-barcoding approach were
systematically smaller than with the ARISA, thereby highlighting that
the z estimates obtained by DNA meta-barcoding approach are more
accurate. These differences in z estimates and coefficients of variation
can easily be explained: ARISA involves the analysis of the length
polymorphism of the intergenic spacer between the 16S and 23S
ribosomal genes (IGS) that can be considered less informative than
DNA meta-barcoding, which assesses the sequence (size and nucleo-
tide composition) (Ranjard et al., 2000; Terrat et al., 2012). This
accuracy of the NGS approach in describing community assembly may
reduce the similarity between sites, leading to higher estimates of
community turnover. From an ecological viewpoint, DNA fingerprint
and meta-barcoding approaches displayed a similar capacity to
discriminate samples and both demonstrated the significant spatial
structuration of soil bacterial communities in the different regions

considered. In addition, both methods revealed similar trends between
the regions for the hierarchy of soil bacterial community z: Brittanyo
(Burgundy, Landes)oSouth-East, in agreement with the study by Van
Dorst et al. (2014), which demonstrated the similar capacity of ARISA
and DNA meta-barcoding to discriminate sites at a local spatial scale.
This underlines the value of both methods in demonstrating ecological
trends for soil bacterial communities. Nevertheless, the DNA meta-
barcoding approach provides a finer description of soil bacterial
community composition than ARISA, which supports the hypothesis
that the turnover rates estimated derived from the latter approach
would be underestimated. One advantage of the DNA meta-barcoding
approach is that a description of community assembly can be drawn
from the construction of similarity clusters (OTUs) at various
thresholds of sequence similarity. Here, soil bacterial community z
increased significantly with increasing clustering thresholds (80 to
97%). This increase was mainly related to an increase of OTU richness
from low to high clustering thresholds, in agreement with Harte et al.
(2009). Interestingly, the values of z obtained for high clustering
thresholds were comparable to those observed for macroorganisms
(MacArthur and Wilson, 2001; Horner-Devine et al., 2004), high
thresholds that are considered to reflect taxonomic levels classically
used in macroecological studies (Rosselló-Mora and Amann, 2001).
These findings raise insights for microbial ecologists studying the
spatial structuring of soil microbial communities as they contradict the
classically observed positive relationship between community turnover
rate (z) and organism body size (Hillebrand et al., 2001; Drakare et al.,
2006), and also suggest that soil microbial communities may display
strong spatial structuration.
Meta-barcoding and fingerprint approaches were compared for

their ability to correlate pedo-climatic, land-use and spatial variables
with soil bacterial community distributions in a distance-based
redundancy analysis (Sørensen index). These environmental sets of
variables captured significant amounts of community variance for
both data sets (8 to 35%), which were within the range of those
reported in the literature for bacteria (Martiny et al., 2011; Hanson
et al., 2012). Surprisingly, slightly higher amounts of community
variance were explained for ARISA data. Van Dorst et al. (2014), in
contrast, had reported the opposite trend. This might be related to
differences in the spatial scales investigated (broad vs local scale) and
in data processing (OTUbin definition and bioinformatics steps for
OTUs clustering).
The variance partitioning approach also allowed the comparison of

the relative importance of pedo-climatic, land-use and spatial variables
in shaping bacterial community assembly according to the molecular
approach. The same hierarchy was observed for the different sets of
variables in Burgundy and Brittany, but not in the Landes and South-
East regions. Indeed, in the South-East region, spatial variables became
the main driver of community assembly according to the DNA meta-
barcoding approach. This result suggests that dispersal limitations may
be as important as selection in shaping bacterial community assembly
(Martiny et al., 2011) because this process could lead to a spatial
autocorrelation of bacterial communities between sites. This hypoth-
esis was supported by Bryant et al. (2008) who highlighted the primary
importance of elevation in limiting the dispersal of Acidobacteria. In
the South-East region, elevation was the most important spatial
variable explaining bacterial community assembly. Altogether, this
suggests that use of the DNA meta-barcoding approach could lead to
reexamination of the relative importance of the processes shaping soil
microbial diversity on a broad scale.
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CONCLUSION

Although DNA fingerprinting and meta-barcoding are both relevant
to demonstrate the spatial structuration of soil microbial communities
through significant TAR, the DNA meta-barcoding approach provides
a finer description of soil bacterial community assembly. It also
provides a more accurate estimation of community turnover rates.
Considering the processes shaping soil bacterial diversity, both
identical conclusions were not systematically obtained, suggesting that
DNA meta-barcoding approach may lead to reexamine their relative
importance. Nevertheless, this should be tested for other soil microbial
communities like fungi. In addition, in a context of up-scaling studies
in microbial biogeography, the meta-barcoding approach may help to
identify not only the scales at which soil microbial communities are
structured, but also the processes or the filters shaping their diversity
at each spatial scale.

Data archiving
The raw data sets are available on the EBI database system under
project accession number PRJEB6290.
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Abstract

Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental
filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we
compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil
sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to
investigate the relative importance of environmental selection and spatial autocorrelation in determining their community
composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial
variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French
regions of contrasting environmental heterogeneity (Landes,Burgundy#Brittany,,South-East) using the systematic grid
of French Soil Quality Monitoring Network to evaluate the communities’ composition turnovers. The relative importance of
processes and filters was assessed by distance-based redundancy analysis. This study demonstrates significant community
composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal
community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of
community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables
highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured
and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on
the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic
resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to 120 km radius) and/or medium
(40 to 65 km radius) spatial scales, suggesting dispersal limitations at these scales.
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Introduction

For over two centuries, biogeographical studies have been

carried out on macroorganisms and have provided a better

understanding of species distribution, extinction and interactions

[1–2]. For microorganisms, the first biogeographic postulate was

developed by Baas Becking in 1934 [3]: ‘‘Everything is

everywhere, but, the environment selects’’ suggesting that micro-

bial ‘‘species’’ may be everywhere due to huge dispersal potentials,

but that their abundances are constrained by contemporary

environmental context, which may be especially true at broad

spatial scales (spatial scales larger than 100 km2 are considered as

broad in this study). The number of studies in microbial

biogeography has increased exponentially over the past decade

thanks to new molecular tools applicable in routine on wide scale

sampling networks constituted of several hundreds of samples [4–

5]. These studies revealed that soil microorganisms are not strictly

cosmopolitan since their distributions are systematically heteroge-

neous and structured into biogeographical patterns [2], [6–9].

One way to discriminate the spatial processing of microbial

diversity is to evaluate either the Taxa-Area Relationship (TAR),
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i.e. the accumulation of new taxa with increasing sampling area, or

the Distance-Decay Relationship (DDR), i.e. the rate of change in

compositional similarity with increasing distance. [10–11]. Al-

though significant TAR and DDR have recently been demon-

strated for both soil fungal [12] and bacterial [8], [11], [13–14]

communities, the relative importance of the ecological processes

shaping these communities is still under debate. Therefore, it

needs to be more deeply considered at the community level.

According to Vellend [15], four processes are involved in shaping

microbial community composition: selection, dispersal, ecological

drift and speciation. Speciation is difficult to consider at the

community level because the molecular markers used to discrim-

inate microbial taxa mainly target highly conserved regions (e.g.
ribosomal genes) with low mutation rates. The stochastic

demographic processes underlying ecological drift are also difficult

to consider since it remains a challenge to fully characterize

demographic evolutions within complex microbial communities in

environmental samples. Consequently, most biogeographical

studies have focused on environmental selection and dispersal

limitations, the later leading to a spatial autocorrelation between

sites independently of environmental factors. Numerous studies

have identified environmental selection as relevant in shaping soil

bacterial community composition [8–9], [16–24]. Conversely,

dispersal limitation is still under debate regarding the high

dispersal potentials of microorganisms and because some envi-

ronmental variables always remain unmeasured. Nevertheless,

recent publications also suggest that bacteria may be dispersal

limited [9], [21–23] or that part of soil bacterial communities is

endemic [17]. As regards soil fungi, the relevance of environmen-

tal selection and dispersal limitations has been demonstrated at the

community level and for ectomycorrhizal groups [16], [19], [22],

[24–29]. Nevertheless, most of these studies were performed on

different sampling designs with different molecular techniques.

Only few studies have investigated such processes for both soil

fungal and bacterial communities simultaneously to compare their

biodiversity turnover. Most of them were performed in particular

ecosystems and lead to diverging conclusions: Pasternak et al [18]

concluded that bacterial and fungal communities were primarily

shaped by environmental selection rather than dispersal limita-

tions at the scale of the Israeli desert. On the contrary, Talbot et al.

[27] highlighted a strong endemism for fungi in pine forests and

Hovatter [22] suggested that the ecological processes shaping soil

bacterial community could differ at a local scale due to the

presence/absence of a particular plant. Altogether, this suggests

that environmental heterogeneity may determine the relative

importance of the ecological processes at work and therefore affect

the distance-decay relationship for both soil bacteria and fungi [9–

11], also suggested by other macrobial studies [30–31]. The

comparison of different microbial communities along different

levels of environmental heterogeneity may therefore help to reach

a consensus.

Both selection and dispersal are based on the various ecological

attributes of soil bacteria and fungi in terms of soil colonization,

dispersal forms, trophic requirements, biological interactions and

adaptation to environmental conditions, together with stochastic

factors. Consequently, studies focusing particularly on soil bacteria

or soil fungi have identified numerous environmental filters

involved in shaping these particular communities but no consensus

could be reached regarding microbial community as a whole on

broad spatial scales. The filter most frequently identified for

bacteria is soil pH [5], [17], [20], [23–24], [32–34] and it is

commonly assumed that this is an important driver for fungal

communities [18], [24]. Soil texture and carbon content have also

been identified as important filters for bacteria [6], [22–23], [33–

34]. Similarly, the quality of soil organic matter, represented by

the C:N ratio, and the amount of N were shown to have a

significant effect on the abundance and composition of bacterial

and fungal communities [24], [34–35]. These edaphic factors are

often considered as the main determinants of bacterial diversity

since the importance of climate may vary across biomes at a

continental scale [5], [12], [16]. Land-use, agricultural practices,

and plant community composition are also important filters for

both bacteria and fungi on a wide scale [18], [19], [22–24], [36–

38]. Therefore, this suggests that common filters determine the

composition of both bacterial and fungal communities, but they

still need to be ranked according to their relative importance to

reach a consensus. This may be achieved by comparing bacterial

and fungal communities over regions contrasted in terms of

habitat heterogeneity but also with wide ranges of variations for

the identified filters.

The objectives of this study were: i) to examine the spatial

structuring of bacterial and fungal communities on a broad spatial

scale; ii) to investigate the relative importance of environmental

selection and spatial autocorrelation in determining the commu-

nity composition turnover of these communities; and iii) to identify

and rank the relevant environmental filters and scales involved in

their spatial variations. To attain these objectives, four regions in

the RMQS data set (‘‘Réseau de Mesures de la Qualité des

Sols’’ = French Monitoring Network for Soil Quality, recovering

2,200 soils over the whole of France) were selected along a

gradient of environmental heterogeneity, representing a total of

413 soils. This gradient was chosen in order to confront the

community composition turnover rates of bacterial and fungal

communities to soil habitat heterogeneity [9]. Bacterial and fungal

communities were characterized by Automated RISA fingerprint-

ing of soil DNA. Community composition turnover (z) was

estimated by means of a similarity DDR using an exponential

model as suggested by Harte et al [39–40] for microorganisms.

Together with this measure of community composition turnover

over broad spatial scales, the initial similarity of communities was

evaluated [30]. It represents the variability of community

composition at finer spatial scales. High initial similarity corre-

sponds to low local variability. The relative influence of

environmental selection and spatial autocorrelation was investi-

gated through a variance partitioning approach involving pedo-

climatic characteristics and land-use and spatial variables

(geographic coordinates and Principal Coordinates of Neighbour

Matrices; PCNM), respectively.

Methods

Soil samples
Soil samples were provided by the Soil Genetic Resource

Conservatory (platform GenoSol, http://www.dijon.inra.fr/

plateforme_genosol, [41]) and obtained from the soil storage

facility of the RMQS (‘‘Réseau de Mesures de la Qualité des

Sols’’ = French Monitoring Network for Soil Quality). The RMQS

database consists of observations of soil properties on a 16-km

regular grid across the 550000 km2 French metropolitan territory

and was designed to monitor soil properties [42]. The baseline

survey consisting of 2,200 sites (each corresponding to a composite

soil sample constituted of 25 soil cores) was completed in 2009.

The sites were selected at the centre of each 16616-km cell. In this

study, we focused on a subset of 413 sites from the RMQS data set.

The samples were organized into four regions: Brittany (131 sites),

Burgundy (109 sites), Landes (52 sites) and South-East (121 sites,

Fig. 1A) which are contrasted in terms of soil type, land-use (coarse

level of the CORINE Land Cover classification; IFEN, http://
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www.ifen.fr; 7 classes: forest, crop systems, grasslands, particular

natural ecosystems, vineyards/orchards, parkland and wild land),

climate and geomorphology (Table S1). Within a region, sites were

separated by 16 km at least. For each soil, the pedo-climatic

characteristics considered were particle-size distribution, pH in

water (pHwater), organic carbon content (Corg), N content, C:N

ratio, soluble P contents, CaCO3 and exchangeable cations (Ca,

K, Mg), sum of annual temperature (uC) and annual rainfall (mm).

Physical and chemical analyses were performed by the Soil

Analysis Laboratory of INRA (Arras, France) which is accredited

for such analyses by the French Ministry of Agriculture.

Bacterial and fungal community fingerprinting
Soil DNA extraction. For each soil sample, the equivalent of

1.5 g of dry soil was used for DNA extraction, following the

procedure optimized by platform GenoSol [35]. Briefly, extraction

buffer (100 mM Tris pH 8.0, 100 mM EDTA pH 8.0, 100 mM

NaCl and 2% (w/v) SDS) was added to the sample in the

proportion 3:1 (v/w), with two grams of glass beads (106 mm

diameter) and eight glass beads (2 mm diameter) in a bead-beater

tube. All beads were acid washed and sterilized. The samples were

homogenized for 30 s at 1600 rpm in a mini bead-beater cell

disruptor (Mikro-dismembrator, S. B. Braun Biotech Internation-

al), incubated for 30 min at 70uC in a water bath and centrifuged

for 5 min at 7000 g and room temperature. The supernatant was

collected, incubated on ice with 1/10 volume of 3 M potassium

acetate (pH 5.5) and centrifuged for 5 min at 14000 g. DNA was

precipitated with one volume of ice-cold isopropanol and

centrifuged for 30 min at 13000 rpm. The DNA pellet was

washed with ice-cold 70% ethanol and dissolved in 100 ml of ultra

pure water. For purification, aliquots (100 mL) of crude DNA

extracts were loaded onto PVPP (polyvinyl polypyrrolidone)

minicolumns (BIORAD, Marne la Coquette, France) and

centrifuged for 4 min at 1000 g and 10uC. This step was repeated

if the eluate was opaque. The eluate was then collected and

purified for residual impurities using the Geneclean Turbo kit as

recommended by the manufacturer (Q Biogene, France).

PCR conditions. The bacterial ribosomal IGS was amplified

using the PCR protocol described in Ranjard et al [43]. 12.5 ng of

DNA was used as the template for PCR volumes of 25 ml. The

fungal ribosomal ITS was amplified using the primer set ITS1F/

ITS4-IRD800 (59- CTTGGTCATTTAGAGGAAGTAA -39/59-

IRD800-TCCTCCGCTTATTGATATGC -39). 20 ng of DNA

was used as the template for PCR volumes of 25 ml with the

following PCR conditions: denaturation at 95uC for 3 min, 35

cycles of 30 s at 95uC, 45 s at 55uC and 1 min at 72uC, and a final

elongation of 7 min at 72uC. The primer Tm was the same for

bacterial IGS and fungal ITS. Every PCR products were purified

using the MinElute Kit (QIAGEN, Courtaboeuf, France) and

quantified using a calf thymus DNA standard curve.

ARISA fingerprinting conditions. 2 mL of the PCR product

was added to deionized formamide and denatured at 90uC for

2 min. Bacterial and Fungal ARISA fragments were resolved on

3.7% polyacrylamide gels under denaturing conditions as

Figure 1. Comparison of the regions considered on the basis of their soil habitats. A. Soil average dissimilarity of soil habitat for the
different regions (number linked to the corresponding region) and position of sites; B. Between group analysis of soil habitats according to the
region; C. Correlation circle of the variables defining soil habitat in the between group analysis. The length of the arrow corresponds to the Pearson’s
correlation coefficient for quantitative variables and to the correlation ratio for qualitative variables. Symbols: Alt.: Elevation; TuC: Sum of annual
temperatures; Pass: Assimilable P; C:N: Carbon to Nitrogen ratio; Corg: Organic Carbon content.
doi:10.1371/journal.pone.0111667.g001
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described in Ranjard et al [9] on a LiCor DNA sequencer

(ScienceTec).

Image analysis. The data were analyzed using the 1D-Scan

software (ScienceTec), converting fluorescence data into electro-

phoregrams, where peaks represented PCR fragments (100 to 110

peaks retained per sample, the resolution limit to avoid considering

background noise). The height of the peaks was calculated in

conjunction with the median filter option and the Gaussian

integration in 1D-Scan, and represented the relative proportion of

the fragments in the total products. Lengths (in base pairs) were

calculated by using a size standard with bands ranging from 200 to

1659 bp. The data were then converted into a contingency table

with prepRISA package in R.

Statistical analyses
Characterization of habitat variability and average

dissimilarity across regions. Habitats were compared be-

tween regions in a Hill & Smith multivariate analysis [44] using

the ade4 package in R [45–46]. The analysis was applied to pedo-

climatic characteristics, land-use and geomorphology, by centering

and scaling the quantitative variables, and converting the

qualitative ones into weighted binary variables (weight equal to

1/n; n is the number of classes for the qualitative variables).

Differences between these regions were examined by between

group analysis and tested by applying a Monte-Carlo permutation

test (1000 permutations). The average dissimilarity between soil

habitats was determined by transposing a method based on the

dissimilarity matrix for communities [47] to soil habitat. The

dissimilarity matrix for soil habitat was derived from the site

coordinates in the Hill & Smith analysis, following equation 1 [9]:

Di,j~
EDi,j
EDmax

ð1Þ

Where Di,j and EDi,j are the dissimilarity and the Euclidean

distance between sites i and j, respectively. EDmax is the maximum

Euclidean distance observed between sites. The average dissim-

ilarity between soil habitats was then calculated as follows [47]:

Dhabitat~
1

n

Xn{1

h~1

Xn

i~hz1

D

2

h,i

ð2Þ

Dhabitat is the average dissimilarity between soil habitats of soil

habitat and n the number of sites in the region.

Evaluation of the similarity distance-decay relationship

and initial similarity of Bacterial and Fungal community

composition. The similarity distance-decay relationship was

estimated as proposed by Harte et al [39] for organisms with large

populations per taxa. From this relationship, the community

composition turnover rates (z) for bacterial and fungal communi-

ties composition were derived as described in Ranjard et al. [9]

following the method and the exponential model (equation 3)

proposed by Harte et al [39–40] for microorganisms.

log10 xdð Þ~ {2 � zð Þ � log10 dð Þzb ð3Þ

Where xd is the observed Sørensen’s similarity between two soil

samples that are d meters apart from each other; b is the intercept

of the linear relationship and z the turnover rate of the community

composition. The z estimate and its 95% confidence interval were

derived from the slope (–2*z) of the relationship between similarity

and distance by weighted linear regression. The overlap of the

95% confidence intervals was used to test for significant differences

in community composition turnover rates between regions or

between bacteria and fungi. The initial similarity of community

composition was taken as the average similarity between sites

16 km apart and the 95% confidence intervals of the mean were

determined [30].

Variance partitioning of community composition

variations according to environmental filters and

space. The relative importance of spatial variables, pedo-

climatic characteristics and land-use in determining community

composition turnover was tested by db-RDA [47–48]. Quantita-

tive data were centered and scaled. Spatial variables were

constructed from site coordinates (x, y, elevation) to reveal

potential spatial trends at scales larger than the region, and of

Principle Coordinates of Neighbour Matrices [49] in each region.

The PCNM approach creates independent spatial descriptors that

can be introduced in canonical analysis models to consider the

spatial autocorrelation between sites in the model [49]. PCNMs

with a significant Moran index (P,0.001) were selected. Land-use

corresponded to the Corinne Land Cover classes recoded into

dummy variables. Pedo-climatic characteristics consisted of

climate and all the physico-chemical variables except sand. The

most parsimonious model was obtained by forward selection from

null to full model in two steps: a first step for selecting

environmental variables and a second step for selecting the

relevant PCNMs. Then, the pure effects of each set of filters or

each individual filter were tested with an anova-like permutation

test for canonical analyses (anova.cca function in vegan package,

[50]). The PCNMs approach does not provide directly the range

of the spatial descriptor. Nevertheless, Bellier et al [51] demon-

strated that kriging approach could be applied to PCNMs to

estimate their spatial range. Consequently, when PCNMs were

selected in the most parsimonious model, their ranges were

determined by standard kriging techniques (ordinary kriging with

a Gaussian model). The hierarchy of these filters must nevertheless

be considered with caution due to the small amounts of variance

explained by each one. Land-use was not included in the filter-

ranking since it corresponded to a set of categories and a global

‘‘land-use’’ category was already taken into account in the

processes section. Maps of soil fungal community structure

variations are provided as (Fig. S1, mapping methodology is

described in the legend).

Results

Heterogeneity of soil habitat
The four regions were selected for their contrasting environ-

mental heterogeneity as demonstrated by the between group

analysis (Fig. 1B) and comparison of the calculated average

dissimilarity between soil habitats (Dhabitat) (Fig. 1A and C).

Multivariate analysis revealed a clear discrimination of the four

regions on the first and second axes (Monte-Carlo permutation

test, P,0.001): Landes was significantly discriminated from

Brittany, Burgundy and South-east on the first axis and these

three regions were discriminated from each other on the second

axis. In addition, the environmental variability strongly differed

between the four regions as demonstrated by the dispersal of sites

in the factorial map. Sites from Landes were less dispersed on the

factorial map than the sites from Brittany or Burgundy, which

were less dispersed than sites from South-East. The calculated

Dhabitat ranged from 1.042 in the Landes to 7.921 in the South-

East, with intermediate values for Burgundy and Brittany (2.520

and 2.707, respectively; Fig. 1A). It provided the same discrim-

ination between regions. Fig. 1C shows that the four regions could

mainly be distinguished according to land-use (e.g.: 86% of the
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Landes sites are forest sites), a restricted set of soil physico-

chemical characteristics (sand and silt contents, pHwater and

CaCO3 content, assimilable P content and organic matter quality

as measured by C:N ratio) and by differences in elevation.

Climatic conditions did not play a significant role in regional

discrimination.

Distance-Decay Relationship for bacterial and fungal soil
communities

Bacterial and fungal community similarity decreased with

increasing distance in each region (Fig. 2). Community similarity

was systematically higher for bacteria than for fungi in all regions

at small or large distances. For bacteria, the linear regression

model was highly significant in each region (P,0.001, Fig. 2)

except in Landes where it was just below the significance threshold

of 5% (P,0.02). For fungi, the linear regression model was highly

significant in each region (P,0.001) except Landes (Fig. 2).

Community composition turnover rates were derived from the

parameters of the linear regression. The community composition

turnover rates for the bacterial and fungal communities ranged

from 0.006 to 0.013 (Table 1). No significant differences were

highlighted between these organisms when the community

composition turnover rates were compared within each region.

When the community composition turnover of bacterial or fungal

communities was compared between regions, a significant

difference was only found between Brittany and the South-East

(P,0.05) for bacteria.

The initial similarity was always higher for bacterial commu-

nities than for fungal communities within each region, ranging

respectively from 54.4% to 61.4% and from 39.7% to 43.1%. The

initial similarity of the bacterial community in Landes was

significantly lower than in the other regions, which did not differ

from each other. For fungi, the initial similarities in Landes and

Brittany were similar and significantly lower than those in

Burgundy and the South-East.

These results were confirmed by a covariance analysis

comparing the models between organisms within a region and

between regions for a given organism (data not shown).

Variance partitioning of community composition
variations

The relative importance of the sets of spatial variables, land-use

and pedo-climatic characteristics on variations in bacterial and

fungal community composition was tested by db-RDA using the

Sørensen index (Fig. 3). The amount of variance in bacterial and

fungal community composition explained by the three sets of filters

Figure 2. Distance-Decay Relationships for bacteria and fungi. Each panel correspond to a region: Brittany (A), Burgundy (B), Landes (C) and
South-East (D) Points the average Sørensen’s similarity between sites for each distance class. Lines represent the regression model based on the
whole set of paired comparisons; for bacteria (grey) and fungi (black). The equations for the regression models were as follows: (A) Brittany:
Bacteria***: log10(Sørensen’s similarity) = 20.0146log10(geographic distance)20.156; Fungi***: log10(Sørensen’s similarity) = 20.0176log10(geo-
graphic distance)20.350; (B) Burgundy: Bacteria*** log10(Sørensen’s similarity) = 20.0186log10(geographic distance)20.144; Fungi***: log10(Sør-
ensen’s similarity) = 20.0156log10(geographic distance)20.316; (C) Landes: Bacteria*: log10(Sørensen’s similarity) = 20.0176log10(geographic
distance)20.198; Fungi ns: log10(Sørensen’s similarity) = 20.0126log10(geographic distance)20.357; (D) South-East: Bacteria***: log10(Sørensen’s
similarity) = 20.0276log10(geographic distance)20.101; Fungi***: log10(Sørensen’s similarity) = 20.0196log10(geographic distance)20.298. A graph
with points representing all paired-comparisions between sites as points can be found in Figure S2. Significance of the model is indicated as an
exponent for each organism: ns: not significant; P,0.05: *; P,0.01: **, P,0.001: ***.
doi:10.1371/journal.pone.0111667.g002
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ranged from 17% to 32%. The significance of the interactions

between the three sets of filters could not be tested but always

explained a small amount of the total variance (from 1.2% to

8.4%).

Among the sets of filters, soil pedo-climatic characteristics were

the main contributor to variations in bacterial and fungal

community composition. Spatial variables systematically explained

a lower amount of variance than pedo-climatic characteristics, but

a higher amount than land-use for both bacteria and fungi except

for bacteria in Landes region where neither spatial variables nor

land-use were significant.

The amount of variance explained by pedo-climatic character-

istics for bacteria or fungi was always significant, ranging from 5%

to 15%, and was similar between regions. Nevertheless, within

each region, the amount of variance explained by soil pedo-

climatic characteristics was always higher for bacteria than for

fungi (Fig. 3).

Spatial variables significantly explained part of the community

composition variations in all regions except for bacteria in Landes

region. When significant, spatial variables represented from 3% to

9% of the total variance and were of the same order of magnitude

both between bacteria and fungi and between regions (Fig. 3).

Similarly, land-use explained a significant amount of commu-

nity composition variations in all regions except for bacteria in

Landes region. The amount of explained variance ranged from

2.6% to 6.5% of the total variance. Within each region, land-use

explained similar amounts of bacterial and fungal community

variations when significant. Between regions, amounts of variance

explained by land-use were similar for both bacteria and fungi

(Fig. 3).

Table 1. Regression parameters of the Distance-Decay Relationships for Bacteria and Fungi.

Region Parameter Organism Estimate 95% Confidence interval

Brittany (131) Z Bacteria 0.007 [0.005; 0.009]

Fungi 0.009 [0.006; 0.011]

Initial similarity Bacteria 61.4% [60.4%; 62.3%]

Fungi 38.5% [37.7%; 39.4%]

Burgundy (109) z Bacteria 0.009 [0.006; 0.012]

Fungi 0.008 [0.003; 0.012]

Initial similarity Bacteria 61.4% [60.4%; 62.5%]

Fungi 43.1% [42.0%; 44.3%]

Landes (52) z Bacteria 0.009 [0.001; 0.016]

Fungi 0.006 [20.001; 0.013]

Initial similarity Bacteria 54.4% [52.9%; 56.0%]

Fungi 39.7% [38.4%; 40.9%]

South-East (121) z Bacteria 0.013 [0.011; 0.016]

Fungi 0.009 [0.006; 0.013]

Initial similarity Bacteria 60.9% [59.9%; 61.9%]

Fungi 42.4% [41.5%; 43.3%]

The number of observations per region is provided in brackets beside the name of the region. The community composition turnover rate (z) and the initial similarity are
derived from the slope of the regression (22z) and the mean of similarity at 16 km; respectively. The statistical comparison between region and organism was
performed by examining the overlap of the 95% confidence intervals of turnover rates or initial similarities.
doi:10.1371/journal.pone.0111667.t001

Figure 3. Variance partitioning of bacterial and fungal community composition. The number indicated in brackets corresponds to the
number of samples for the region. Significance levels: ns: not significant; P,0.05: *; P,0.01: **, P,0.001: ***.
doi:10.1371/journal.pone.0111667.g003
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Hierarchy of environmental filters
Within the sets of soil pedo-climatic characteristics and spatial

variables, the pure effects of individual filters on bacterial and

fungal community structure are presented in Figure 4. These pure

effects account for relatively small proportions of the total variance

(from 0.7% to 6.5%) because of the large number of filters

explaining the total variance of bacterial or fungal community

compositions. Regarding the pedo-climatic characteristics, the

significant filters for soil bacterial communities in Brittany were

first pH and secondly N content. For fungi, these were the quality

of organic matter resource as indicated by the selection of N

content, Corg content and C:N ratio. The least significant filters

corresponded to soil texture and other soil nutrients for bacteria

(clay and silt contents, Mg and CaCO3 concentrations) and fungi

(clay content, K and P concentrations, Figure 4). In Burgundy, as

in Brittany, the soil bacterial and fungal communities were

principally affected by pH. Beside pH, bacterial community

composition was shaped by the quality of organic matter resource

(N content, Corg content, C:N ratio) followed by clay content and

annual rainfall. The fungal community composition was shaped by

C:N ratio only. The only filter that had a significant effect in the

Landes region, on both soil bacteria and soil fungi, was the C:N

ratio. The pH was the most important filter, followed by clay

content and K concentration, for bacteria in the South-East. In

this region, N content and K concentration were more important

filters for fungi than pH and clay content.

The spatial variables corresponded to the sites coordinates and

16 significant PCNM eigenfunctions, each representing a different

spatial scale of analysis (coarse, medium and fine scales, Figure 4).

Longitude, latitude or altitude coordinates did not influence

community composition except latitude for fungi in Burgundy

region (Figure 4). PCNMs representing spatial structures of 80–

120 km radius explained significant amounts of variance in the

composition of bacterial and fungal communities in Brittany and

South-East. This highlighted that these communities were spatially

structured at a coarse spatial scale. Similarly, PCNMs representing

spatial structures of 40–65 km radius explained significant

amounts of variation in the composition of bacterial community

in Brittany and of fungal community in Burgundy, South-East and

Landes. This showed the spatial structuration of these communi-

ties at medium spatial scales. PCNMs accounting for fine scale

variables were neither significant for bacteria nor fungi in any

region.

Discussion

The four regions were selected to challenge the hypothesis that

different levels of environmental heterogeneity, i.e. different

habitat diversity and fragmentation for soil bacteria and fungi,

results in different community composition turnovers [9], [14] and

to compare their determinism. The multivariate analysis and the

calculated Dhabitat both highlighted a significant gradient in

environmental heterogeneity following the sequence: Landes,

Burgundy#Brittany,,South-East. The four regions were mainly

discriminated by environmental variables already demonstrated to

influence soil microbial community abundance and diversity, such

as land-use [52] and soil characteristics (texture, pHwater, P content

and C:N ratio; [6], [14], [33], [35]). Among these four regions,

Landes and South-East represent two extremes of environmental

heterogeneity. Landes was distinct in having sites with conifer

forest on acidic soils and low altitudinal variations. This specificity

may turn Landes into an outlier for its environmental variability.

On the other hand, South-East is characterized by a strong

altitudinal gradient and a mosaic of land-use. In comparison,

Burgundy and Brittany were also characterized by a mosaic of

land-use but were more marked by croplands than South-East and

less by forests. In addition, these two regions presented interme-

diate soil types regarding Landes and South-East: silty-clay calcic

soils and silty acidic soils, respectively; associated to intermediate

levels of organic Carbon content. Altogether, these observations

highlight that these four regions allow the consideration of a large

range of environmental conditions associated to different levels of

environmental heterogeneity. Therefore, community similarity

turnover rates can be confronted to environmental heterogeneity

and their comparison may lead to a consensus regarding the

environmental filters shaping soil microbial communities.

Figure 4. Variations of microbial communities partitionned according to edaphic variables and space. For each organism and region,
only variables retained in the most parsimonious model are presented and their pure effect is tested by a permutation test. Significance levels are: P,

0.05: *; P,0.01: **, P,0.001: ***. Missing values or variables indicate that the variable was not retained in the model. Sand was removed prior to
model evaluation since it was represented by the opposite of the sum of silt and clay content. Rainfall: Sum of annual rainfall (mm). Temperature:
Sum of annual temperature (uC). Spatial components were summarized according to the scale considered: trend (x, y and z coordinates), coarse,
medium or fine. The interval in brackets indicates the numbers of PCNMs retained in the model for each scale. The proportion of variance for each
scale was determined as the sum of the pure effects of each PCNM when these were significant. Coarse, medium and fine scales correspond to PCNM
with a spatial range of 80 to 120 km, 40 to 65 km and less than 40 km; respectively.
doi:10.1371/journal.pone.0111667.g004
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In all regions, except Landes, the soil bacterial and fungal

communities were spatially structured as indicated by the

significant DDR. This supports that the concept of DDR for soil

microorganisms may be generalized, as suggested by several other

studies [1], [9], [12], [24], [53]. The estimated bacterial and

fungal community composition turnover rates ranged from 0.006

to 0.013. This is in agreement with the recent community

composition turnover rates observed for soil microorganisms [10],

[14], [24]. However, the turnover rates estimates were low. This

could be due to technical limitations; particularly the low

taxonomic resolution of DNA fingerprinting. Species variations

were aggregated by the DNA fingerprints into few dominant

bands, which precluded the accumulation of new minor species

with increasing distance [54–55]. This would be supported by the

higher community composition turnovers observed in Zinger [24]

with the high resolution level provided be the pyrosequencing

approach. The sampling design could also have led to low

estimates of the community composition turnover rate. Indeed,

lower composition turnover rates are commonly observed in

regions composed of contiguous habitats [13] with gradual

variations of habitat characteristics across sites and higher rates

of community composition turnover have been observed at finer

taxonomic levels and spatial scales [56].

Beside these technical points, community composition turnover

rates were very close within each region for bacteria and fungi.

This observation was in agreement with maps of bacterial and

fungal communities’ structures which revealed large patches of ca.
100–140 km radius (see Fig. 2 in [7] for bacteria and Fig. S1 for

fungi). Altogether, this indicated a low-level of aggregation of both

communities on a broad spatial scale [57]. This observation would

suggest that differences in terms of biological and ecological

features (habitat characteristics, colonization modes, trophic

requirements, biotic interaction, dormancy; [6], [58–59]) would

not lead to different rates of community composition turnover on a

broad spatial scale. This would be supported by strong biotic

interactions between bacterial and fungal communities highlithed

by a significant correlation between bacterial and fungal commu-

nities’ compositions. Nevertheless, this correlation was much lower

than that between each community composition and environ-

mental variables (data not shown). This strong dependency to

environmental conditions resulted in a trend towards higher

turnover rates in regions with higher Dhabitat. This would

corroborate our first hypothesis that the microbial DDR is

positively related to environmental heterogeneity. This observa-

tion was more marked and significant for bacterial communities

but only a tendency for fungal communities. Although this

conclusion is based on analyses of only 4 regions, it is in agreement

with Ranjard et al. [9] who demonstrated a correlation between

habitat heterogeneity and turnover rate for soil bacterial

communities on a broad spatial scale, and with other microbial

and macrobial studies [24], [30–31], [60].

The differences between the sensitivities of soil bacteria and

fungi to environmental heterogeneity could be due to the ecology

of soil fungi [58] at the spatial scale of this study. Nevertheless,

according to Peay et al [25–26], ectomycorhizal fungi are spatially

structured at very fine spatial scales. This would suggest that these

organisms are strongly dependent on environmental conditions

but that the grain size of this study (252 km2) did not allow

perceiving this dependence. This hypothesis would be supported

by the estimated similarity of the microbial communities at a local

spatial scale (initial similarity, [30]). Indeed, the initial similarity

was systematically higher for bacterial than for fungal communi-

ties. According to Morlon et al [57], this would indicate that fungal

communities are more aggregated than bacterial communities, i.e.

more variable than bacterial communities, at a local spatial scale.

This would lead to the conclusion that fungi are somehow more

dependent on environmental conditions than bacteria at a local

scale, in agreement with Peay et al [25–26] and the numerous

biological interactions they are involved in.

The observed patterns and significant turnover rates result from

different ecological processes [8] which may shape differently

bacterial and fungal community composition on a broad spatial

scale according to their relative importance. Recent studies have

demonstrated that the main processes involved in increasing or

decreasing community composition turnover rate are environ-

mental selection and dispersal, respectively [8–9]. Dispersal is

commonly supposed, but not empirically demonstrated to be high

for microbes [61]. The maintenance of significant turnover rates,

as recorded in our study, thus requires environmental selection to

be high and dispersal not infinite. This hypothesis was tested by

partitioning the b-diversity variations of microbial communities

within regions. This partition was made according to filters

involved in environmental selection: soil pedo-climatic character-

istics and land-use; and to spatial variables characterizing spatial

autocorrelation unexplained by the environmental variables. The

residual spatial autocorrelation could result from dispersal

limitations, but also from unmeasured spatially autocorrelated

environmental variables despite the extensive number of environ-

mental variables considered in this study. The amount of

explained variance ranged from 23% to 32% for bacteria and

from 17.5% to 18.8% for fungi. These values are within the range

reported in the literature for the whole communities of bacteria

[8], [14] and fungi [25–26], [62].

Soil characteristics accounted for higher amounts of variance,

for both bacteria and fungi, than spatial variables. This supports

the idea that soil microbial communities are primarily affected by

environmental selection and secondly by other processes leading to

spatial structuration independently of the environment [2], [7–8],

[38]. More precisely, environmental selection was mainly driven

by pedo-climatic characteristics, which accounted for larger

amounts of variance than land-use. This is in agreement with

several studies conducted on a broad spatial scale evidencing the

higher dependency of bacterial and fungal communities on soil

physico-chemical characteristics [18], [38], [63] than on land-use.

Nevertheless, the amount of variance explained by pedo-climatic

characteristics was higher for bacteria than for fungi, highlighting

the greater effect of soil habitat on shaping the bacterial

community. This observation is supported by the higher diversity

and reactivity of the soil bacterial community to changes in

surrounding conditions which, in turn, leads to a community

structure that is better fitted to the habitat characteristics [13],

[58]. On the contrary, land-use explained a higher amount of

fungal community variance than of bacterial community variance.

This latter could be due to plant-soil microbe interactions resulting

from the type of vegetative cover [19], [38], [52], [64] as well as

from human activities, especially agricultural or industrial

practices [35]; [37] potentially affecting fungi more strongly than

bacteria. This difference would be in agreement with a highly

patchy distribution of soil fungi at a local scale as suggested above

by the low level of initial similarity. Altogether, these results

support the postulate of Baas-Becking ‘‘the environment selects’’ in

summarizing microbial biogeography.

Nevertheless, variance partitioning also highlighted that bacte-

rial and fungal communities are spatially structured independently

of environmental characteristics since spatial variables accounted

for a significant amount of community variance. A hypothesis in

explaining this spatial autocorrelation is that soil bacterial and

fungal communities might be dispersal limited, even if this result
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may also be related to unmeasured, spatially structured, environ-

mental variables. This hypothesis would be supported by the study

of Ranjard et al [9] demonstrating significant turnover rates of

bacterial diversity in fully homogenous regions and by the

consideration of several soil physico-chemical characteristics in

the variance partitioning approach of the present study. Never-

theless, this must be confirmed by more in-depth studies since few

evidence remains to date on the shaping of bacterial and fungal

communities by limited dispersal [8], [17], [26–27], [65].

Comparisons have indicated that fungi tend to be less dependent

on spatial variables than bacteria. This result is surprising since

fungi are demonstrated to be dispersal limited [27] and bacteria

are generally expected to disperse over larger distances, even wider

than our regional scale [14], [66]. It was estimated in the literature

that 1018 viable bacteria were transported annually in the

atmosphere between continents [61]. Moreover, particular fungal

populations have been demonstrated to disperse over short

distances, e.g. ectomycorrhiza at the ‘‘plant island scale’’ [25–

26], or to be endemic [27]. On the other hand, variance explained

by spatial variables was similar in each region for fungi, whereas it

followed the environmental heterogeneity gradient: Landes,

Brittany#Burgundy,South-East for bacteria. This observation

supports the hypothesis that bacteria are more sensitive to

geomorphology and that the presence of natural barriers (e.g.
mountains), or a higher fragmentation of landscape in the South-

East, due to a mosaic of agricultural and natural plots [9] may lead

to significant spatial variations.

Our last objective was to identify and rank the environmental

filters and the spatial variables involved in environmental selection

process and spatial autocorrelation of bacteria and fungi. To do so,

the environmental and spatial filters selected in the variance

partitioning approach were ranked according to their pure effect

on bacterial and fungal community composition turnover. First,

environmental selection was mainly based on soil characteristics

but not on climatic conditions. This is in accordance with previous

studies highlighting the weak influence of climate on soil microbial

diversity on a broad spatial scale [6–7], [35], [37], [67], [68].

Nevertheless, recent studies also demonstrated strong differences

between bacterial communities across different biomes, especially

cold deserts versus temperate biomes and hot deserts, suggesting

that climate may play a role [32] at very large spatial scales.

Overall, the main soil characteristics identified as important filters

for soil bacterial and fungal community composition were pH,

trophic resources (N, C, K, P contents; C:N ratio) and texture

(clay, silt content). These findings are consistent with the literature

where i) pH is regularly identified as the main filter for both soil

bacteria [6], [16–17] and fungi [25], [62], ii) soil organic C and N

contents and the C:N ratio constitute important components of

microbial niches [18], [32], [35], [58], and iii) texture determines

the size and stability of soil micro-habitats [18], [69], [70]. The

hierarchy of these filters depended on the type of organisms and

the regions. The above-described hierarchical sequence (pH.

trophic resources$texture) was observed for three of the four

regions, but not for Landes. In the Landes region, the filter

variability is low and environmental selection is basically driven by

organic matter quality (C:N ratio). This is related to the large

number of conifer forests sites leading to soil organic matter with a

high C:N ratio and strong recalcitrance to microbial decomposi-

tion. A strong selection of particular populations with enzymatic

ability to transform this organic matter is occurring in such soils

[58], which is deeply influencing the corresponding community

structure. Comparison of the overall filter hierarchies for bacteria

and fungi in a given region did not reveal any discrepancy for the

primary drivers. The only differences were observed for secondary

filters, including C:N ratio and mineral nutrients (such as K and P)

for fungi, and clay and N content for bacteria. This is consistent

with the well-known dependency of the soil fungal community on

soil P content [34] and soil organic matter quality [58]. As regards

bacteria, clay content is positively correlated with the biotic

capacity of soil as well as its indigenous bacterial diversity by

enhancing the level of protection of the soil habitat and the

retention of nutrients [69–70]. Second, regarding spatial autocor-

relation, different scales were derived from the hierarchy of spatial

variables and their range. The main scale identified was the coarse

scale (80 to 120 km radius), for both bacteria and fungi in Brittany

and South-east regions. This spatial scale is smaller than the one at

which soil habitat changed on the RMQS Network (150 to

470 km, [9]), whereas it is in agreement with the large patches

obtained by mapping the bacterial and fungal community

structure over these regions [7] and Fig. S1). In addition, finer

spatial scales (medium scales; 40 to 65 km radius) were also

identified as significant in Burgundy, Landes and South-East for

fungi and in Brittany for bacteria. Altogether, this scale

dependency would support a hypothesis for the dispersal limitation

of bacterial and fungal communities [33]. This scale dependency is

in agreement with Martiny et al [14] for bacteria and is supported

by the observations of Peay et al [25–26] on soil fungi. As in other

studies at continental scales [14], this highlights the importance of

considering multiple scales to better understand microbial ecology.

Altogether, our study demonstrated the spatial structuring of soil

bacterial and fungal communities on local to coarse scales, which

was based on environmental selection and on an unexplained

spatial autocorrelation that could be related to limited dispersal.

Selection and spatial autocorrelation were shown to have a similar

influence on soil bacteria and soil fungi but the filters involved

could differ depending on the environmental heterogeneity.

Nevertheless, the comparison of bacterial and fungal communities

helped to propose a primary consensus regarding the environ-

mental filters shaping soil microbial community composition as a

whole: Land-Use and pH are the primary filters, followed by

trophic resources quantity (organic carbon content and nitrogen

content) and then quality (C:N ratio). The results of this study

increase our knowledge on the effects of soil habitat and provide

insights in the scale at which dispersal may occur according to the

ecological attributes of bacteria and fungi. However further

investigations, based on up-scaling approaches, are now required

to: i) provide a direct measurement of bacterial cells dispersal

which is now crucial to demonstrate limited dispersal of bacteria;

ii) identify the filters operating at each spatial scale. Especially,

these upscaling approaches could be associated to high-throughput

sequencing to achieve a finer resolution on the communities. This

would improve our ability to sustainably manage soil biodiversity.

Supporting Information

Figure S1 Maps of interpolated MULTISPATI scores for
the first three MULTISPATI axes (columns) and for the
four geographical regions (rows). Each map was generated

as described in Dequiedt et al (2009) and corresponds to the spatial

synthesis of the F-ARISA genetic structure of indigenous fungal

communities from the corresponding soils sampled in the four

regions of France. Colours on the map are proportional to the

score of each soil sample on each MULTISPATI axis following

the scale provided at the bottom of the figure. Below each column,

the empirical variogram is provided for each MULTISPATI axis.

(DOC)

Figure S2 Distance-Decay Relationship for bacteria and
fungi. Each panel correspond to: (A–D): Bacteria in Brittany,
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Burgundy, Landes and South-East; (E–H): Fungi in Brittany,

Burgundy, Landes and South-East. Points represent paired-

comparisons between sites and line the linear model. The

equations for the regression models were as follows: (A)
log10(Sørensen’s similarity) = 20.0146log10(geographic dis-

tance)20.156; (B) log10(Sørensen’s similarity) = 20.0186log10(-

geographic distance)20.144; (C) log10(Sørensen’s similarity) = 2

0.0176log10(geographic distance)20.198; (D) (Sørensen’s simi-

larity) = 20.0276log10(geographic distance)20.101; (E) log10(-

Sørensen’s similarity) = 20.0176log10(geographic distance)2

0.350; (F) log10(Sørensen’s similarity) = 20.0156log10(geo-

graphic distance)20.316; (G) log10(Sørensen’s similarity) = 2

0.0126log10(geographic distance)20.357; (H) log10(Sørensen’s

similarity) = 20.0196log10(geographic distance)20.298. Signifi-

cance of the model is indicated as an exponent for each organism:

ns: not significant; P,0.05: *; P,0.01: **, P,0.001: ***.

(DOCX)

Table S1 Summary statistics of regions characteristics.
PNE: Particular Natural Ecosystems, SE: standard error of the

mean.

(DOC)
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and cover crops shift soil microbial abundance and diversity in Laos tropical

grasslands. Agron Sustain Dev 33: 1–10.

38. Griffiths RI, Thomson BC, James P, Bell T, Bailey M, et al. (2011) The bacterial

biogeography of British soils. Environ Microbiol 13: 1642–1654.

39. Harte J, Kinzig A, Green J (1999) Self-Similarity in the Distribution and

Abundance of Species. Science 284: 334–336.

40. Harte J, Smith AB, Storch D (2009) Biodiversity scales from plots to biomes with

a universal species–area curve. Ecol Lett 12: 789–797.

41. Ranjard L, Dequiedt S, Lelievre M, Maron PA, Mougel C, et al. (2009) Platform

GenoSol: a new tool for conserving and exploring soil microbial diversity.

Environ Microbiol Rep 1: 97–99.

42. Arrouays D, Jolivet C, Boulonne L, Bodineau G, Saby NPA, et al. (2002) A new

projection in France: a multi-institutional soil quality monitoring networkUne

initiative nouvelle en France : la mise en place d’un réseau multi-institutionnel de
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Abstract It is widely assumed that agricultural practices have a
major impact on soil living organisms. However, the impact of
agricultural practices on soil microbes is poorly known, notably
for species richness, evenness, and taxonomic composition. The
taxonomic diversity and composition of soil indigenous micro-
bial community can be assessed now using pyrosequencing, a
high throughput sequencing technology applied directly to soil
DNA. Here, we studied the effect of agriculture management on
soil bacterial and fungal diversity in a tropical grassland ecosys-
tem of northeastern Laos using 454 pyrosequencing of 16S and
18S rRNA genes. We studied soil microbial diversity of agri-
cultural soils 3 years after conversion from native grasslands.
We compared five systems: one tillage, two no-tillage rotational,
one no-tillage improved pasture, and one natural grassland. Our
results show first that compared to the natural grassland, tillage
decreases fungal richness and diversity by −40 % and −19 %,

respectively and increases bacterial richness and diversity by
+46 % and +13 %, respectively. This finding evidences an early
impact of agricultural management on soil microbial diversity.
Such an impact fits with the ecological concept of "intermediate
perturbation"—the hump-backed model—leading to classify
agricultural practices according to the level of environmental
stress they generate. We found also that land use modified soil
microbial taxonomic composition. Compared to the natural
pasture, tillage decreased notably the relative abundance of
Actinobacteria (by −6 %), Acidobacteria (by −3 %) and
Delta-proteobacteria (by −4%) phyla, and by contrast increased
the relative abundance of Firmicutes (by +6 %), Gamma-
proteobacteria (by +11%), andChytridiomycota (+2%) phyla.
We conclude that soil microbial diversity can be modified and
improved by selecting suitable agricultural practices.
Moreover no-till systems represented intermediate situations
between tillage and the natural pasture and appear therefore as
a fair trade-off between the need for agriculture intensification
and soil ecological integrity preservation.

Keywords Microbial diversity . Soil metagenomics .

Pyrosequencing . Conservation agriculture . Tillage .

Acid savannah

1 Introduction

Among human activities, agricultural practices strongly af-
fect soil microbial communities by changing the physical
and chemical characteristics of the soil in which microorgan-
isms live, thereby affecting their abundance, diversity, and
activity (Kladivko 2001; Govaerts et al. 2007). Agricultural
inputs (e.g., organic amendments, mineral fertilizers, and
pesticides), crop rotation, and plant diversity affect soil mi-
croorganisms in different ways (Bunemann et al. 2006;
Nicolardot et al. 2007; Pascault et al. 2013). However, in
conventional agriculture, tillage generally has the greatest
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impact on biological properties since physical disturbance
changes soil water content, temperature, aeration, and the
degree of mixing of crop residues within the soil matrix
(Kladivko 2001; Six et al. 2006). Tillage also reduces soil
macroaggregate content (Tivet et al. 2013), which provides
an important microhabitat for microbial populations
(Ranjard and Richaume 2001). Based on the principle of
minimal soil disturbance, no-till farming systems have been
widely adopted in large-scale mechanized agriculture to
prevent soil erosion and decrease production costs
(Derpsch et al. 2010). Combined with soil cover (mulch)
and diversified crop rotation, no-till systems are also being
advocated over tillage for enhancing soil health and long-
term crop productivity (Govaerts et al. 2007).

To date, the effects of agricultural practices and, more
widely, of cropping intensity were mostly evaluated on soil
microbial abundance and structure by using classical tools
based on the cultivability of microorganisms as well as on
their physiological and biochemical properties (Kladivko
2001; Kandeler 2007). However, these techniques were
strongly limited in their sensibility and exhaustivity to give
an accurate overview of quantitative and qualitative modifi-
cations of soil microbial communities (Maron et al. 2010).
The recent development of culture-independent molecular
tools, and especially of high throughput sequencing technol-
ogy (pyrosequencing), allows obtaining thousands of se-
quences from a single soil DNA sample which may helped
better assessing the huge diversity of soil microbial commu-
nities (Roesch et al. 2007; Terrat et al. 2011). Metagenomic
analysis should facilitate the deciphering of taxonomic and
functional assemblages of indigenous communities in natu-
ral environments, together with their roles in the biological
functioning of ecosystems (Maron et al. 2010). To date, this
approach has been poorly used to evaluate the impact of
agricultural practices on soil microbial communities, hence
limiting our interpretation of soil microbial taxonomic diver-
sity changes, and their significance in terms of soil ecolog-
ical status and potential functioning in agrosystems.

In a previous study, we showed that tillage systems and
cover crops rapidly affected soil microbial abundance and
genetic structure in a tropical grassland ecosystem of north-
eastern Laos (Lienhard et al. 2013). However, the genotyping
techniques used were unable to accurately characterize the full
diversity of the telluric microbial communities. Consequently,
they could not narrow the knowledge gap concerning the
distribution and diversity (in terms of species richness and
evenness) of indigenous microbial species in response to soil
disturbance and cropping intensity.

In this study, our objective was to deepen the effect of
agricultural management on soil microbial diversity by using
a metagenomic approach. More precisely, our study aims at
making an inventory of the diversity of both soil bacterial
and fungal communities using new generation sequencing

technology on soil DNA. For this, we compared soils com-
ing from five contrasted land use management systems (one
tillage-based and two no-till rotational cropping systems, one
no-till improved pasture and the natural surrounding pas-
ture), 3 years after the conversion of native grassland into
agricultural land. Soil bacterial and fungal diversity were
evaluated by 454 pyrosequencing of 16S and 18S rRNA
genes, respectively. The analysis of microbial diversity
changes, and notably the changes in particular taxonomic
groups’ distribution was used to evaluate agricultural sys-
tems effect on soil ecological status.

2 Material and methods

2.1 Experimental site and land use management

Experiments were conducted in Poa village (latitude,
19°33’N; longitude, 102°59’E) at 1,130 m AMSL. The
climate is tropical and mountainous with a 6-month (April–
September) wet and hot season and a 6-month dry season
including 3 months of cold. The mean annual precipitation is
1,400 mm. The soils at the site are red clayey oxisols (USDA
classification). We studied five land use management sys-
tems representing a decreasing gradient of cropping intensity
and soil disturbance (Table 1): one tillage-based rotational
system (CT), based on soil ploughing and repeated human
interventions (e.g., sowing, manual weeding, and fertilizer
application); two no-till rotational systems (NT1 and NT3)
with limited soil disturbance (no-tillage) but also including
frequent agricultural operations (e.g., rolling, spraying, sow-
ing, and fertilizer application); one intensively grazed no-till
and mono-specie improved pasture (ImpP); and a natural
unfertilized and barely grazed grassland (PAS). The annual
crop treatments (CT, NT1, and NT3) were selected from the
split-split plot experimental design described in Lienhard
et al. (2013). The pasture treatments (ImpP and PAS) were
taken from surrounding fields (Fig. 1).

2.2 Soil sampling and chemical analysis

The soil was sampled at 0–10-cm depth, on the 29th of June
2010, 40 days after maize sowing. A composite sample was
made of a pool of five subsamples taken in the diagonal
section of the plot. For annual crop systems, soil was sam-
pled on the maize row to avoid a possible “cover crop” effect
under no-till systems. Soil chemical analyses were done by
the INRA laboratory in Arras, France. Soil texture was
measured by sieving methods (3 classes). Soil organic car-
bon (SOC) and total nitrogen (N) were quantified by dry
combustion. Soil pH was measured in 1:5 soil/water slurry,
and exchangeable bases (Ca, Mg, K, Na) were quantified
using ammonium acetate reagent.
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2.3 Pyrosequencing of 16S and 18S rRNA gene sequences

Microbial DNA was extracted from 2 g (dry weight) of soil
using a single procedure standardized by the GenoSol platform
(INRA, Dijon, France, www.dijon.inra.fr/plateforme_genosol).

Microbial diversity was estimated by 454 pyrosequencing, a
molecular technique allowing a rapid and massive production
of targeted DNA sequences (Maron et al. 2010). A 16S rRNA
gene fragment of the appropriate size (about 440 bp) and
sequence variability for 454 pyrosequencing was amplified

using the primers 338 F (5’-ACTCCTACGGGAGGCAGC
AG-3’) and 803R (5’-CTACCNGGGTATCTAAT-3’)
according to a procedure described by Terrat et al. (2011).
Briefly, for each soil, 5 ng of DNA was used for a 25-μL
PCR conducted under the following conditions: 94 °C for
2 min, 35cycles of 30 s at 94 °C, 52 °C for 30 s and 72 °C
for 1 min, followed by 7 min at 72 °C. PCR products were
purified using a MinElute gel extraction kit (Qiagen,
Courtaboeuf, France) and quantified using the PicoGreen stain-
ing kit (Molecular Probes, Paris, France). Similarly, a 18S

Table 1 Main land use management characteristics

Land use Main characteristics

PAS Native unfertilized pasture (>30 years) dominated by Themeda triandra, barely grazed (animal stocking rate <0.3 head/ha−1)
during the rainy season, and periodically burned during the dry season

ImpP Improved pasture of ruzi grass direct seeded (no-till) in 2007 after the chemical control of native grasses; grazed
(mean animal stocking rate of 4 heads/ha−1) and fertilizeda during the rainy season

CT Conventional tillage: 3-year rotation of soybean (2008), rice (2009), and corn (2010) based on annual ploughing with discs,
the burying of former crop residues and weeds, and mineral fertilizationa

No-till systems: similar to CT regarding crop rotation and fertilization levela but conducted under no-tillage, crop residue
maintenance at soil surface, and the association of cover crops prior to and with main crops:

NT 1 Fm+Pp (2007), soybean+oat+buck (2008), rice+stylo (2009), corn+Pp (2010)

NT 3 Ruzi+Pp (2007), soybean+(oat+buck)+ruzi (2008), rice (+ stylo)+ruzi (2009), corn+ruzi (2010)

Main crops: rice cv. Sebota1, corn hybrid LVN10, soybean cv. Asca. Cover crops: Fm, finger millet (Eleusine coracana Gaern); Pp, pigeon pea
(cajanus cajan cv. Thai); stylo, stylosanthes guianensis cv. CIAT 184; oat, Avena sativa L.; buck, buckwheat (Fagopyrum esculentumMoench); ruzi,
ruzi grass (Brachiaria ruziziensis cv. ruzi)
a Annual fertilization of 60–80–60 kg ha−1 of N–P2O5–K2O (32 kg N ha−1 for soybean). All agricultural treatments also received an initial
application of 2 Mg ha−1 of locally produced lime (27 % of CaO)

dc

ba
Fig. 1 Land use management
sampled in Poa experimental
site. a Natural unfertilized
pasture (PAS), b improved
pasture of Brachiaria
ruziziensis (ImpP), c maize
crop under tillage (CT), and d
maize crop under no-till system
(NT1 and NT3)
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rRNA gene fragment of about 350 bp was amplified using the
primers FR1 (5’-ANCCATTCAATCGGTANT-3’) and FF390
(5’-CGATAACGAACGAGACCT-3’) under the following
PCR conditions: 94 °C for 3 min, 35cycles of 1 min at 94 °C,
52 °C for 1 min and 72 °C for 1 min, followed by 5 min at
72 °C. A second PCR of nine cycles conducted under similar
conditions was then realized with purified PCR products and
10 bpmultiplex identifiers added to the primers at 5’ position to
specifically identify each sample and avoid PCR biases. PCR
products were finally purified and quantified as previously
described. Pyrosequencing was then carried out on a GS
Junior (Roche 454 Sequencing System).

2.4 Bioinformatic analysis of 16S and 18S rRNA gene
sequences

Bioinformatic treatment was done using the GnSPipe of the
GenoSol platform (INRA, Dijon, France) described by Terrat
et al. (2011). Firstly, all reads were sorted according to the
chosen identifiers' sequences. Then, in order to efficiently
compare the datasets and avoid biased community compar-
isons, raw datasets which had a large number of reads were
reduced by random selection close to the lowest datasets
(8,000 and 2,500 reads for 16S and 18SrRNA gene se-
quences, respectively). Raw reads were filtered and deleted:
(a) if the exact primer was not found at the beginning of the
sequence, (b) if the sequences contained any ambiguity (Ns),
(c) if its length was below 350 and 250 bases for 16S and 18S
reads, respectively. A PERL program was then applied to
obtain strict dereplication (i.e., clustering of strictly iden-
tical sequences). The dereplicated reads were then
aligned using infernal alignments and clustered into mo-
lecular operational taxonomic units (MOTU) using a
PERL program that clusters rare reads to abundant ones
and do not count differences in homopolymer lengths.
Another homemade filtering step was then applied to elimi-
nate potential sources of errors (e.g., PCR chimeras, sequenc-
ing errors, MOTU overestimation). All single-singletons
(reads detected only once and not clustered) were then
checked based on the quality of their taxonomic assignments
to avoid artifacts. High-quality reads were then used for
taxonomy-based analysis using: (a) the Naïve Bayesian
rRNA classifier of the RDP project for bacterial sequences,
(b) the Basic Local Alignment Search Tool performed on a
cleaned version of the Silva database (version r111 using the
EMBL taxonomy) for fungal sequences. Diversity indexes
were finally determined using the detected taxonomic groups
at the genus level. We used the maximum number of MOTU,
the Shannon (H’), and Evenness (J) indexes as indicators of
soil microbial richness, diversity and structure, respectively.
The raw data sets are available on the EBI database
system (and Short Read Archive) under project accession
number ERP002181.

2.5 Statistics

Principal component analysis (PCA), were performed using
the ADE-4 package (Thioulouse et al. 1997) under R soft-
ware and provided an ordination of data in factorial maps
based on the scores of the first two principal components.

3 Results and discussion

3.1 Effect of agricultural management on soil chemical
characteristics

Despite the limited time of cultivation at evaluation (3 years),
we observed a significant early effect of agricultural systems
on top soil chemical characteristics (Table 2). We recorded a
rapid decrease in SOC and total nitrogen (N) under conven-
tional tillage, with a mean loss of 25 % of SOC and total N
under conventional tillage as compared to no-tilled systems,
whichmay be related to macro-aggregate disruption, enhanced
soil aeration, and the mixing of residues into the soil (Six et al.
2006). We also observed an increase in soil pH and exchange-
able base content under all cultivated systems as compared to
the natural pasture (Table 2) due to lime and thermophosphate
supply (Table 1). However, soil exchangeable base content
was much higher under no-till cultivated systems (NT1,
NT3, and ImpP) than under conventional tillage (+75 % in
average; Table 2), suggesting important nutrient losses by
lixiviation under tillage systems. Altogether, our results are
consistent with other studies comparing till vs no-till system
effect on soil chemical properties at soil surface (Kladivko
2001; Govaerts et al. 2007).

3.2 Response of soil microbial diversity to land conversion
to agriculture

Regardless of agricultural systems, the examination of the
clustered DNA sequences revealed low microbial richness in
Lao soils, with less than 550 MOTU, detected for both bacte-
rial and fungal communities (Table 2), whereas more than
1,000MOTUwere described in other soil ecosystems for both
bacterial (Acosta-Martinez et al. 2008; Terrat et al. 2012;
Tripathi et al. 2012) and fungal (Buee et al. 2009) communi-
ties. This low richness could be related to the soil character-
istics, since microbial diversity is strongly influenced by soil
pH (Lauber et al. 2009), Al toxicity, and nutrients availability
(Tripathi et al. 2012).

After 3 years of native grassland conversion to agriculture,
we observed an early but significant effect of land use manage-
ment on bacterial and fungal diversity (Table 2). Bacterial
diversity was favoured by increased soil disturbance and
cropping intensity, with values of the Shannon index (H’) and
richness (MOTU) decreasing along the gradient conventional
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tillage>no-till systems>improved pasture>natural pasture
(Table 2). As compared to the natural pasture, conventional
tillage increased H’ value by +13 % (from 3.9 to 4.4) and
bacterial richness by +46 % (from 361 to 528 MOTU,
Table 2). Interestingly, this gradient was the opposite of the
results observed for bacterial density (Lienhard et al. 2013).

According to the “hump-backed” model that links the
biodiversity of a community to the intensity of its exposure
to environmental stress (Giller et al. 1998; Bressan et al.
2008), our results suggest that the tillage events may at that
stage represent a moderate perturbation for bacteria leading
to a decrease in the competitive niche exclusion and selection
mechanisms occurring between populations, and conse-
quently to an increase in bacterial richness. In other respects,
plant diversity (with no-till systems>improved pasture;
Table 2) and mineral fertilization (with no-till systems and
improved pasture>natural pasture) may also have contribut-
ed to increased bacterial diversity under no-till agricultural
systems as compared to the native grassland due to their
positive effect on soil pH and nutrient availability (Table 2)
which have been shown to favour bacterial diversity (Lauber
et al. 2009; Tripathi et al. 2012).

Contrary to bacterial diversity, fungal diversity was neg-
atively affected by tillage, with lower values of richness
(MOTU) and Shannon index (H’) observed under conven-
tional tillage (236 MOTU and H’ of 3.9) than under no-tilled
systems (MOTU ranging from 335 to 467, and H’ from 4.3
to 4.9; Table 2), which might be related to the negative effect
of tilling tools on fungal hyphal growth (Six et al. 2006). We
found notably twofold higher fungal richness and 25 %
higher H’ value under no-till system 1 than under conven-
tional tillage (Table 2). Plant diversity also appeared impor-
tant in maintaining soil fungal diversity, with 40 % higher
fungal richness and 14 % higher H’ value observed under no
till system 1 as compared to the improved pasture (Table 2),
this finding being in agreement with Nishizawa et al. (2010)

who observed similar correlations between plant and fungal
diversity.

Finally, although the land use management did not modify
2 years after grassland conversion into agricultural land the
fungal to bacterial density ratio (Lienhard et al. 2013), it
deeply impacted the fungal to bacterial diversity ratio, with
the highest bacterial diversity and the lowest fungal diversity
observed under conventional tillage (Table 2). Interestingly,
this suggests that diversity measurements are more sensitive
than density measurements to evidence early impacts of land
use management on soil microbial properties.

We used the “hump-backed” relationships between biodiver-
sity and the level of environmental stress (Giller et al. 1998;
Bressan et al. 2008) to classify the agricultural systems
according to their impact on soil microbial diversity (Fig. 2).
Conventional tillage represented a moderate perturbation for
bacteria and a high perturbation for fungi, whereas no-till and
improved pasture systems represented a lower perturbation for
both bacterial and fungal populations. No-till cropping systems
represented intermediate situations between tillage and
monospecies improved pasture systems in terms of environmen-
tal perturbation. Altogether, our results suggest the promotion of
no-till systems as a fair trade-off between the need for agricul-
ture intensification and soil biological integrity preservation.

3.3 Effect of agricultural management on soil bacterial
and fungal taxonomic composition

Although the number of bacterial and fungal phyla were not
significantly different between the different agricultural
management (data not shown), we observed an early and
strong effect on their relative abundance (Fig. 3a, b). This
observation was confirmed by PCA based on taxonomic
composition, with a clear discrimination of land use on the
factorial maps (Fig. 3c, d). Interestingly, we observed similar
gradients between bacterial diveristy (Table 2) and

Table 2 Top soil (0–10 cm) chemical characteristics, microbial molecular abundance, and diversity according to land use management

Land
use

Clay (%) pH H2O (1:5) Soil organic
content (g kg−1)

N tot
(g kg−1)

C/N Σ basea

(cmol kg−1)
Microbial diversity

Bacterial Fungal

MOTU H’ J MOTU H' J

PAS 57 4.9 38.6 2.6 14.8 2.1 361 3.9 0.67 392 4.8 0.80

ImpP 59 5.1 36.8 2.5 14.8 4.2 431 4.0 0.67 335 4.3 0.73

CT 55 5.0 28.9 1.9 15.0 2.5 528 4.4 0.70 236 3.9 0.72

NT1b 60 5.3 39.3 2.7 14.4 4.6 507 4.3 0.70 467 4.9 0.80

NT3b 63 5.2 45.1 3.1 14.5 4.3 477 4.4 0.72 341 4.5 0.78

PAS natural pasture, ImpP improved pasture, CT conventional tillage, N tot total nitrogen, C/N carbon to nitrogen ratio,MOTUmolecular operational
taxonomic units corresponding to richness determined at the genus level, H’ Shannon index, J Evenness index
a Sum of exchangeable bases (Ca2+ , Mg2+ , Na+ , K+ )
b No-till system
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composition (Fig. 3c), with conventional tillage being
strongly discriminated from pasture on the first PCA axis,
and no-till and improved pasture representing intermediate
situations. This highlights the importance of soil disturbance
and cropping intensity as major drivers of soil bacterial
diversity in our agricultural systems.

Regardless of land use management, the Proteobacteria
was the dominant bacterial phyla and represented 35 to 45 %
of all bacterial DNA sequences (Fig. 3a). Compared to the
natural pasture, we observed a decrease of this phyla (by
−6 %) under conventional tillage, which may be explained
by a reduced soil organic carbon content (Table 2) since the
Proteobacteria have been described as fast growing
copiotrophs stimulated in C-rich environments (Bernard
et al. 2007; Cleveland et al. 2007; Fierer et al. 2007; Jenkins
et al. 2010). Agricultural management also affected the class
distribution within this phyla, with a higher relative abun-
dance ofGamma-proteobacteria (+11 %) and a lower relative
abundance of Alpha- (−7 %), Beta- (−6 %), and Delta-
proteobacteria (−4 %) observed under conventional tillage
as compared to the natural pasture (Fig. 3c). In addition,

improved pasture was discriminated from the other no-till
systems on the second PCA axis because of a higher relative
abundance of Beta-proteobacteria (Fig. 1c), and notably of
Massilia genus (25 % of all sequences), which has been
described as a root colonizing bacteria stimulated by root
exudates and readily degradable carbon compounds (Ofek
et al. 2012). This is consistent with Wenzl et al. (2001) who
found ruzi grass roots to exudate a high amount of
organic acids (e.g., malate, citrate, and oxalate) as a mecha-
nism of Al resistance.

The Actinobacteria was the second most abundant phyla
with 30 to 40 % of all the bacterial sequences (Fig. 1a).
Actinobacteria has been described as mainly K strategists
(Bernard et al. 2007; Pascault et al. 2013), and well represent-
ed in non-disturbed grass systems (Acosta-Martinez et al.
2008; Yu et al. 2011). The high proportion of detected
Actinobacteria in each system may consequently result from
the pasture history of the site and the limited duration of
cultivation (3 years) since conversion. However, as for the
Proteobacteria, land use management shaped Actinobacteria
distribution, with a decrease in relative abundance observed
under conventional tillage as compared to Pasture (by −6 %;
Fig. 3a, c). This may be explained by the particular morphol-
ogy of those organisms, which are forming structures
harbouring similarities with fungal hyphae (Stackebrandt
et al. 1997) that make themmore sensitive than other bacterial
groups to physical soil disturbance.

Other bacterial phyla were also affected by land use man-
agement with a decrease in the relative abundance of
Acidobacteria (by −3 %) observed under conventional tillage
as compared to pasture, and by contrast, an increase in the
relative abundance of the Firmicutes (by +6 %; Fig. 3a) that
further distinguish conventional tillage and pasture on the first
axis of the PCA (Fig. 3c). Bacteria belonging to the
Acidobacteria phyla have been described as mainly oligotrophs
(K-strategists), which utilize complex carbon substrates that are
more likely to be present in the native SOM (Bernard et al.
2007; Fierer et al. 2007). In addition, Acidobacteria abundance
has been shown to increase with soil age (Nemergut et al.
2007), which may explain their higher abundance in the
undisturbed pasture treatment. By contrast, the Firmicutes have
been described as mainly copiotrophs (Bernard et al. 2007;
Cleveland et al. 2007; Fierer et al. 2007; Jenkins et al. 2010),
which are, however, able to survive in adverse environmental
conditions due to their ability to produce endospores (Mandic-
Mulec and Prosser 2011). This may explain that their stimula-
tion under conventional tillage represents the most disturbed
and most carbon-depleted environment.

Regarding fungal taxonomic diversity, the dominant phyla
were the Ascomycota (55–65 % of all fungal sequences;
Fig. 3b), and the Basiodiomycota (20–35 % of all fungal
sequences). These two phyla mainly belong to the saprotrophic
soil fungi (de Boer et al. 2005) and are classically dominant in

Level of stress

Level of diversity

PAS

ImpP

NTs

CT

“Intermediate 
perturbation”

Level of stress

Level of diversity

PAS

“Intermediate 
perturbation”

ImpP

NTs

CT

b

a

Fig. 2 Schematic representation based on the “hump-backed”model of
the level of a bacterial and b fungal diversity according to the level of
environmental stress induced by the different agricultural systems.
Natural pasture (PAS), improved pasture (ImpP), conventional tillage
(CT), no-till systems (NTs)
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soils (Buee et al. 2009; Nishizawa et al. 2010; Yu et al. 2011).
However, land use management affected phyla relative abun-
dance distribution, with a higher relative abundance of
Basidiomycota observed under ruzi grass-dominated systems
as compared to the conventional tillage (+12 % and +8 % for
improved pasture and no-till system 3, respectively), and by
contrast a lower relative abundance of Ascomycota (−11 % and
−7 %, respectively) and Chytridiomycota (−3 % and −3.5 %,
respectively) under improved pasture and no-till system 3 as
compared to conventional tillage (Fig. 3d). Our results are
consistent with de Boer et al.’s (2005) description of
Basidiomycotina fungi’s predominant role in lignin degrada-
tion, with a higher amount of stubble restitution under im-
proved pasture and no-till system 3 than under conventional
tillage (Lienhard et al. 2013). In addition, soil Chytridiomycota
have been shown to be able to recover from drying and high
temperature events (Gleason et al. 2004), which may more
likely occur under bare and tilled soils (Six et al. 2006).

Altogether, the analysis of soil microbial phyla distribution
gives us an interesting overview of the ecological status at
evaluation through the ecological attributes of the microbial
groups that were stimulated. It is worth noting that all the sub-
taxa of these broad phyla may clearly not conform to these
general ecophysiological characteristics (oligotrophic vs

copiotrophic attributes). However, our results suggest that
general ecological attributes may be ascribed at the phyla
level, in agreement with other authors (Cleveland et al.
2007; Fierer et al. 2007; Jenkins et al. 2010).

4 Conclusion

In an acid tropical grassland environment, we observed an
early and significant effect of agricultural management on
soil microbial properties, with tillage decreasing fungal rich-
ness and diversity, but increasing bacterial richness and
diversity. We found also that land use modified soil micro-
bial taxonomic composition. Compared to the natural pas-
ture, tillage decreased notably the relative abundance of
Actinobacteria, Acidobacteria, and Delta-proteobacteria
phyla, and by contrast increased the relative abundance of
Firmicutes, Gamma-proteobacteria, and Chytridiomycota
phyla. Consequently, our results highlight that no-till
cropping systems represented intermediate situations be-
tween tillage and the natural pasture, and therefore suggest
the promotion of no-till systems as a fair trade-off between
the need for agriculture intensification and soil ecological
integrity preservation.
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Spatial scaling and determinism of the wide-scale distribution of macroorganism diversity has

been largely demonstrated over a century. For microorganisms, and especially for soil bac-

teria, this fundamental question requires more thorough investigation, as little information

has been reported to date. Here by applying the taxa–area relationship to the largest spatially

explicit soil sampling available in France (2,085 soils, area covered B5.3� 105 km2) and

developing an innovative evaluation of the habitat–area relationship, we show that the

turnover rate of bacterial diversity in soils on a wide scale is highly significant and strongly

correlated with the turnover rate of soil habitat. As the diversity of micro- and macro-

organisms appears to be driven by similar processes (dispersal and selection), maintaining

diverse and spatially structured habitats is essential for soil biological patrimony and the

resulting ecosystem services.
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20, Avenue du Grésillé—BP 90406, 49004 Angers Cedex 01, France *These authors contributed equally to this work. Correspondence and requests for
materials should be addressed to L.R. (email: ranjard@dijon.inra.fr).

NATURE COMMUNICATIONS | 4:1434 | DOI: 10.1038/ncomms2431 | www.nature.com/naturecommunications 1

& 2013 Macmillan Publishers Limited. All rights reserved.

mailto:ranjard@dijon.inra.fr
http://www.nature.com/naturecommunications


S
ince the first statement of microbial biogeography devel-
oped by Baas Becking1 in 1934 ‘‘Everything is everywhere,
but, the environment selects’’, it is now well established that

soil microbial communities exhibit biogeographical patterns, that
is, variations in their distribution across space and time2.
Although the increasing number of studies of spatial microbial
ecology from local to wide scale3 is helping to identify ecological
processes (selection, dispersal, ecological and evolutionary drifts,
speciation) impacting microbial diversity, the hierarchy of these
processes remains unclear in comparison with that of
macroorganisms.

One way to tackle the spatial processing of microbial
diversification is to evaluate the empirical relationship between
geographical distance and genetic similarity of microbial
assembly4,5, also known as the distance–decay relationship or
the taxa–area relationship (TAR)6. Application of the TAR has
demonstrated that the species richness of eukaryotic
macroorganisms increases with the sampling area7. This
significant rate of diversity turnover has generally been
explained by a dynamic equilibrium between extinction and
immigration (‘‘area’’ hypothesis, mediated by dispersal) and/or by
the increase of habitat diversity with increasing area (‘‘habitat
heterogeneity’’ hypothesis, mediated by environmental
selection)7. In microorganisms, phylogeographic studies have
revealed that the genetic similarity within particular populations
decreases with distance, which suggests a significant influence of
dispersal limitation, leading to strong endemism3, and contradicts
the hypothesis of microbial cosmopolitanism8. At the community
level, biogeographical studies have indicated that diversity
turnover is influenced both by geographical distance9 and
environmental heterogeneity (as classified by soil, vegetation
and climatic characteristics)10,11. However, few in-depth studies
have been carried out on the TAR of soil microorganisms,
especially for soil bacteria, leading to a lack of concepts
concerning the diversification processes.

TAR was first reported for plants in 1921 by Arrhenius12 as a
power-law relationship:

SA¼ S0AZ; ð1Þ
where SA is the number of taxa recorded in an area A, S0 the
initial number of taxa in the smallest sampling area and z is the
rate at which new taxa are sampled as the sampling area is
increased. TAR was extended to microorganisms less than a
decade ago3,9,13 by focusing on community similarity between
sites:

wd ¼ wD
d
D

� �� 2z

; ð2Þ

where z is the turnover rate as in equation (1), wd and wD are the
operational taxonomic unit (OTUbin) similarities between sites
located d meters and D meters apart from each other (d2 and D2

would correspond to the area of the sampled locations),
respectively. Nowadays, TAR is commonly used in this form in
most microbial biogeographical studies3,9,14–16 to assess
microbial diversification and its potential relative dependency
on ‘‘dispersal’’ and ‘‘habitat heterogeneity’’ (including habitat
diversity and landscape configuration)4. Nevertheless, the TAR is
still highly debated, particularly regarding its form, underlying
hypotheses and factors affecting the relationship17–19. Rosindell
et al.19 highlighted that the TAR follows a power-law relationship
under the hypothesis of infinite community size and for a steady
z. As the soil microbial community is very large and diverse20, the
relationship for these organisms exhibits power-law behaviour
because the average abundance per microbial taxonomic unit is
large according to Harte et al.21 On the other hand, the constant z

hypothesis across spatial scales, which assumes self-similarity as a
probability rule13,18 for the spatial distribution of taxa abundance,
may not hold for soil microbes15,21,22. Therefore, z may be
considered constant only at a given scale of investigation, not
across spatial scales21, and such spatial variations must be
specified for microbial communities.

Now, it is crucial to investigate whether spatial variations of
soil bacterial communities observed on a wide scale comply with
the Baas Becking postulate1 involving solely environmental
selection as related to habitat-related environmental
heterogeneity, or if other ecological processes could be involved
in these patterns (for example, dispersal in the context of Neutral
Theory). In this context, at least two objectives might be reached,
(i) determine the extent to which soil bacterial diversity increases
with sampling area by applying TAR from local to wide scales6,23,
and (ii) evaluate the link between biodiversity turnover,
environmental heterogeneity and dispersal by confronting
community and habitat diversity turnover rates.

In this study, we attained these objectives by conducting a
wide-scale investigation on a national soil survey: the French Soil
Quality Monitoring Network (‘Réseau de Mesures de la Qualité
des Sols’, RMQS) that covers the huge environmental diversity of
whole France (2,085 sites analysed)24. Variations in microbial
community between soils were assessed by bacterial Automated
Ribosomal RNA Intergenic Spacer Analysis (ARISA) directly on
soil DNA25. The TAR was then applied to ARISA data by
considering the slope (zbacteria) together with the initial similarity5

(w16) at the grain size of the study (16 km) and the average
similarity ðwÞ as proposed by Morlon et al.4 to complete the
analysis of community spatial variations. In parallel, soil habitat,
namely the ‘‘description of a physical place, at a particular scale of
space and time, where an organism either actually or potentially
lives’’26, was characterized by including pedoclimatic,
geomorphologic and land-use data. The TAR concept was then
transposed to habitat, assuming that its similarity would decrease
with increasing distance (habitat–area relationship (HAR)). For
TAR and HAR, the dependence of the slopes and average
similarities on spatial scales was evaluated on the scale of France,
after which the study of ecological processes was focused on a
circular neighbourhood 280 km in diameter. The slopes of the
TAR and HAR, as well as the initial similarities and average
similarities at this spatial scale, were then confronted and
highlighted that dispersal limitation and environmental
heterogeneity were not mutually exclusive to determine the
bacterial diversity turnover.

Results
Soil-sampling network. The French Soil Quality Monitoring
Network represents 2,085 analysed sites, 2,172,570 pairwise
comparisons with distances ranging from 16 km to ca. 1,100 km
and covers more than 550,000 km2. Through this network, the
enormous environmental heterogeneity of France was examined
from a huge number of combinations of soil physico-chemical
characteristics, geomorphologic characteristics, land uses and
climatic conditions (Table 1 and Fig. 1).

The range of spatial structures for soil bacterial communities
and soil habitat characteristics was estimated by computing
experimental variograms for each axis of the principle component
analysis (PCA) analyses of bacterial community data and habitat
data. The results are presented in Table 2. The nugget effects were
large for bacterial communities (nugget:sill ratio of 0.57 to 0.85)
and smaller for soil habitat (nugget:sill ratio of 0.21 to 0.68). The
effective variations for the different axes, both for habitat and soil
bacterial community, ranged from 150 to 470 km and highlighted
large spatial structures. The size of the spatial structures
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explaining the most the inertia of bacteria and habitat variations
(PCA axis 1 in Table 2) ranged from 250 to 320 km.

Distance decay of bacterial community and habitat. The TAR
measures the spatial turnover of community richness and allows
the rate of community composition turnover (commonly referred
to as z) to be calculated. According to Green et al.9, z can be
equivalently calculated from the increase of community richness
with sampled area or from the decay of similarity in the
community composition with increasing distance between
sampling sites. Here the bacterial community composition of
the soil samples was characterized by ARISA and the samples
were sorted into OTUs.

Bacterial community similarity on the scale of France
decreased significantly with geographical distance, indicating
that the TAR was significant and demonstrating a spatially
structured distribution of soil bacteria over a distance ranging
from 16 to 1,100 km (Fig. 2a). At this scale, the estimated zbacteria

was 0.006 (±7� 10� 4, Po0.001).
The turnover rate of habitat (zhabitat) was determined by

transposing the TAR to habitat, assuming that the HAR was a
power-law relationship (Fig. 2b). Similarly, a significant HAR was
also found on the scale of France with an estimated zhabitat of
0.023 (±1� 10� 5, Po0.001).

Influence of spatial scale on TAR and HAR. As the parameters
(initial similarity and turnover rate) of the TAR, and therefore
those of HAR by transposition, might be affected by the spatial
scale considered, the regression parameters of the TAR and
HAR were compared for different spatial scales (0–70, 70–140,
140–280, 280–560 and 560–1120 km, Fig. 3). The zbacteria ranged
from 0.003 to 0.010, depending on the scale. The zbacteria was not
significantly different at the smallest (0–70 and 70–140 km) and
the largest (560–1120 km) scales, but was significantly higher than
at the intermediate scales (140–280 and 280–560 km). Conversely,
the zhabitat presented higher values than the zbacteria (from 0.018
to 0.055) and was positively correlated with spatial scale. Inter-
estingly, zhabitat increased moderately and regularly up to the

280–560 km scale, but increased very drastically at scale larger
than 580 km.

The average similarities of bacterial communities and habitat
ranged from 0.62 and 0.64 to 0.71 and 0.81, respectively. The
ranges of variations were small, even if significant differences
were observed between every spatial scale with a decreasing trend
from small to large scales. The initial similarities of bacterial
community (w16) or habitat (Ed16) were defined at the grain size of
the study (16 km) and could not be calculated over multiple
spatial scales. Nevertheless, this metric was compared with the
average similarity at different scales. Here, w16 and Ed16 were 0.65
and 0.84, respectively, representing higher values than the average
similarities calculated at different scales.

Relationship between initial or average similarities. Here the
objective was to determine if bacterial similarity was determined
by the similarity of habitat at a local spatial scale (16 km) and at
the patch scale, that is, if similar habitats house similar bacterial
communities. The confrontation of initial similarities (w16 and
Ed16, Fig. 4a) exhibited a relationship modelled with a linear
regression type II model. The associated permutation test high-
lighted the significance of this relationship (1,000 permutations,
r2¼ 0.123, Po0.001). In this relationship, w16 decreased with
increasing Ed16, but the range of variations of w16 and Ed16

remained small.
The average similarity of bacterial community structure was

significantly correlated to the average habitat similarity
(r2¼ 0.036, Po0.05, 1,000 permutations Fig. 4b), but the range of
variations of w and Ed remained small.

In addition, w16 and w, and Ed16 and Ed were also correlated
(r¼ 0.982 and 0.806, respectively).

TAR–HAR relationship. The slopes of the TAR and HAR were
confronted to evaluate if the turnover rate of soil bacterial com-
munity was determined by the turnover rate of soil habitat. To
achieve this goal, the statistical confrontation of zbacteria and
zhabitat was performed by systematically defining TAR and HAR
in a neighbourhood corresponding to a circular sliding window of

Table 1 | Summary statistics of habitat variables.

n Mean (±s.e.) Range CV (%)

Clay (g kg� 1) 2,085 245.2±2.9 (2–819) 54
Silt (g kg� 1) 2,085 406.2±3.8 (2–819) 43
Sand (g kg� 1) 2,085 348.6±5.1 (7–986) 67
pHwater 2,085 6.4±0.03 (3.7–9.2) 21
Corg (g kg� 1) 2,085 25.4±0.4 (0.6–243.0) 80
Total N (g kg� 1) 2,085 2.1±0.03 (0–16) 73
CaCO3 (g kg� 1) 2,085 53.8±2.9 (0–866) 250
C:N 2,085 12.2±0.1 (4.6–52.7) 37
Mean annual temperatures (�C) 2,085 11.6±0.03 (0.2–16.2) 14
Sum of annual rainfall (mm) 2,085 935.3±4.9 (535.7–2158.2) 24
Annual evapotranspiration (mm) 2,085 811.9±3.0 (501.6–1560.3) 17
Altitude (m) 2,085 326±8.8 (0–2980) 124
Slope (%) 2,085 6.6±0.2 (0–103.2) 159
Orientation (�) 2,085 179.9±2.4 (� 1–359.5) 60
Land uses

Croplands 869
Forests 567
Vineyards 36
Grasslands 523
Others 90

CV, coefficient of variation. Range: (minimum-maximum). Orientation corresponds to that of the largest slope in the grid cell. ‘Others’ for land uses represents particular land use such as orchards, wild
lands, urban parks and specific ecosystems like upland meadows.
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280 km diameter, centred on each of the 2,085 RMQS sites. The
window size was deduced from the size of spatial structures of
bacteria and habitat identified by the experimental variograms on
the scale of France (Table 2)27.

The range of variations in zbacteria and zhabitat could thus be
determined and showed that zbacteria ranged from � 0.003 to
þ 0.021 (mean¼ 0.008, median¼ 0.009), whereas zhabitat ranged
from � 0.002 to 0.131. For zbacteria, the negative turnover rates

(o1% of total estimates) were observed in some regions where
distant sites were more similar to those in the centre, than to
intermediate sites. Although in 62% of the regions defined by the
sliding windows, the TAR ranged from 0.002 to 0.01 and was
close to that observed for France as a whole, in 36% of the
regions, the TAR was significantly higher and ranged from 0.01 to
0.02. In other respects, the value of zhabitat calculated for France
(0.023) was lower than the mean (0.040) or median (0.035)

Land use

Mean annual
temperature (°C)

Arable lands

Forests

Pastures

Vineyards

Others

Main French rivers

N
160 km

Sum of annual
precipitations (mm)

< 814

815 – 967

0.6 – 6.46

6.47 – 9.09

9.10 – 10.50

10.51 – 11.34

11.35 – 12.15

12.16 – 13.12

13.13 – 14.48

14.49 – 16.2

968 – 1173

1174 – 1468

>1469

Main French rivers

Main French rivers

N
160 km

N
160 km

Soil pH
3.7 – 4.0

4.1 – 5.0

5.1 – 6.0

6.1 – 7.0

7.1 – 8.0

8.1 – 9.2

Main French rivers

N
160 km

Corg (g kg–1)

< 12

13 – 17

18 – 23

24 – 34

> 35

Main French rivers

N
160 km

Elevation (m)

0 – 85

86 – 193

194 – 326

327 – 515

516 – 782

783 – 1186

1187 – 1910

1911 – 3460

Main French rivers

N
160 km

Soil texture
(FAO classification)

Coarse

Medium

Medium fine

Fine

Very fine

Main French rivers

N
160 km

Figure 1 | Environmental variability across France. (a) Map of land-uses according to the Corine land cover classification; (b, c) maps of climatic

conditions: mean annual temperature and sum of annual precipitations, respectively; (d–f) Maps of soil physico-chemical characteristics: pH, organic

carbon content and soil texture according to the Food and Agriculture Organization (FAO) classification; (g) map of elevation (m).
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obtained for the 2,085 regions. In some regions (o1%), zhabitat

was negative because distant sites showed greater similarity to
those in the centre than to intermediate sites.

Statistical confrontation of the 2,085 zbacteria and zhabitat

estimates revealed a linear relationship (Fig. 5). The significance
of the relationship was tested through a linear regression type II
model28, as both estimated turnover rates were associated with
errors. A permutation test (random association of zhabitat and
zbacteria values, 1,000 permutations)29 showed that the model and
the regression parameters were highly significant (r2¼ 0.667,
Po0.001 and Fig. 5).

Influence of landscape configuration. Habitat turnover rate and
initial similarity are determined by habitat diversity and its spatial
configuration (that is, landscape configuration). In the previous
section, the permutation test demonstrated that habitat diversity
significantly influenced the relationship between habitat and
bacterial community turnover and initial similarities. Therefore,
in this section the objective was to evaluate the importance of
landscape configuration on these relationships. To achieve this
goal, a permutation test was performed in which the spatial
organization of habitat was reconfigured without modifying the
bacterial community variability, habitat variability or the selection
pressure of habitat on the bacterial community (pairs of habitat
and bacterial community composition data unmodified). The

modification of landscape configuration significantly altered the
correlation (Fig. 6a, b) between zbacteria and zhabitat, and changed
the sign of the correlation between w16 and Ed16 in the random
case. This might be related to the range of variations of w16, which
was smaller than that of Ed16. Similarly, the intercepts of the
relationships bz and bw were significantly reduced by landscape
reconfiguration: 0.004 versus 0 and 0.820 versus 0.558, respec-
tively (Fig. 6c, d). The slope of the relationship between the initial
similarities (aw) was also affected by landscape reconfiguration
(� 0.221 versus 0.108 in the random case Fig. 6f), but this was
not the case for the slope aZ that harboured very similar values for
the observed and the random cases (0.1350 and 0.1231, respec-
tively, Fig. 6e).

Discussion
In this study, a significant turnover of soil bacterial diversity was
demonstrated on a broad scale. This is an important and relevant
finding, as several aspects of bacterial physiology and ecology
(ubiquity, horizontal gene transfer, high ability to colonize
extreme environments, redundancy of ecological attributes)20

would be expected to prevent a significant TAR for these
organisms. Significant TAR have already been reported for
indigenous bacteria from various ecosystems, such as water-filled
tree holes30 or salt marshes14, which suggests that TAR is a
universal relationship for all living organisms and all
environments.

The estimated zbacteria was 0.006 (±7� 10� 4, Po0.001), that
is, within the lower range of turnover rates for microbes
(0.002ozo0.26), as compiled by Woodcock et al.31 This is in
agreement with the general trend observed for microbes, the
values usually being well below than those of the macroorganisms
(zmacroorganismsZ0.1)14, even if a higher zbacteria (0.26) has been
reported for small, discrete and highly heterogeneous
ecosystems30 known as hosting insular communities with a
high community turnover32. The significant but low turnover
observed on a wide scale in our study might partly be ascribed to
the high average abundance per taxonomic unit, which induces
low turnover rates21, and to technical limitations, particularly the
low taxonomic resolution of DNA fingerprinting. Indeed, DNA
fingerprints correspond to dominant bands, each including
multiple species. This results in an aggregation of species
composition variations within the bands and may contribute to
the low turnover rate observed4. In addition, DNA fingerprinting
precludes consideration of the accumulation of new minor species

Table 2 | Fitted parameters of the variograms of bacterial
genetic structure and soil habitat.

Data PCA axis
number

Inertia
(%)

S¼ nugget:sill
ratio

Effective
range (km)

Bacterial 1 22.6 0.57 249. 6
community 2 10.7 0.79 166.4
structure 3 6.9 0.85 416.1

4 6.4 0.78 249.6
5 5.7 0.78 249.6

Soil habitat 1 21.4 0.21 323.4
2 17.7 0.46 154.7
3 11.2 0.43 421.8
4 7.3 0.68 469.5
5 6.5 0.67 295.3

PCA, principle component analysis. The different parameters were computed for each axis of the
PCAs performed on genetic and environmental data, respectively.
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with increasing distance, which may represent a large proportion
of the total soil microbial species richness33 and determine the
slope of TAR14,31. The low zbacteria might also be related to the
grain size of our sampling design (16 km� 16 km: 256 km2),
which did not consider scales less than landscape, and smoothed
significant local variations in soil microbial community
composition that might potentially affect TAR34.

In parallel, soil habitat was characterized by a multivariate
analysis including pedoclimatic, geomorphologic and land-use
data, and the HAR was calculated by transposing the TAR
concept. On the scale of France, zhabitat was 0.023 (±1� 10� 5,
Po0.001). This value can only be considered in relation to
zbacteria, as no other means of comparison is available in the
literature. The zhabitat was higher than the zbacteria, which might be
related to the lower average abundance per habitat than per
bacterial OTUbin.

As described in previous studies, TAR is sensitive to the spatial
scale of investigation21. The sampling design applied in our study
allowed us to test this hypothesis on both TAR and HAR, and to
consider multiple spatial scales (distance range between site:
[0; 70], [70–140], [140; 280], [280; 560] and [560; 1100] km). The
significant effect of spatial scale on the average similarities of soil
bacterial community and habitat and on the turnover rates was
demonstrated. The average similarities decreased significantly
with increasing spatial scale and were always lower than the
corresponding initial similarity (0.65 and 0.84 for w16 and Ed16,
respectively). This is in agreement with the hypothesis that
neighbouring sites are more similar than distant sites2,15. The
significant decrease of zbacteria with increasing spatial scales might
be explained by the higher average abundance per OTU with
increasing scales21,22. Similarly, the significant increase of zhabitat

with spatial scale might result from decreasing average abundance
per habitat, as the number of observations per habitat increases
equally or even more slowly than habitat richness.

Altogether, the significant variations of zbacteria and zhabitat

according to scale might reflect variations in the relative
importance of diversification processes4. Morlon et al.4

demonstrated the relevance of distance–decay relationships for
testing spatial ecology theories. We therefore compared three
metrics relating bacterial community and habitat, namely
turnover rates, initial and average similarities, to identify the
processes involved in the spatial distribution of soil bacterial
communities. These comparisons were performed by computing
and compiling data from the 2,085 circular neighbourhoods
(280 km in diameter as determined from experimental
variograms, see Table 2). At this spatial scale, the main
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processes to consider were (i) environmental heterogeneity
leading to adaptation of populations to a particular habitat, the
larger areas exhibiting a higher renewal of habitat variation2,30,
that is, the ‘‘environmental selection hypothesis’’, and
(ii) ‘‘dispersal limitations’’ resulting from the balance between
species extinction and colonization, which is significantly
influenced by the size of the sampling area. If dispersal is
infinite, community composition is fully determined by
environmental selection, bearing out the postulate of Baas
Becking1: ‘‘Everything is everywhere, but, the environment
selects’’. Under this postulate, the turnover rate of the soil
bacterial community would be entirely proportional to the
turnover of the soil environment and would, on average, be
zero in completely homogeneous soil environments (zhabitat¼ 0).
Otherwise, if the dispersal of soil bacteria is limited, significant
turnover rates of bacterial community would be observed in
homogeneous habitats according to the Neutral Theory19,35.
Under infinite dispersal, the same interpretation would hold for
the relationships between the initial or average similarities of soil
bacterial community and habitat, which should be positive and
reach the maximum in fully homogeneous habitat.

Here the average habitat similarity and average bacterial
community similarity were significantly and positively correlated
at the scale of the circular neighbourhoods, which was in
agreement with the environmental selection hypothesis2,16,36.
Nevertheless, the initial similarities of habitat and soil bacterial
community were weakly but negatively correlated, suggesting that
variations in community composition occur at small scales, even
in homogeneous habitats.

The significant linear regression between zhabitat and zbacteria

demonstrated a positive relationship between soil bacterial
community turnover and habitat turnover on a regional scale
(Fig. 5), thereby supporting the environmental selection hypoth-
esis for soil microorganisms3,7. It is interesting to note that
zbacteria values may attain those reported for larger organisms (ca.
0.02), even in large areas of contiguous habitats, suggesting that

communities of both bacteria and macroorganisms are structured
by analogous processes31. Recent microbial biogeography studies
have revealed that the main environmental filters shaping spatial
microbial diversity distribution are soil physico-chemical
characteristics, land use and plant cover, whereas climatic and
geomorphologic filters are less important9,11,15,37. Similar filters
were also reported to explain soil bacterial community distri-
bution in contrasted ecological regions at the scale of France27,34.

Nevertheless, the estimated zbacteria in the case of a homo-
geneous habitat (zhabitat¼ 0) was not equal to 0, suggesting that
bacterial communities might have a limited dispersion despite the
huge amounts of bacteria (41015 cells per year) transported
through the atmosphere between continents38. This conclusion
for the soil bacterial community as a whole is in agreement with
phylogeographic studies focusing on particular soil bacterial
groups15,16,39 and with studies showing a distance effect on soil
bacterial community structure2.

We then determined the relative dependency of bacterial
community turnover on dispersal limitation by testing the effect
of habitat spatial configuration on the relationships between
zbacteria and zhabitat, and between the initial similarities (w16 and
Ed16) without modifying the environmental selection process, that
is, the pairs of soil habitat characteristics and associated bacterial
community composition data. By shuffling habitat spatial
configuration, we altered the relationships between turnover
rates and between initial similarities of bacterial community and
habitat, respectively (Fig. 6). The versatility of the correlation (in
terms of sign and significance) between the initial similarities
confirmed the difficulty of drawing conclusions at the grain size
of this study. On the other hand, the relationship between
turnover rates was significantly altered for the correlation and
intercept, but not for the slope. This supported the hypothesis
that the slope of the relationship between turnover rates is
determined by the selection pressure of the soil habitat on the
indigenous bacterial community. It also suggested that the
intercept of the relationship (bacterial diversity turnover rate in
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homogeneous habitats) is related to dispersal limitations
mediated by the spatial configuration of the habitat. This state-
ment would be in favour to the role of population aggregation in
determining the turnover rate of bacterial diversity4.

Our study negates the hypothesis that the soil microbial
community is a ‘‘black box’’ with no spatial structure and
exhibiting a homogeneous distribution from local to large scales.
As observed in macroorganisms, spatial patterns in soil bacterial
communities are also significantly governed by environmental
heterogeneity and dispersal, and the two processes are not
mutually exclusive2,7. Moreover, the environmental filters
impacting the turnover of soil microbial diversity as a whole
need to be deciphered and ranked to better understand the
sustainability of the soil ecosystem services provided by the
corresponding biodiversity. This represents a major challenge in
microbial ecology, but should provide the knowledge required for
sustainable soil management and implementation of the
corresponding protection policies on a wide scale40.

Methods
Soil-sampling strategy. The soil samples were provided by the platform
GenoSol (http://www.dijon.inra.fr/plateforme_genosol) from the soil storage
facility of the RMQS (French Monitoring Network for Soil Quality), which
is a soil-sampling network based on a 16 km� 16 km systematic grid covering the
whole of France41. Each of the 2,195 monitoring sites has been precisely
geopositioned, and the soil profile, site environment, climatic factors, vegetation
and land use have been accurately described. In the centre of each 16 km� 16 km
square, 25 individual core samples were taken from the topsoil (0–30 cm)
within a 20 m� 20 m area, using an unaligned sampling design. The core

samples were then bulked to obtain a composite sample for each site. The soil
samples were gently air-dried, sieved to 2 mm and stored at � 40 �C before DNA
analysis.

Physical and chemical analyses (listed in Table 1 and Fig. 1) are available for
2,131 soils and were performed by the Soil Analysis Laboratory of INRA (Arras,
France, http://www.lille.inra.fr/las). Available climatic data were monthly rain,
Potential EvapoTranspiration and temperature at each node of a 12 km� 12 km
grid, averaged for the 1992–2004 period. These climatic data were obtained by
interpolating observational data using the SAFRAN model42. The RMQS site-
specific data were linked to the climatic data by finding the closest node from the
12 km� 12 km climatic grid for each RMQS site. Land cover was recorded
according to the CORINE Land Cover classification at level 1 (http://www.ifen.fr),
which consists of a rough descriptive classification of land use into five classes:
arable lands, forests, pastures, vineyards and other land uses. All these data were
available for 2,085 soils in the INRA InfoSol DONESOL database (http://
www.gissol.fr/programme/rmqs/RMQS_manuel_31032006.pdf; Table 1 and
Fig. 1).

Characterization of habitat. Soil habitat was characterized for each site by its
coordinates in a Hill and Smith multivariate analysis43 using the dudi.hillsmith
function in the ade4 package44 in R, which allows mixing quantitative
(geomorphological data: altitude, slope and orientation; climatic data: mean annual
temperature, annual rainfall and annual potential evapotranspiration; soil physico-
chemical data: clay, silt and sand contents, pHwater, organic C content, total N
content, CaCO3 content and C:N ratio) and qualitative variables (land use, five
classes; Table 1 and Fig. 1). Quantitative variables were centred and scaled, and the
qualitative variables were converted into binary variables. All the quantitative
variables had a weight of 1 in the analysis and the binary variables had a weight
equal to 1/n, n being the number of classes observed in the qualitative variables
they were derived from.

According to the decrease of inertia per axis, five axes representing 63.9% of the
variance in the environmental data were retained to characterize the habitat of each
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study site. The coordinates of the sites in the Hill and Smith multivariate analysis
were used in the following and referred to as habitat characteristics.

Molecular characterization of bacterial community structure. DNA was
extracted from 2,085 soils from the RMQS grid, using a single procedure optimized
by Ranjard et al.25, which is reliable and robust for the routine analyses of several
hundreds of different soils. Soil bacterial community structure was genotyped
directly from soil DNA extracts using a bacterial ARISA, fingerprinting approach
optimized for medium throughput in the GenoSol platform.

Within the ARISA method, the bacterial intergenic spacers were amplified with
the primer set: S-D-Bact-1522-b-S-20/ L-D-Bact-132-a-A-18, with 50 ng of DNA as
template, the PCR conditions being described by Ranjard et al.25 The S-D-Bact-
1522-b-S-20 primer was labelled at its 50 end with the IRD800 dye fluorochrome
(MWG SA Biotech, Ebersberg, Deutschland) to allow detection of the PCR
fragments by the LiCor DNA sequencer system (ScienceTec, Les Ulis, France). PCR
fragments were resolved on 3.7% polyacrylamide gels run under denaturing
conditions for 15 h at 3,000 V/60 W on a LiCor DNA sequencer (ScienceTec). The
data were analyzed using the 1D-Scan software (ScienceTec). This software
converts fluorescence data into electrophoregrams where the peaks represent the
PCR fragments. The height of the peaks was calculated in conjunction with the
median filter option and the Gaussian integration in 1D-Scan, and represented the
relative proportions of fragments in the total products. Lengths (in base pairs) were
calculated using a size standard with bands ranging from 200 to 1,206 bp.

Data obtained from the 1D-Scan software (Sciencetec) were converted into a
table summarizing band presence (that is, peaks) and intensity (that is, height or
area of peak) using the PrepRISA program25. As described in a previous study, 100
peaks, 2 bp resolution and Gaussian peak area were used to provide a robust
analysis of bacterial communities25. The resulting bacterial-ARISA data matrix
(bacterial communities as rows and bands as columns), takes into account the
presence/absence and relative intensity of bands.

Bacterial community and habitat experimental variograms. We used the clas-
sical geostatistics approach45 to characterize the spatial process of bacterial genetic
structure and soil habitat. Exponential variograms have been fitted using weighted
least squares on the different experimental variograms computed for each axis of
the PCAs performed on genetic and environmental data. In this method, the
weights of each lag are the experimental variogram of the lag divided by the
number of observation pairs within a bin centred on the lag. To characterize the
spatial process, we have calculated first the nugget:sill ratio, which represents the
non-explanatory part of the spatial model. Second, we retained also the effective
range, which is the distance data that the semivariance value achieves 95% of its
maximum.

TAR and HAR computing. The turnover rate of bacterial community composition
(zbacteria) was determined by converting molecular fingerprint data into presence/
absence data and computing between-sites similarity using the dsvdis function
(Sørensen index) of the labdsv package46 in the R software47. Then, zbacteria was
estimated from the slope of the decay relationship between similarity and distance
according to the formula:

log10 ðwdÞ¼ ð� 2zÞ� log10 ðdÞþ b ð3Þ
where vd is the observed Sørensen’s similarity between two soil samples (number of
common OTUs divided by the average number of OTUs in the two samples),
which are d meters apart from each other, b is the intercept of the linear
relationship and z is the turnover rate of the community composition (referred to
as zbacteria). Regression parameters (� 2z) and b were estimated by weighted linear
regression using the ordinary least squares method. The weight of each similarity
value corresponded to the number of data in the respective distance class. This
approach was applied to avoid bias related to large distance classes, including few
but very dissimilar sites. The significance threshold was set at a¼ 0.05.

The turnover rate of habitat (zhabitat) was determined by transposing the TAR to
habitat, assuming that the HAR was a power-law relationship. For this purpose,
habitat characteristics were used to compute between sites similarity (Ed) as
follows:

Ed ¼ 1� Eucd

Eucmax

� �
þ 0:001 ð4Þ

with Eucd the Euclidean distance (dist function, R software) between two sites that
are d meters apart from each other, and Eucmax is the maximum Euclidean distance
in the distance matrix; 0.001 was added to account for zero similarity between
sites29. Then, zhabitat was estimated from the slope of the decay relationship
between habitat similarity and distance according to equation (3). Regression
parameters were calculated by adopting the same methodology used to calculate
the parameters for the TAR.

Average and initial similarities. The average similarity of soil habitat (Ed) or of
bacterial community composition (w) was determined as the mean of the similarity
matrix computed for soil habitat or bacterial community as described above.

The initial similarities of soil habitat (Ed0) or of bacterial community compo-
sition (w0) were computed as the mean similarity between sites for a distance
between sites of 16 km.

Relating habitat and bacterial similarities or turnovers. To evaluate these
relationships, a neighbourhood statistics approach was used allowing computation
of zbacteria, zhabitat, Ed16, w16, Ed and w for each site in the RMQS on a circular
neighbourhood 280 km in diameter. For that purpose, the same methods as those
presented in the sections devoted to computing the TAR, the HAR, the average and
the initial similarities of soil habitat and bacterial community composition were
applied.

The size and shape of the neighbourhood was in agreement with previous spatial
analyses of habitat and genetic data that demonstrated significant spatial struc-
tures27 when the radius was at least 140 km (Table 2). As all the parameters are
estimated with errors, the relationships were best modelled by a type II linear
regression model (ordinary least squares method). This was done using the
‘lmodel2’ function of the ‘lmodel2’ package28 in the R software. A permutation test
(1,000 permutations) was used to test the significance of the relationship and its
parameters28. The slope and the intercept were referred as follows: aZ, bZ, aw, bw,
aw , bw for the relationship between zbacteria and zhabitat, w16 and Ed16, w and Ed ;
respectively.

Influence of landscape configuration. To evaluate the influence of landscape on
the relationship between habitat and bacterial community turnover or between
initial similarities, a permutation test (500 permutations) was performed. In this
test, the neighbourhood statistics approach described above was used, but the
geographic coordinates of the sites in the neighbourhood region (280 km diameter)
were shuffled without modifying the pairs of soil habitat characteristics and bac-
terial community composition data. This allowed creating randomly configured
regions in which bacterial community variability (average similarity and variance),
habitat variability (average similarity and variance) and selection pressure of
habitat on bacterial community were kept unchanged (pairs of habitat and bacterial
community composition data unmodified). As a consequence, only turnover rates
and initial similarities were affected, but not the average similarities. Then, the
relationships between turnover rates or between initial similarities were computed
for each permutation. As a result, the distributions of the Pearson’s correlation
coefficient and of the regression parameters (aZ, bZ, aw, bw) were considered for
each relationship. Then, the probability of observed value were derived from these
distributions and confronted to the 5% significance threshold.
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Abstract Agricultural practices affect the physical and chem-
ical characteristics of the soil, which in turn may influence soil
microorganisms with consequences on soil biological func-
tioning. However, there is little knowledge on the interactions
between agricultural management, soil physicochemical prop-
erties, and soil microbial communities, notably in tropical
ecosystems with few studies conducted in strongly weathered
and acid soils. Here, we investigated the early effect of tillage
and crop residues management on top soil physical, chemical,
and microbial properties in an acid savannah grassland of
northeastern Laos. We initiated a 3-year rotation of rice/corn/
soybean under three no-till systems (NTs) distinguished by the
cover crops associated prior to and with the main crops, and

one conventional tillage-based system (CT). The effect of
agricultural management was evaluated 2 years after land
reclamation in reference to the surrounding natural pasture
(PAS). Our results demonstrate that NTs improve soil physi-
cochemical characteristics (aggregate stability, organic car-
bon, and cation exchange capacity) as well as microbial
abundance (total biomass, bacterial and fungal densities). A
significant discrimination of the genetic structure of soil bac-
terial community was also observed between NTs, CT, and
PAS. Interestingly, bacterial abundance and diversity were
differently influenced by soil environment changes: microbial
density was affected by the quantity and diversity of crop
residues, soil organic carbon, and exchangeable base contents,
whereas soil bacterial genetic structure was mainly deter-
mined by exchangeable aluminum content, pH, cation ex-
change capacity, and C/N ratio. Altogether, our study
represents one of the most complete environmental evalua-
tions of agricultural practices in tropical agrosystems and
leads to recommend no-till systems with high residue restitu-
tions to improve the physical, chemical, and microbial prop-
erties of tropical acid soils and thus contribute to the
sustainability of agriculture in these ecosystems.

Keywords Tropical soil . Microbial community . Tillage .

Conservation agriculture . Cover crop

1 Introduction

Soil microbial communities are responsible for a wide range
of soil functions and ecological services, such as soil structure
maintenance, organic matter turnover, and nutrient cycling
(Dick 1992; Kladivko 2001). Among human activities, agri-
cultural practices affect the physical and chemical
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characteristics of the soil in which microorganisms live, there-
by affecting their abundance, diversity, and activity (Dick
1992; Kladivko 2001; Bunemann et al. 2006; Nicolardot et
al. 2007; Pascault et al. 2010). External agricultural inputs
such as organic amendments (animal or green manure), min-
eral fertilizers, and pesticides affect in different ways soil
microorganisms (Dick 1992; Bunemann et al. 2006). Crop
rotation and plant diversity are also important to maintain soil
microbial diversity and activity (Nicolardot et al. 2007; Pascault
et al. 2010). In conventional agriculture, tillage has generally
the greatest impact on biological properties since physical
disturbance changes soil water content, temperature, aeration,
and the degree of mixing of crop residues within the soil matrix
(Dick 1992; Buckley and Schmidt 2001; Kladivko 2001).
Tillage also reduces soil macroaggregate content which pro-
vides an important microhabitat for microbial density, diversity,
and activity (Ranjard and Richaume 2001; Six et al. 2002). In
addition, tilling tools disturb fungal hyphal growth at soil
surface leading to a reduction of their relative abundance in
the soil (Frey et al. 1999; Balesdent et al. 2000).

Based on the principle of minimal soil disturbance, no-till
(NT) farming systems have been widely adopted in large-scale
mechanized agriculture to prevent soil erosion and decrease
production costs (Derpsch et al. 2010). Combined with maxi-
mal soil cover (mulch) and diversified crop sequences, NT
systems have demonstrated in addition to have a positive
impact on soil physical and chemical properties (Castro Filho
et al. 2002; Six et al. 2002; Séguy et al. 2006; Lal 2008), and on
soil microbial biomass and activity (Kladivko 2001; Kaschuk
et al. 2010; Sapkota et al. 2011). However, the adoption of no-
till systems in small-scale agriculture is still low (Derpsch et al.
2010) with therefore little data available regarding their envi-
ronmental impact on soils, notably in tropical grassland eco-
systems, whereas the expansion of agriculture is a key
challenge in these areas to increase and sustain food production
(Lal 2008). If the acid savannah grasslands of the world
encompass vast areas of potentially arable land, they are how-
ever mostly considered marginal because of low inherent
fertility and susceptibility to rapid degradation (IAEA 2000).

In addition, little is known about the impact of agricul-
tural practices on soil microbial communities in tropical
agrosystems, and their role in soil biological functioning.
The recent development of culture-independent molecular
tools based on soil DNA extraction and characterization and
of in silico meta-analysis have enabled the systematic anal-
ysis of soil microbiota leading to a better understanding of
the ecological impact of land use management (Maron et al.
2011). Despite these advances, the links between microbial
communities and soil physicochemical properties as affect-
ed by agricultural practices are still a major challenge and
especially in tropical ecosystems where no-till farming sys-
tems become an innovative and recurrent way of crop
production.

In this context, our objective was to investigate the early
effect of tillage systems and crop residue management on top
soil physical, chemical, and microbial properties in an acid
tropical grassland ecosystem located in the western part of
Xieng Khouang province, northeastern Laos. For this purpose,
we initiated in 2008 a 3-year rotation of rice (Oryza sativa L.),
corn (Zea mays L.), and soybean (Glycine max (L.) (Merr.)
conducted under three no-till systems (NTs) distinguished by
the cover crops associated prior to andwith the main crops, and
one conventional tillage-based system (CT) based on soil
plowing with disks and on the burying of crop residues. The
impact of agricultural systems was evaluated 2 years after land
reclamation in reference to the surrounding natural pasture
(PAS). Molecular tools such as soil DNA concentration and
real-time quantitative PCR of bacteria and fungi were used as
bioindicators to evaluate the effect of agricultural practices on
soil microbial abundance (Dequiedt et al. 2011; Smith and
Osborn 2009; Chemidlin Prevost-Boure et al. 2011). The
genotyping of the soil bacterial community structure was
assessed by a DNA fingerprinting approach, the automated
ribosomal intergenic spacer analysis technique, that has been
demonstrated to be sensitive and relevant for evaluating mod-
ifications in microbial community composition consecutive to
land use management changes (Pascault et al. 2010; Lejon et
al. 2007). The relationships between the soil physicochemical
properties and the abundance and diversity of soil microbial
communities were statistically tested to deduce an early envi-
ronmental evaluation of these cropping systems.

2 Material and methods

2.1 Experimental site

The study was conducted in Poa village (Lat. 19°33′N,
Long. 102°59′ E) at 1,130 m AMSL. The climate is both
tropical and mountainous with a 6-month (April–Septem-
ber) wet and hot season and a 6-month dry season including
3 months of cold (December–February). The mean annual
precipitation is 1,400 mm. The soils at the site are red
Oxisols with clay content decreasing gradually from the
upper part (clayey soils, USDA classification) to the lower
part (sandy–loamy soils) of the site. The 3-year rotation was
conducted in a split–split plot experimental design combin-
ing three factors (Fig. 1) with three replications of 270 m2

each for a total of 108 sub–sub–plots.
For the present study, we limited our sampling to the

upper part of the site (clay dominant soils, total of 12
independent replicates per tillage system, in white font in
Fig. 1) since previous studies have shown soil texture as a
major factor in explaining soil microbial diversity distribu-
tion (Martiny et al. 2006; Dequiedt et al. 2011). We thus
decided to minimize the influence of this factor in order to
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highlight the differences related to agricultural management.
The natural surrounding pastureland (PAS) was taken as
reference treatment (eight replicates).

2.2 Estimations of stubble restitutions

We used the cumulated amount of stubble returns as a
quantitative indicator of organic inputs, and the percentage
of broad-leaf species in crop residues returns as a qualitative
indicator of organic inputs (Table 1). Stubble production,
including associated crop and weed contributions, were

estimated twice a year: at main crop harvests and before
land preparation. Measures were made in each plot on six
subplots of 4 m2 each randomly chosen. A random lump
crop residue sample of 2 kg was taken from the six subplots
to determine dry biomass. Grain yields were measured on
each total plot area (270 m2).

2.3 Soil sampling

The soil was sampled at 0–10-cm depth, in June 2009,
during the second year of the rotational sequence. For soil
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Fig. 1 Experimental design. Starting crops in 2008 (three modali-
ties): R rice variety Sebota1; M maize hybrid LVN10; S soybean
variety Asca. Cropping systems (four modalities): CT conventional
tillage based on annual soil plowing with disks and burying of
former crop residues; NT (1, 2, and 3), no-till systems with cover
crops: finger millet (Eleusine coracana Gaern) and pigeon pea
(Cajanus cajan) associated prior to and with maize in NT1; finger
millet and stylo (Stylosanthes guianensis cv. CIAT 184) associated
prior to and with maize in NT2; ruzi grass (Brachiaria ruziziensis
cv. ruzi) and pigeon pea associated prior to and with maize in NT3;
stylo associated with rice in all NT treatments; oat (Avena sativa L.)

and buckwheat (Fagopyrum esculentum Moench) in succession
of soybean in all NT treatments. Fertilization (three modalities): F1
60–80–60 kg ha−1 year−1 of N–P2O5–K2O (N limited to 32 kg ha−1

for soybean); F2 120–160–120 kg ha−1 year−1 of N–P2O5–K2O (N
limited to 32 kg ha−1 for soybean); F3 F2 during the first 2 years,
F1 after that; N coming from urea (46 % N), P2O5 from thermo
phosphate (16 % P2O5, 28 % CaO, and 18 % MgO), and K2O
from KCl (60 % K2O). In addition, all agricultural treatments
received an initial application of 2 Mg ha−1 of locally produced
lime (27 % of CaO). PAS surrounding natural pasture taken as
reference treatment. Asterisks treatments selected for the study

No-till and cover crops shift soil microbial communities 377



chemical and microbial analysis, a composite sample was
made of a pool of five subsamples taken in the diagonal of
the plot (50 m). For soil bulk density and soil aggregate
stability determination, randomized triplicates were taken
for each plot (total of 36 independent replicates per cropping
system and 24 replicates for the natural pastureland).

2.4 Soil physical and chemical analysis

We used the mean weight diameter (MWD) of aggregates as
an indicator of soil aggregate stability. Aggregate size clas-
ses were separated by wet sieving, following a procedure
described by Castro Filho et al. (2002). Briefly, soil samples
were passed through a 19-mm mesh sieve, and clods
>19 mm were softly broken along their natural cleavage
planes and were stored in polystyrene boxes to prevent
moisture loss and excessive drying. Samples were then
wet-sieved in laboratory through a series of six sieves (8,
4, 2, 1, 0.5, and 0.25 mm). Aggregate separation was
achieved by agitation (3.5 cm amplitude, 30 rotations per
minute for 10 min). MWD was calculated as follows:

MWD ¼ Pn

i¼1
xiwi where Wi is the relative weight of each

aggregate class in relation to the whole and Xi is the mean
diameter of the considered class (millimeters).

The soil bulk density (ρb) was used as an indicator of soil
porosity and measured on oven-dried (24 h, 105 °C) undis-
turbed soil samples by using a 94-cm3 density cylinder.

All soil chemical analyses were done by the CIRAD
laboratory in Montpellier, France. Soil organic carbon
(SOC) and total nitrogen (N) were used as indicators of soil
organic status and quantified by dry combustion. Soil pH
(1:5 soil/water slurry), available phosphorus (P) (Olsen
method), cation exchange capacity (CEC) (cobalt hexamine
chloride reagent), sum of exchangeable bases (Ca, Mg, K,
and Na) and exchangeable aluminum (Al) were used as
indicators of soil acid–base and nutrient status.

2.5 Soil molecular microbial abundance analysis

We used soil crude DNA concentrations as estimates of mi-
crobial biomass since a highly positive linear relationship has
been shown between soil DNA recovery and C-biomass mea-
surement, this latter being indicative of the size of microbial
biomass (Marstorp et al. 2000; Dequiedt et al. 2011). Soil
microbial DNA was extracted and estimated on 2 g (dry
weight) of soil using a single procedure developed by Ranjard
et al. (2003) and recently optimized and standardized by the
GenoSol platform (INRA, Dijon, France). DNA concentra-
tions of crude extracts were determined by electrophoresis in a
1 % agarose gel using a calf thymus DNA standard curve.

We estimated fungal and bacterial densities by real-
time quantitative polymerase chain reaction (qPCR) ofT
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ribosomal DNA (rDNA). This approach has recently
become a valuable, accurate, and culture-independent
molecular tool for quantifying soil bacterial and fungal
abundance (Smith and Osborn 2009; Chemidlin Prevost-
Boure et al. 2011). We amplified 18S rDNA sequences,
which are specific to fungi, on 2.5 ng purified soil
DNA using FR1 and FF390 primers and qPCR mix
SYBr® Green as described by Chemidlin Prevost-
Boure et al. (2011)). For bacteria, we amplified a 16S
rDNA sequence using primers 341F and 515R and 2 ng
purified soil DNA, as suggested by Smith and Osborn
(2009). Real-time qPCRs were performed using the
Gene Amp PCR System 9700 (Applied Biosystems®).

2.6 Soil bacterial community genetic structure analysis

The bacterial community structure was assessed using
the Bacterial Automated Ribosomal Intergenic Spacer
Analysis (B-ARISA) method (Ranjard et al. 2003).
Briefly, 12.5 ng of DNA was used as a template to
amplify the bacterial ribosomal intergenic spacer by
PCR. PCR products were purified using the MinElute
Kit (Qiagen®) and quantified using Smart Ladder (Euro-
gentec®). PCR fragments were resolved on a LiCor®
DNA sequencer (ScienceTec) under denaturing condi-
tions as described in Lejon et al. (2007). Profiles were
analyzed using the 1D-Scan® software (ScienceTec),
converting fluorescence data into electrophoregrams,
where peaks represented PCR fragments and the height
of the peaks the relative proportion of the fragments in
the total products. Lengths (in base pairs) were calcu-
lated by using a size standard with bands ranging from
200 to 1 659 bp.

2.7 Statistics

The effect of land use management on quantitative param-
eters was tested by the nonparametric Kruskal–Wallis test
performed under XLSTAT software (Addinsoft®). Differ-
ences between means were tested by paired multiple com-
parison with Bonferroni correction (P<0.05). Microbial
genetic structure data obtained from the 1D-Scan software
were converted into a table summarizing the band presence
(i.e., peak) and intensity (i.e., height or area of peak) using
the PrepRISA software (Ranjard et al. 2003) under R free
software version 2.10.1. Principal component analysis
(PCA), between-group analysis, and coinertia analysis were
performed using the ADE-4 software (Thioulouse et al.
1997) under R software and provided an ordination of data
in factorial maps based on the scores of the first two prin-
cipal components. Monte Carlo tests were performed with
1,000 permutations to confirm the significance of the dis-
criminated clusters.

3 Results and discussion

3.1 Early effect on top soil physicochemical characteristics

After 2 years of native grassland conversion to agriculture,
we observed significant modifications of top soil physical
and chemical characteristics. Soil aggregate stability de-
creased (MWD in Table 1) along the gradient NTs > PAS
> CT and was positively correlated with the total amount of
stubble restituted, SOC, total soil nitrogen, and fungal and
bacterial densities (Fig. 2). Our results highlight the role of
fresh plant and root-derived residues, SOC, and microbial-
binding agents (e.g., fungal hyphae and polysaccharides) in
enmeshing soil particles, in concordance with other studies
(Six et al. 2002). Contrary to Bossuyt et al. (2001), we found
that the diversity of residues also influenced macroaggrega-
tion positively with significant correlations between the
mean weight diameter of aggregates and the percentage of
broad-leaf species in stubble restitutions (Fig. 2). In addi-
tion, the macroaggregate disruption process observed under
CT, with aggregate size values decreased by 19 % compared
to PAS (Table 1), might be mostly related to the direct action
of tilling tools, the aggregates being submitted to compres-
sive and shearing forces during tillage (Balesdent et al.
2000; Six et al. 2002).

Early modifications of top soil porosity were also ob-
served, with higher bulk density values under NT compared
to PAS (Table 1) which might be related to the compacting
effect of agricultural equipment occurring during crop roll-
ing and sowing operations. This compacting effect was not
observed under CT due to the annual tillage which induced
soil mechanical fragmentation.

Regarding top soil organic status, a significant decrease
of SOC content along the gradient NTs ≥ PAS > CT (Table 1)
was classically recorded. SOC was positively and highly
correlated with soil total nitrogen (N) content, the total
amount of stubble returns, the percentage of broad-leaf
species in restitutions, and the aggregates’ stability
(Fig. 2). As for organic status, early modifications of soil
acid–base and mineral nutrient status were also observed,
with a positive impact of inorganic fertilizer use on soil
nutrient availability in cropping system. Indeed, all cultivat-
ed treatments showed significant increases in CEC, total
exchangeable bases, and available phosphorus (P), as well
as a related decrease in exchangeable Al content (Table 1).
The comparative analysis of the cropping systems, however,
appeared in favor of NTs, with 1.5-fold higher exchangeable
bases and CEC content under NTs than under CT (Table 1).

Altogether, the evaluation of the impact of agricultural
systems on top soil physicochemical parameters highlighted
early but classical modifications in favor of no-till systems
which induced a significant increase of top soil aggregate
stability and SOC content, and higher nutrients availability.
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However, these early changes did not impact soil produc-
tivity with similar crop growth and grain yields observed in
2008 (data not shown), this latter being certainly related to
good physical (aggregate stability) and organic (SOC con-
tent) characteristics of soils before land reclamation as esti-
mated by the natural pasture characteristics and by the
limited time of cultivation at evaluation (2 years).

3.2 Early effect on soil microbial abundance

DNA yields, which were used as estimates of microbial
biomass, decreased similarly along the gradient NT1 (mean

value of 16.6 μg of DNA g−1 of soil)>NT2, NT3, and PAS
> CT (11.9 μg; Fig. 3a). No significant correlation could be
established between soil physicochemical parameters and
molecular biomass (Fig. 2). This could be related to the
high variability observed within replicates regarding physi-
cochemical and textural characteristics (see standard devia-
tions in Table 1), and microbial biomass (Fig. 3a), which
makes the significant discrimination between treatments
difficult. This could also be linked to a low sensitivity of
the method when confronted with the limited amplitude of
soil physicochemical variations in relation with the limited
time of cultivation (2 years). Indeed, in more contrasted

pH
SOC 0.18
TN 0.05 0.88
C:N 0.13 -0.07 -0.48
P 0.33 0.15 -0.09 0.48
Base 0.48 0.57 0.45 0.05 0.59
Al -0.63 -0.30 -0.12 -0.29 -0.61 -0.82
CEC 0.47 0.59 0.50 -0.01 0.52 0.98 -0.76
b 0.26 0.23 0.05 0.21 0.26 0.43 -0.49 0.41

MWD 0.40 0.45 0.38 -0.02 0.28 0.56 -0.52 0.55 0.28
Stub 0.46 0.63 0.50 0.02 0.44 0.80 -0.75 0.77 0.43 0.68
Leg 0.22 0.42 0.20 0.29 0.38 0.59 -0.52 0.52 0.37 0.46 0.48
qDNA 0.12 -0.01 -0.10 0.13 -0.03 -0.04 0.04 -0.01 0.06 0.15 -0.11 0.12
B16S 0.21 0.40 0.25 0.07 0.14 0.32 -0.33 0.27 0.26 0.40 0.39 0.49 0.57
F18S 0.22 0.22 0.02 0.21 0.02 0.13 -0.25 0.09 0.24 0.35 0.24 0.44 0.51 0.83
F:B 0.07 -0.19 -0.34 0.32 -0.17 -0.30 0.11 -0.29 -0.01 -0.04 -0.21 -0.04 0.02 -0.12 0.36

pH SOC TN C:N P Base Al CEC b MWD Stub Leg qDNA B16S F18S F:B

Fig. 2 Correlation matrix (Spearman) of the PCA performed on soil
physicochemical parameters. Land use management impacts on organ-
ic input and microbial abundance variables were added as additive
variables (in gray). Values in bold are significantly different from 0 at
P<0.05 (52 plots). SOC soil organic carbon, TN total nitrogen, C:N
carbon to nitrogen ratio, P available phosphorus, Base sum of

exchangeable bases, Al exchangeable aluminum, CEC cation exchange
capacity, ρb bulk density, MWD mean weight diameter, Stub total
amount of stubble returns, Leg percentage of broad-leaf species in
Stub, qDNA molecular microbial biomass, B16S molecular bacterial
density, F18S molecular fungal density, F:B fungal to bacterial ratio
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Fig. 3 Top soil (0–10 cm layer) box and whisker representation of a
molecular biomass (in micrograms of DNA per gram of soil), b
bacterial density (copy of 16S rDNA per gram of soil), and c fungal
density (copy of 18S rDNA per gram of soil; 52 plots) recorded in PAS,
natural pastureland; CT conventional tillage, and NT (1, 2, and 3) no-
till systems. The first (Q1), median, and third (Q3) quartiles are

indicated by the bottom, the central, and the top line of the box,
respectively. The bottom whisker extends to the lowest value of the
data set, while the top whisker extends to the highest one. Outliers are
indicated by points. Letters in brackets indicate significant differences
according to Kruskal–Wallis test (P<0.05), Bonferroni correction
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situations, SOC and nitrogen content, CEC, and pH have
been reported as important parameters influencing microbial
biomass (Martiny et al. 2006; Lejon et al. 2007; Dequiedt et
al. 2011). Finally, microbial biomass might be more dis-
criminated by other factors than those monitored. Tillage
affects soil temperature and humidity which in turn strongly
influence soil microbial biomass (Frey et al. 1999; Spedding
et al. 2004), and could explain the lowest microbial biomass
observed in tilled system.

The number of copies of 16S rDNA and 18S rDNA,
which were used as estimates of bacterial and fungal mo-
lecular densities, respectively, decreased significantly along
the gradient NT1 and NT2>NT3 and PAS > CT (Fig. 3b, c).
After 2 years of cultivation, bacterial and fungal densities
were respectively five- and fourfold higher under NT1 than
under CT, confirming the high sensitivity and reactivity of
these communities to land use management and soil envi-
ronmental changes (Frey et al. 1999; Lauber et al. 2008;
Rousk et al. 2010).

Tillage appears to be a major factor influencing both
bacterial and fungal densities with main significant differ-
ences observed between tilled (CT) and no-tilled (NTs and
PAS) treatments (Fig. 3b, c). Tillage induced a decrease in
SOC (Table 1), this latter being positively correlated with
bacterial density (Fig. 2). Similarly, tillage induced a reduc-
tion of soil aggregate stability and soil macroaggregate
content (Table 1), which was also positively correlated with
both fungal and bacterial densities (Fig. 2), confirming the
importance of macroaggregates as microhabitat for micro-
organisms (Ranjard and Richaume 2001). In addition, till-
age has been demonstrated to affect soil temperature and
humidity (Frey et al. 1999), which in turn strongly influence
soil microbial abundance and in particular fungal develop-
ment (Frey et al. 1999; Spedding et al. 2004). Finally, tillage
causes direct tissue damage to the fungi leading to a reduc-
tion in their abundance at soil surface (Balesdent et al. 2000;
Six et al. 2002).

Crop residue diversity appeared as the second main factor
influencing both bacterial and fungal densities since the
numbers of copies of 16S rDNA and 18S rDNA were
significantly and positively correlated with the percentage
of broad-leaf species in stubble returns (Fig. 2). The gradient
observed regarding the diversity of crop residues, with about
20 % broad-leaf species in restitutions for NT1 and NT2
versus less than 5 % for NT3 and PAS (Table 1), fits with the
differences in bacterial and fungal densities observed among
no-tilled treatments (Fig. 3b, c). Finally, bacterial density
also appeared to be influenced by other trophic parameters
with significant and positive correlations found in the total
amount of stubble returns and soil exchangeable base con-
tent (Fig. 2).

In comparison to the natural pastureland (PAS), the
higher amount of stubble returns and soil exchangeable base

content (Table 1) under no-till systems (NTs) might help
explain the difference in bacterial density observed between
NTs and PAS (Fig. 3b). Altogether, our results highlighted
the different processes driving soil bacterial and fungal
density changes: bacterial density mainly appeared to be
influenced by trophic factors (e.g., diversity and quantity
of crop residues, SOC, and sum of exchangeable bases),
while fungal density appeared to be influenced by both
trophic (e.g., diversity of crop residues) and atrophic factors
(e.g., direct tissue damage by tilling tools and soil moisture
content).

We did not find any significant difference in the fungal to
bacterial (F/B) ratio among treatments (data not shown). F/B
ratio is a widely used metric tool to assess the impact of
environmental change on soil microbial community structure
and functioning (Strickland and Rousk 2009). Our results are
not in agreement with Kladivko (2001) who proposed that no-
till systems (NTs) would result in a fungal-dominated system
instead of the bacterial-dominated system expected under con-
ventional tillage practices. Several studies reported an increase
in F/B ratio due to a higher response of fungal biomass to
increased soil moisture under NTs (e.g., Frey et al. 1999;
Spedding et al. 2004) and/or to the suppression of hyphal
growth disturbance by tillage (Frey et al. 1999; Balesdent et
al. 2000). On the other hand, our results are in agreement with
the review of Strickland and Rousk (2009) who reported
empirical evidence in support of such impacts on F/B domi-
nance are still far from generic.

3.3 Early effect on soil bacterial genetic structure

Using principal component analysis with between-group
analysis performed on B-ARISA fingerprints, we found
four discriminated genetic structure of indigenous bac-
terial communities under: (1) NT3, (2) NT1 and NT2,
(3) CT, and (4) PAS (Fig. 4a), with these four classes
being significantly different according to the Monte
Carlo test (1,000 permutations, p value <0.001). A
higher discrimination in bacterial communities was ob-
served between non-cultivated and cultivated plots, dis-
criminated on the first axis, than between agricultural
treatments, discriminated on the second axis. This dis-
tinction between non-cultivated and cultivated soil might
increase in the coming years since Buckley and Schmidt
(2001) reported higher microbial community structural
differences between cultivated and never-cultivated soils,
than between cultivated soils showing different cultiva-
tion and plant community histories. The low but signif-
icant differences in bacterial genetic structure observed
between NTs and CT might be related to the limited
duration of cultivation (2 years) at evaluation.

Using coinertia analysis between B-ARISA fingerprints
and physicochemical parameters, we found that the main
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factors influencing the bacterial genetic structural changes
among land use managements (Fig. 4b) were different from
those influencing microbial abundance. The first axis of the
coinertia factorial map (PC1) showed a significant differ-
ence (Monte Carlo test p value <0.001) between non-
cultivated and cultivated plots according to soil exchange-
able Al and available phosphorus (P), with the structure of
the bacterial communities under PAS appearing strongly
related to high Al content. The second axis of the factorial
map showed an ordination of cultivated soils according to
soil pH, nutrient content (CEC, total exchangeable bases),
the mean weight diameter (MWD) of aggregates, and soil
carbon to nitrogen (C/N) ratio. The early changes in bacte-
rial genetic structure under NT3 were related to an increase
in pH, nutrient availability, and MWD as compared to NT1,
NT2, and CT (Table 1). By contrast, the early changes
observed under CT were more related to a decrease in pH,
nutrient availability, MWD and an increase in C/N ratio
(Table 1).

Our results are in agreement with several studies that
describe pH as the main discriminating factor of bacterial
diversity (Grayston et al. 2004; Martiny et al. 2006; Fierer et
al. 2009). Variations of C/N ratios have been shown to
explain shifts in F/B ratio (Fierer et al. 2009) and bacterial
genetic structure in vineyard soils (Lejon et al. 2007). How-
ever, no reference was found regarding the effect of soil
available P, Al content, and/or CEC changes on bacterial
genetic structure. While we show that the quality of crop
residues strongly influenced bacterial abundance, this factor

did not appear influent regarding bacterial community struc-
tural changes, contrary to other studies (Nicolardot et al.
2007; Pascault et al. 2010). Finally, tillage could partly
explain the differences in bacterial genetic structure ob-
served between conservation (NTs) and conventional (CT)
cropping systems, by modifying microbial access to crop
residues and soil moisture content (Nicolardot et al. 2007).

4 Conclusion

In an acid tropical grassland environment, our results show
that no-till (NTs) and conventional tillage (CT) farming
systems both induced early but different modifications in
top soil properties in reference to the natural pasture (PAS):
NTs increased aggregate stability and soil organic carbon
content, enhanced nutrient availability and microbial bio-
mass as a result of a simultaneous increase of fungal and
bacterial densities. We also showed a significant discrimi-
nation of soil microbial community structures between NTs,
CT, and PAS. In addition, bacterial abundance and diversity
appeared to be differently driven by soil environment
changes: bacterial density was affected by the quantity and
diversity of crop residues, soil organic carbon, and ex-
changeable base content, whereas soil bacterial genetic
structure was influenced by soil exchangeable Al content,
pH, CEC, and soil C/N ratio, all these parameters being
affected by tillage, residue management, and soil organic
and inorganic amendments. As an application of our results,

Montecarlo test  p-value: 0.000999001
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a b

Fig. 4 Factorial maps of: a bacterial community genetic structure
(principal component analysis of B-ARISA fingerprints, between-
group analysis). b Correlation circle of the coinertia analysis performed
between the PCA of B-RISA fingerprints and the PCA of soil physi-
cochemical characteristics (52 plots). PAS natural pastureland, CT
conventional tillage, NT (1, 2, and 3) no-till systems. SOC soil organic

carbon, N total nitrogen, C:N carbon to nitrogen ratio, P available
phosphorus, Base sum of exchangeable bases, Al exchangeable alumi-
num, CEC cation exchange capacity, ρb bulk density, MWD mean
weight diameter, Stub cumulated amount of stubble returns, Leg per-
centage of broad-leaf species in Stub
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we recommend no-till systems with high residue restitutions
and lime amendment in order to improve the physical,
chemical, and microbial properties of tropical acid soils,
and thus contribute to the sustainability of agricultural
systems.
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Virtuelle, Centre de Biochimie, Parc Valose, Nice, France, 3 Platform GenoSol, INRA-Université de Bourgogne, CMSE, Dijon, France, 4 INRA Orléans - US 1106 InfoSol,
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Abstract

Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge
of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time
quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a
real-time Q-PCR using the SYBRGreenH method, a primer set already used to study the genetic structure of soil fungal
communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection
technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length
polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of
the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the
primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best
consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This
in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on
this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the
amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to
evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with
contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of
soil texture, organic carbon content, C:N ratio and land use in determining fungal abundance in soils.
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Introduction

Soil plays a crucial role in determining the rates and the diversity

of ecosystem processes. Indeed, soil houses very large quantities of

microorganisms with enormous biodiversity [1–4], resulting in

numerous biological interactions and ecological processes. To date,

most studies have focused on soil bacteria and analyzed their

diversity [5], ecology [6–8], or role in biogeochemical cycles [9,10].

Despite the important role of fungi in ecosystem functioning (e.g.

nutrient and C cycling) and their huge biodiversity (1.5 million

species; [11]), studies of soil fungal communities represent only

about 30% of the total investigations of soil microbial communities

reported in the literature. In the context of molecular ecology, this

trend may be observed because fewer molecular tools are available

for the in situ characterization of soil fungi [12], the genetic sequence

databases for soil fungi are smaller than those for soil bacteria, and

also because fewer groups are working on soil fungi. However, the

need to develop new tools to improve our ability to characterize the

diversity and abundance of soil fungal communities has been

highlighted by the rapid evolution from descriptive to quantitative

approaches in microbial ecology. An absolute quantification of soil

fungal communities could i) provide a simple bio-indicator for

evaluating the impact of human activities on soil; ii) reveal the

relative importance of soil fungi, as compared to bacteria, in the

total microbial biomass. This result could also be combined to the

quantification of specific fungal phyla to estimate their relative

abundance. Finally, this would lead to a better understanding of the

role of fungi in soil biological functioning.

Real-time quantitative PCR (real-time Q-PCR) has recently

become a valuable molecular tool for quantifying indigenous
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organisms in environmental samples directly from environmental

DNA extracts. This method is powerful, accurate and culture-

independent. Different taxonomic levels can be attained by

targeting different regions in the genome [13,14] (e.g. ‘‘broad’’

taxonomic resolution with targets located in rrs genes, and finer

taxonomic resolution with targets located in more variable regions

like the Internal Transcribed Spacer (ITS)). The real-time Q-PCR

method has been used successfully to measure total bacterial

abundance [14] and the abundance of bacteria involved in the

nitrogen cycle in soils [13]. In addition, the suitability of the

method for quantifying soil fungal communities has been

demonstrated in vitro. Raidl et al. [15] demonstrated a linear

relationship between the number of copies of the ITS region

detected by real-time Q-PCR and the hyphal length of Piloderma

croceum, an ectomycorrhizal fungus. Nevertheless, real-time Q-

PCR still needs to be improved for the study of soil fungal

communities. Indeed, when this approach was used in different

studies to target the ITS region in fungi in environmental samples

[16–23], the reproducibility and accuracy of the real-time Q-PCR

measurements of absolute fungal abundance in soil samples were

hampered by the length of the ITS region, together with its high

length polymorphism and potential resulting taxonomic bias [24].

The reproducibility and accuracy of the method constitute strong

limitations in ecological studies of soil fungal communities [25].

These are largely determined by the length of the amplicon

produced [14,25]: short amplicon enhance the accuracy and the

reproducibility of the method. To overcome these limitations and

enhance the reproducibility of the method for soil fungal

communities, some studies focused on the 18S rRNA gene region

[26–28]. This region was chosen because it contains conserved

regions with only slight length polymorphism and because

sequence polymorphism is not a limiting factor in the real-time

Q-PCR approach. However, limitations related to the length of

the targeted region [28] or to the specificity of the primer set

[26,27] were still encountered. This highlighted the need to

identify other primer sets suitable for use with real-time Q-PCR.

Our aim was therefore to extend the use of a primer set

commonly involved in the characterization of soil fungal

community composition in the literature, with quantification of

the soil fungal community by real-time Q-PCR. The 18S rRNA

gene was chosen as the target gene because, conversely to the ITS

region, it contains conserved regions unaffected by length

polymorphism. To identify and evaluate the suitable primer set,

a three step procedure was chosen. First, 33 primer sets targeting

the 18S rRNA gene were compared in silico for the length of the

amplicon, so as to ensure good accuracy and reproducibility of the

detection technique. This allowed the selection of a subset of

primer sets that produced shorter amplicons than the primer set

nu-SSU-0817/nu-SSU-1196 [26], already used in combination

with real-time Q-PCR approach. Among this subset, the primer

sets were tested for specificity for Fungi against a theoretical

optimal primer (fully specific of Fungi) to identify the best sets.

These best sets were then compared in details to one another for

their specificity and coverage for Fungi. This allowed the selection

of the more relevant primer set corresponding to the best

consensus between fungal specificity, fungal coverage and

amplicon length: FR1/FF390 (targeted gene: 18S rRNA gene,

target region length: c.a. 350 bp). This primer set was developed a

decade ago by Vainio and Hantula [29] for the analysis of wood-

inhabiting fungi by Denaturating Gradient Gel Electrophoresis

(DGGE), and is frequently used in combination with DGGE to

analyze fungal community composition in soil (e.g. [30–32]).

Second, a real time Q-PCR run was performed using the primer

set FR1 / FF390 on five independent soil samples with serial

dilutions of template DNA. The resulting amplicons were used to

validate the fungal specificity of the primer set FR1 / FF390 in vitro

through a cloning - sequencing approach and the real-time Q-

PCR data from this run were used to evaluate method sensitivity

and reproducibility. Third, the method was applied to 24 soil

samples originating from different physico-chemical conditions

and subjected to various land-use practices (forests, grasslands and

croplands) to evaluate the ecological potential of this tool and rank

the influence of soil properties and land-use practices on soil fungal

abundance.

Results and Discussion

In Silico Selection and Validation of the relevant Primer
Set

65 unique primers located in the 18S rRNA gene were

extracted from the literature and from the AFTOL primer

database. They were analyzed in silico as 33 primer sets (Data S1).

The relevant primer set was selected as the best consensus between

fungal specificity, fungal coverage and the length of the amplicon.

The 33 primer sets were first discriminated for the length of the

amplicon produced (Figure S1) which ranged from 135 bp

(69 bp) to 523 bp (63 bp). This lead to the selection of a subset

of 23 primer sets that were tested for their fungal specificity against

a theoretical optimal primer set (fully fungal specific) through an

ascendant hierarchical classification (Data S1) which produced five

significant clusters (P,0.05) of primer sets (Figure S2). The best

primer sets were clustered with the theoretical optimal primer and

were: nu-SSU-0817/nu-SSU-1196, FF390/FR1, nssu897R/nu-

SSU-1196 and nssu1088R/SR2.

We detail below the comparison between these 4 ‘‘best’’ primer

sets considering non fungal phyla and the Fungi kingdom (Figure 1).

Similarities with 0 to 3 mismatches were evaluated in the

comparison of the four ‘‘best’’ sets, but only the 0 mismatch

analysis, i.e. the original primer sets, was examined for specificity

and coverage of the Fungi kingdom. Analyses involving 1 to 3

mismatches were then examined to test the possibility of

improving the primer set sequences and enhancing fungal

detection without diminishing the specificity of each primer set

for Fungi.

The in silico analysis indicated that only Eukaryota sequences were

detected by the four ‘‘best’’ sets (Table S1). Except nssu1088R /

SR2, the primer sets had a relatively good coverage of Fungi

kingdom (64.5% to 69.8%) but also punctual matches with some

non-fungal groups. FR1 / FF390 is the set that matched the fewer

non fungal groups: Choanoflagellida (,0.8%, Choanoflagellida clade-2),

Mesomycetozoa (10.8%, Ichthyosporea and Nuclearia sequences), and

some Metazoa (,0.3%, Cnidaria and Porifera sequences); which was

not documented in the literature [30,32–34]. Except for Nuclearia,

none of the non-fungal groups matched by the primer set are

found in soils. The FR1 / FF390 primer set would thus be relevant

for a robust and specific detection of the soil fungal community. In

comparison, the other primer sets matched these groups at similar

or higher levels (e.g. Choaniflagellida, Metazoa), and additional non-

fungal groups (e.g. Cryptophyta, Alveolata, Oxymonadida, Stramenopiles)

potentially found in soils. This lead to the conclusion that FR1 /

FF390 primer set was more fungal specific than the other 3 primer

sets.

At the fungal level, major phyla (Ascomycota and Basidiomycota)

were very efficiently detected by the primer sets FR1 / FF390 and

nssu897R / nu-SSU-1196 (ca. 75% to 80% for both phyla and

both primer sets). The other sets presented smaller coverage of

each group (nssu-1088R/SR2) or a disequilibrium between

the two groups (nu-SSU-0817/nu-SSU-1196). The different

Soil Fungal Community Abundance by Real-Time Q-PCR
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sub-groups of Ascomycota and Basidiomycota were also well-covered

(coverage ranging from 60% to 87%). None of the four primer sets

had a very large coverage of the basal fungal lineages (coverage

ranging between 31.0% and 42.6%, except nssu1088R / SR2 with

1.4%). This was mainly determined by the low detection of some

basal fungal lineages (Chytridiomycota, Glomeromycota and Blastocla-

diales). The poorer detection of basal fungal lineages, in relation to

other fungal groups, is in agreement with the literature [33–35]

but shows that the FR1/FF390 and nssu897R/nu-SSU-1196

primer sets are able to take these groups into account, if only

partially. Nevertheless, nssu897R/nu-SSU-1196 remained less

fungal specific than FR1 / FF390.

Finally, this analysis showed that the primer set FR1 / FF390

was the best consensus between a short amplicon and a good

specificity and coverage of Fungi. The original FR1 / FF390

primer set seems better suited for combination with real-time Q-

PCR among the sets tested in silico. Indeed, it is specific for Fungi,

matches every major fungal phylum and avoids technical

limitations related to target length polymorphism. Even if FR1 /

FF390 does not provide fully exhaustive coverage of the fungal

Figure 1. In silico comparison of the primer sets nu-SSU-0817/nu-SSU-1196, FR1/FF390, nssu1088R-SR2 and nssu897R-nu-SSU-1196
for their fungal-specificity. For each primer set, k mismatches (0 to 3) were allowed in the in silico analysis to test the specificity of the original
primer set (k = 0) and its potential sequence improvement (k = 1 to 3). For each graph, each bar represents the hit frequency (%) of the primer set for
the selected phylum with: k = 0: black, k = 1: dark grey, k = 2: white, k = 3: light grey. The number of sequences available for a phylum is indicated in
brackets. Detailed hit frequencies are provided in Table S1.
doi:10.1371/journal.pone.0024166.g001
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kingdom, the non-covered phyla belong to basal fungal lineages

that represent only 1.5–2.0% of the total number of fungal taxa

identified to date in the Genbank database [36]. Therefore, soil

fungal community abundance should only be slightly underesti-

mated. In addition, the major fungal phyla that might strongly

influence estimates of soil fungal abundance are largely and almost

equally covered.

For the 4 ‘‘best’’ primer sets, the introduction of mismatches, i.e.

degenerating primer set sequences into the in silico analysis,

allowed the test of the potential improvement of their sequences.

This effectively increased the hit frequency of the different fungal

phyla from 70% to 95% (Figure 1) but decreased the fungal

specificity of every primer set with the detection of additional non-

fungal organisms to a large extent, particularly Metazoa, Chlorophyta,

Stramenopiles or Cercozoa,. This does not constitute a good

compromise for the real-time Q-PCR approach because non

fungal sequences cannot be discarded by any post-processing

method. Therefore, modifying the sequences in any primer set

would have produced biased estimations of soil fungal abundance.

In Vitro Evaluation of the FR1 / FF390 Primer Set
Five soils with contrasting texture, C and N contents, C:N ratio

and pH (Table 1), were first used to evaluate the sensitivity,

efficiency and reproducibility of the method and thereby define

the amount of DNA template to use in the real-time Q-PCR assay

on the basis of this information. In a second step, the real-time Q-

PCR products obtained directly from these five soils were then

cloned and sequenced to validate the specificity of the FR1 /

FF390 primer set.

Experimental Determination of the Sensitivity, Efficiency
and Reproducibility of the Real-Time Q-PCR Approach

The threshold cycle (CT) was significantly and linearly related to

the logarithm of the starting quantity of 18s rRNA gene copies on

the standard curve (r2.0.99). This indicates that the method

provides accurate estimates of the 18s rRNA gene copy number in

pure DNA templates (standard template corresponding to the FR1

/ FF390 target region derived from a pure culture of Fusarium

oxysporum and cloned into PGEMT plasmid). The CT of the no-

templates assay was at least 3.3 cycles higher than that of the most

diluted standard (3 102 copies of 18S rRNA gene). The sensitivity

of the method could therefore be set at 3 102 copies of 18S rRNA

gene per assay [37]. This detection limit is much lower than that

defined for the nu-SSU-0817/nu-SSU-1196 primer set [27] and is

within the range of detection limits defined for primer sets

targeting the ITS region [17,22].

The efficiency of the real-time Q-PCR method for soil DNA

extracts was tested by serial dilution using DNA templates derived

from five soil samples. For each soil sample, the relationship

between the CT value and the logarithm of the amount of DNA

template in the PCR was linear and highly significant (r2.0.99,

Figure 2, raw data are provided in Table S6). The PCR

efficiencies (derived from the slope of the linear regression)

differed from one soil sample to another and ranged between 67%

and 103%. They were, however, within the ranges reported in the

literature [17,27] and in the same range as the efficiency derived

from the standard curve (91%). The observed variations may be

related to the different proportions of PCR inhibitors in the

samples which vary according to the physico-chemical character-

istics of soils. This was supported by the variations in PCR

efficiency of each soil sample with DNA template concentration.

PCR efficiency was close to the standard PCR efficiency for DNA

template quantities of 1 ng to 2.5 ng, except for sample 1101

(73%).

The reproducibility of the method for environmental samples

was tested by calculating the coefficient of variation (CV) of CT

and of the number of copies of the 18S rRNA gene throughout the

PCR assay for each DNA template quantity. For each soil, the CT

measurements were highly reproducible for a given DNA template

quantity within an assay (CV,2.2%). The lowest ranges of

variations in this CV were observed for DNA template quantities

ranging from 1 ng to 2.5 ng. Nevertheless, the CV of the number

of 18S rRNA gene copies estimated from the standard curve was

much higher, ranging from 3% to 23% (Figure 3, except for

sample 1051 for which the CV was 49% at the lowest DNA

template quantity). This is within the range of CVs reported in the

literature [37–39]. The higher CV obtained for the 18S rRNA

gene copy number is probably related to error propagation during

the conversion of CT into copy number [37]. The CV values did

not seem to be related to template quantity in the real-time Q-

PCR mix for a given soil, but the ranges of variation of the 18S

rRNA gene copy number were lowest (5% to 16%) for 2.5 ng of

template DNA per PCR assay.

According to these results, and because the extractable DNA

content of certain soil types may be very low, the DNA quantity

in the PCR assay was set at 2.5 ng. This limited the error on the

18S rRNA gene copy number, which ranged from 5% to 16%. It

also meant that the PCR efficiency of most templates was close to

that of the standards, which ensured the accuracy of the method.

The negative controls were below the detection limit set by the

standard curve at ca. 102 copies of 18S rRNA gene per PCR

assay.

Table 1. Physico-chemical characteristics of the soil samples used for in vitro validation of the FR1/FF390 primer set.

Site number Corg N CaCO3 P K pHwater Texture C:N

g kg21 %

858 15.0 1.6 BD 0.08 1.5 7.1 Silt Clay 9.4

1012 9.7 1.1 BD 0.10 1.1 7.1 Silt Loam 8.9

1051 26.2 2.5 BD 0.04 3.6 5.4 Sandy Loam 10.4

1101 8.1 0.8 BD 0.09 1.6 6.4 Silt Loam 9.8

1143 60.0 3.0 BD 0.03 3.3 4.3 Sandy Loam 20.3

Texture was determined according to the USDA referential. Corg: organic carbon content; N: total nitrogen content; P: available phosphorous; K: total potassium content.
BD: below the detection threshold.
doi:10.1371/journal.pone.0024166.t001
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Validation of Primer set Specificity
The real-time Q-PCR products obtained in the above-defined

conditions, directly from the DNA of the five soils evaluated for

sensitivity, efficiency and reproducibility, were cloned and

sequenced to check the specificity of the primer set FR1 /

FF390. NCBI-Blast was used for robust affiliation of the sequences.

Only fungal sequences were identified (Table S2 for affiliation and

accession numbers of the clone sequences). Most of the sequences

were successfully affiliated and corresponded to fungal sequences.

Six sequences were not completely affiliated but 3 of them were

close to Sordariomycetes and the 3 others could only be related to

eukaryotic fungal sequences. These sequences were aligned with

reference sequences extracted from Genbank (Accession numbers

in Table S3) to check that the clone sequences clustered according

to their affiliation. Figure 4 presents the maximum parsimony

dendrogram of the sequences of clones derived from the real time

Q-PCR products. The clones did not cluster according to their soil

of origin, so any potential bias due to manipulation was limited.

The bootstrap values were not significant, due to the length of the

sequences (317 to 360 bp), but the different phylogenetic methods

tested (Neighbor Joining, Maximum Parsimony and Maximum

Likelihood) produced similar clusters, which strengthened the

analysis. In addition, the obtained clusters were in agreement with

the fungal phylogeny presented in James et al. [36]: basal fungal

lineages (groups I, III and IV) were discriminated from

Basidiomycota (group IIB) and Ascomycota (group IIA). Nevertheless,

the non-fungal reference sequences did not root the dendrogram

and mainly formed a small group with the basal fungal lineages, to

which they seem to be closest according to the phylogeny

presented in James et al. [36]. The mix of non fungal sequences

Figure 2. Threshold cycle against DNA quantity in the PCR mix for five soil DNA extracts with serial dilution. DNA quantities are
represented in logarithmic scale and correspond to a serial dilution series (10 ng, 5 ng, 2.5 ng, 1 ng, and 0.5 ng). The linear regressions were highly
significant (r2.0.99) for each soil type. The equations of the regression line were for each soil sample: 858: y = 23.61x+29.86; 1012: y = 23.24x+31.06;
1051: 23.60x+31.84; 1101: y = 24.47x+29.55; 1143: y = 24.37x+30.94.
doi:10.1371/journal.pone.0024166.g002

Figure 3. Variation coefficient of 18S rRNA gene copy number
with DNA quantity in the PCR mix for five soil DNA extracts
with serial dilution. The box limits represent the first and third
quartiles of the variation coefficient (CV), the bold line represents the
median and the error bars represent the standard deviation. Empty
circles correspond to the minimum and maximum of the CV. The CV for
each soil was determined from 3 independent measurements.
doi:10.1371/journal.pone.0024166.g003
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Figure 4. Distribution of clones obtained by the cloning-sequencing approach in the different fungal phyla. Symbols indicate the soil
of origin of the clone: §: 858, ¤: 1012, #: 1051, &: 1101, N: 1143. *: Non fungal reference sequences. Genbank accession numbers of clones and
their respective affiliation are provided in Table S2. Accession numbers of the non fungal reference sequences are provided in Table S3.
doi:10.1371/journal.pone.0024166.g004
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with basal fungal lineages was mainly determined by the a priori

choice of reference sequences. Indeed, construction of the

dendrogram of clone sequences alone by maximum parsimony

method produced the same clusters and significant bootstrap

values (Figure S3).

Clones affiliated to Ascomycota (22 clones (HM104488–

HM104509) and 3 clones corresponding to fungal environmental

samples related to Sordariomycetes, group IIA (HM104574–

HM104576)), Basidiomycota (10 clones (HM104560–HM104569),

group IIB) or basal fungal lineages (50 clones of Zygomycota

(HM104510–HM104559) and 1 clone of Chytridiomycota

(HM104573) belonging to groups III and IV, respectively),

clustered with their corresponding reference sequences. Microspo-

ridia rooted the analysis together with 3 clones corresponding to

fungal environmental samples (group I, (HM104570–HM104572))

which were not strictly related to any of the above groups. These

observations confirmed the affiliation of the cloned sequences and

the large spectrum of fungal phyla covered by the primer set, as

indicated by our in silico analysis. This large spectrum of detection

is in agreement with other studies that sequenced the DGGE

bands derived by using the FR1 / FF390 primer set on soil DNA

extracts [30,33–35]. However, in our case, the clones belonging to

basal fungal lineages were much more abundant than would be

expected from our in silico analysis, the DGGE studies [34,35] or

mass sequencing studies [40,41]. This was mainly due to high

frequency of similar sequences in our clone library (e.g. 29 identical

sequences of Mucoromycotina) constituting in only 6 OTUs at the

1% similarity level. Despite similar hit frequencies in the in silico

analysis, Ascomycota sequences were also more abundant than

Basidiomycota sequences in this study, which were distributed into

20 and 10 OTUs at the 99% similarity level, respectively.

Differences in clone number may be related to the soil types

selected to test the specificity of the FR1 / FF390 primer set.

Indeed, most of the five soils had C:N ratios lower than 10 and

relatively high phosphorus (P) contents which could have increased

the abundance of Ascomycota phyla rather than Basidiomycota phyla,

according to the results of Lauber et al [19].

No Nuclearia sequences were detected in the clones, conversely to

what was expected from the in silico analysis. This is in agreement

with other studies involving this primer set in which only fungal

sequences were detected [30,33,35,42] and may be related to a

relatively low abundance of Nuclearia (only 9 taxa recorded in the

Genbank database).

No Glomeromycota was detected in vitro despite its potential

amplification according to the in silico analysis. The absence of

clones belonging to this particular fungal group may be explained

by i) the low relative abundance of this group compared to major

groups like Ascomycota or Basidiomycota; ii) the ecology of this group

(mainly symbiotic and rhizospheric fungi according to Pivato et al.

[43]) with regard to our soil samples (bulk soil containing mainly

sporitic forms) which might limit their accessibility for cell lysis and

DNA extraction, and/or iii) competition during amplification. In

view of their important role in ecosystem functioning [9], a real

time Q-PCR assay was run on DNA extracts from pure cultures of

Glomus versiforme, Glomus clarum, Glomus claroı̈deum , Glomus geosporum

and on Glomeromycota rich rhizospheric soil DNA extracts [43]. The

significant amplification of Glomus sp. (Table S4) demonstrated that

the previously observed absence of Glomeromycota sequences was not

related to the specificity of the FR1 / FF390 primer set, but more

probably to their low abundance in bulk soil. To test this

hypothesis, we applied our primer set and PCR conditions to

rhizosphere soil of Medicago truncatula which is rich in Glomeromycota

and detected a positive signal (Table S5; [44]), confirming our

hypothesis.

We were able to conclude from the results of this in vitro analysis

that the FR1 / FF390 primer set was fungi-specific and gave

reliable results by amplifying the various fungal groups irrespective

of their proportions in the soil samples. Indeed, the matching of

particular fungal groups seems to depend mainly on their ecology,

which determines their accessibility for DNA extraction, rather

than on primer specificity.

Ecological Validation of Real-Time Q PCR for Fungi
The developed method was applied to 24 independent soils of

contrasting physico-chemical characteristics and land-use type

(Table 2). The aim was to evaluate the combined use of FR1 /

FF390 and real-time Q-PCR for ecological investigation by

focusing on the determinism of the quantitative variation of fungal

abundance in soil. The abundance of soil fungal communities

estimated from the 18S rRNA gene copy number was not

converted into ‘‘number of fungal cells per gram of soil’’ because

many types of fungi are multinucleate cells with very variable

numbers of nuclei per cell between species.

Fungal abundance ranged from 6.9 106 to 2.1 109 copies of 18S

rRNA gene .g21 of soil (Figure 5, raw data are provided in Table

S7) and was significantly correlated with soil physico-chemical

properties (Table 3). Fine-textured soils exhibited a higher fungal

abundance than coarse-textured soils, fungal abundance being

negatively correlated with fine sand content. This observation is in

agreement with the large number of bacterial and fungal

organisms, as well as the greater microbial biomass, generally

observed in silt or clay soils [45–47]. Fine-textured soils provide a

more favorable habitat for microbial growth than coarse soils,

offering better protection from desiccation, gas diffusion, toxic

exogenous compounds and predation by protozoa [48]. Further-

more, the availability of carbon and nitrogen nutrient resources for

indigenous microbes is generally higher in fine-textured soils due

to better protection of the organic matter [49]. In addition, fungal

abundance was significantly and positively correlated with Corg

content and C:N ratio. This confirmed the major contribution not

only of the availability of organic matter but also of its biochemical

quality, the C:N ratio reflecting the recalcitrance of soil organic

matter to microbial degradation, in agreement with other studies

on soil fungal biology [9,19,46,50,51]. This would accord with the

trophic niche differentiation between bacteria and fungi proposed

by de Boer et al [9]. According to these authors, fungi

preferentially decompose complex organic matter (cellulose, lignin)

and interact with soil bacteria through co-metabolism of the fungal

exudates. Under these conditions, an accumulation of complex

organic matter would promote fungal development and increase

fungal abundance (the case in this study as Corg and the C:N ratio

are correlated; r = 0.54; P,0.05). Nevertheless, this hypothesis

needs to be tested by sampling on a larger scale under a broader

range of Corg and C:N ratio conditions. It has been demonstrated

that other soil parameters may also be involved in determining the

abundance of the soil fungal community: e.g. pH [52], P content

[19] or N content [16,53,54]. These observations were not

confirmed in this study. This could be i) because the gradients of

pH, P content and N content between the different ecosystems

were too small, thus preventing the observation of significant

trends in the response of soil fungal abundance to these

parameters, or ii) because different fungal phyla may respond

differently to these parameters (e.g. Phosphorous, in Lauber et al

[19]), or iii) because these parameters interacted with each other to

influence the abundance of the soil fungal community.

Figure 5 shows the number of 18S rRNA gene copies for

different land-use types, i.e. forests, croplands and grasslands.

Forest sites contained a significantly (P,0.05) higher average
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number of copies of 18S rRNA gene.g21 of soil (6.9 108 copies.g21

of soil) than grassland and cropland sites, which did not differ

significantly from each other, (9.5 107 and 1.9 108 copies.g21 of

soil, respectively). This difference was significant despite the

greater variability in the number of 18S rRNA gene.g21 of soil

observed in forest sites, as compared with grassland and cropland

sites, (coefficients of variation: 87%, 78% and 50% for forest sites,

cropland sites and grassland sites, respectively). These results are in

agreement with those reported in the literature [17,27]. The

greater abundance of fungi in forest sites, compared to croplands

and grasslands, may be related to their higher C:N ratio and

higher Corg content, showing that interactions between soil

characteristics and vegetation type may also affect soil fungal

abundance [55]. In addition, the high variability of soil fungal

abundance in forests may partly be due to variations in the

response of fungal groups to the C:N ratio (positive or negative

correlation, [19]) and the multiple symbiotic associations between

plants and soil fungi. On the other hand, the higher number of

copies of 18S rRNA gene g21 of soil observed in croplands, as

compared to grasslands, might be due to the higher P content of

croplands. Indeed, significant differences in P content were

observed between these land-use types and P content has been

shown to influence the abundance of fungal populations in soil

[19]. The identification of numerous edaphic variables influencing

soil fungal abundance, in agreement with the literature, demon-

strates that our tool is valid and operational for studying the

determinism of fungal abundance in soil.

Conclusion
In conclusion, the FR1 / FF390 primer set should facilitate the

quantification of fungi in soils. Our results provide technical and

ecological validation of combining use of the FR1 / FF390 primer

set with a real-time Q-PCR approach and SYBRGreenH
technology, to estimate fungal abundance in soils. The FR1 /

FF390 primer set is the best consensus between fungi-specificity,

coverage and a short amplicon among the different primer sets

tested in silico, provides estimates of fungal abundance which are at

least as accurate and reproducible as other primer sets in the

literature, and avoids the reproducibility limitations associated

with length polymorphism associated with the ITS region.

Nevertheless, as with other primer sets, the true fungal abundance

may be slightly underestimated because of incomplete coverage of

the Fungi kingdom. However, this underestimation should remain

weakly significant because it is related mainly to basal fungal

lineages which constitute a small proportion of the fungal taxa

currently referenced in the fungal databases. The major fungal

Table 2. Physico-chemical characteristics and land-use of the soil samples used for ecological validation of the FR1/FF390 primer
set combined with a real-time Q-PCR approach.

Site number Corg** N CaCO3 P*** K pHwater Texture C:N*** Land Use

g kg21 %

634 19.0 1.8 190.0 0.1 0.5 8.3 Clay loam 10.6 Cropland

750 26.4 2.8 77.6 0.04 1.6 8.0 Clay 9.4 Cropland

854 10.5 0.9 BD 0.08 0.5 6.7 Loam 11.5 Cropland

914 34.4 3.6 56.8 0.1 1.5 7.9 Silt Clay 9.5 Cropland

917 18.8 1.8 BD 0.07 1.6 7.0 Silt Clay Loam 10.3 Cropland

968 11.5 1.2 BD 0.13 1.1 7.0 Silt Clay Loam 9.3 Cropland

1220 9.8 1.0 BD 0.04 3.5 5.9 Loamy Sand 9.9 Cropland

1224 25.6 2.5 6.0 0.03 1.7 7.8 Clay 10.1 Cropland

633 32.8 2.5 39.9 BD 0.4 7.7 Clay 13.0 Forest

693 24.3 1.6 BD 0.02 0.7 4.6 Loam 15.2 Forest

807 26.1 1.5 BD BD 1.2 5.4 Silt Clay Loam 17.8 Forest

810 42.6 3.0 41.2 0.01 1.2 7.7 Silt Clay 14.3 Forest

857 85.4 6.0 239.0 0.02 0.7 8.0 Silt Clay Loam 14.3 Forest

910 99.5 6.4 47.2 0.02 1.2 7.4 Clay 15.5 Forest

1004 56.8 4.2 130.0 BD 1.4 7.8 Clay 13.6 Forest

1053 42.8 2.8 BD 0.02 2.4 5.0 Loam 15.1 Forest

907 25.0 2.4 BD 0.03 0.9 5.9 Loam 10.3 Grassland

963 23.7 2.3 BD 0.02 2.5 5.6 Loam 10.4 Grassland

965 42.8 4.5 BD 0.02 2.0 6.8 Silt Clay 9.4 Grassland

1095 29.2 2.9 1.3 0.02 1.8 6.9 Clay 10.0 Grassland

1099 21.8 2.1 106 0.04 2.0 8.1 Clay 10.2 Grassland

1146 9.9 0.9 BD 0.04 1.0 6.1 Silt Loam 10.6 Grassland

1182 17.1 1.9 BD 0.04 3.7 5.5 Sandy Loam 8.9 Grassland

1305 18.3 1.8 BD 0.02 3.5 6.5 Loam 10.3 Grassland

Texture was determined according to the USDA referential. Corg: organic carbon content; N: total nitrogen content; P: available phosphorous; K: total potassium content.
*, **, ***: significant differences between Land Use type for edaphic parameters: P,0.05; P,0.01; P,0.001; respectively (Kruskal-Wallis non parametric test). BD: below
the detection threshold.
doi:10.1371/journal.pone.0024166.t002
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taxa are equally and almost completely covered. In addition, this

primer set is suitable for studying the determinism of soil fungal

abundance. The analysis of 24 soil samples showed that the main

determinants of soil fungal abundance, in this study, were soil type

and land use. All these observations demonstrate that our tool is

valid and operational for studying fungal abundance determinism

in soil. However, to fully identify such determinism, it now needs

to be applied to a large-scale soil sampling scheme, e.g. the

European soil survey (particularly in France, UK, Holland and

Germany [2]).

Materials and Methods

Soil Sampling
Soil samples were provided by the Soil Genetic Resource

Center (platform GenoSol, http://www.dijon.inra.fr/plateforme_

genosol, [56]) and were obtained from the soil storage facility of

the RMQS (‘‘Réseau de Mesures de la Qualité des Sols’’ = French

Monitoring Network for Soil Quality), which is a soil sampling

network based on a 16616 km systematic grid covering the whole

of France [57]. The RMQS consists of 2,195 monitoring sites

which have been geo-positioned. Soil profile, site environment,

climatic factors, vegetation and land-use were described. Soil

samples were air dried under controlled conditions (30uC,

hygrometry) and then conserved at 240uC prior to DNA

extraction. Five of these soils, contrasting in terms of texture, C

and N content, pH and land-use were used to validate primer

specificity under real-time Q-PCR conditions (soil characteristics

reported in Table 1) and to test the reproducibility of the method.

Separately, 24 other independent soil samples were analyzed to

test the sensitivity and ecological potential of this tool by ranking

the influence of soil properties and land-use practices on soil fungal

abundance (physico-chemical characteristics provided in Table 2).

Several physico-chemical parameters were measured on each

soil i.e., particle-size distribution, pH water, organic carbon

content (Corg), N, C:N ratio, soluble P contents, CaCO3, CEC

and exchangeable cations (Ca, Mg). Physical and chemical

analyses were performed by the Soil Analysis Laboratory of INRA

(Arras, France) which is accredited for soil and sludge analysis and

Figure 5. Variations of 18S rRNA gene copy number with land use type for 24 soil samples. Each dot represents the average 18S rRNA
gene copy number for one soil sample. Cross and horizontal bars represent the mean and median 18S rRNA gene copy number for the land use type,
respectively. Superscript letters indicate significant differences in copy numbers between land use (P,0.05).
doi:10.1371/journal.pone.0024166.g005

Table 3. Pearson’s correlation coefficients of 18S copy
number and physico-chemical parameters.

Variable 18S (copies g21 of dry soil)

Fine Sand (g kg21) 20.41*

Corg (g kg21) 0.49*

C:N 0.54*

N (g kg21) 0.36

Clay (g kg21) 0.32

Fine Loam (g kg21) 0.29

pHwater 0.20

CaCO3 (g kg21) 0.10

Coarse Loam (g kg21) 0.02

P (g kg21) 20.22

K (%) 20.22

Coarse Sand (g kg21) 20.30

*: P,0.05.
doi:10.1371/journal.pone.0024166.t003
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recognized by the French Ministry of Agriculture. Land-use was

recorded according to the coarse level of the CORINE Land

Cover classification (IFEN, http://www.ifen.fr) and consisted, for

this study, of a rough descriptive classification into three classes:

forest, crop systems and grassland.

DNA Extraction and Purification from Soil Samples
For each soil sample, the equivalent of 1.5 g of dry soil was used

for DNA extraction, following the procedure described in Ranjard

et al. [58] and optimized by platform GenoSol (INRA, France,

[56]). Briefly, extraction buffer (100 mM Tris pH 8.0, 100 mM

EDTA pH 8.0, 100 mM NaCl and 2% (w/v) SDS) was added to

the sample in the proportion 3:1 (v/w), with two grams of glass

beads (106 mm diameter) and eight glass beads (2 mm diameter) in

a bead-beater tube. All beads were acid washed and sterilized.

The samples were homogenized for 30 s at 1600 rpm in a mini

bead-beater cell disruptor (Mikro-dismembrator, S. B. Braun

Biotech International), incubated for 30 min at 70uC in a water

bath and centrifuged for 5 min at 7000 g and room temperature.

The supernatant was collected, incubated on ice with 1/10 volume

of 3 M potassium acetate (pH 5.5) and centrifuged for 5 min at

14000 g. DNA was precipitated with one volume of ice-cold

isopropanol and centrifuged for 30 min at 13000 rpm. The DNA

pellet was washed with ice-cold 70% ethanol and dissolved in

100 ml of ultra pure water. The amount of crude DNA was

determined by electrophoretic migration on a 1% agarose gel. The

resulting DNA amount was reported to the amount of dry soil to

determine the concentration of DNA in ng g21 of dry soil.

For purification, aliquots (100 mL) of crude DNA extracts were

loaded onto PVPP (polyvinyl polypyrrolidone) minicolumns

(BIORAD, Marne la Coquette, France) and centrifuged for

4 min at 1000 g and 10uC. This step was repeated if the eluate was

opaque. The eluate was then collected and purified for residual

impurities using the Geneclean Turbo kit as recommended by the

manufacturer (Q BiogeneH, France).

Primer Set FR1 / FF390
The primer set FR1 (59-AICCATTCAATCGGTAIT-39) /

FF390 (59-CGATAACGAACGAGACCT-39) was developed by

Vainio and Hantula [29]. This primer set is located at the end of

the SSU 18S rRNA gene, near the ITS1 region, and has been

shown to be appropriate for DGGE analysis of wood-inhabiting

fungal communities. PCR amplification with this primer set

produces PCR fragments of ca. 390 bp, suitable for real-time

quantitative PCR, with only slight variations due to small length

polymorphism.

In Silico Analyses. Dedicated C and Python programs (R.

Christen, personal communication) were developed to analyze the

different primer sets (primer sets detailed in Data S1, Sheet

01_Primers_list’’). We used these programs to search large DNA

sequence databases (such as 1 million SSU rRNA sequences) for

the presence of primers, including degeneracies as coded by the

IUPAC rules and also additional mismatches in order to test the

primer improvement. The sequences investigated were Silva [59],

direct extraction of every SSU rRNA sequence from EMBL using

acnuc [60] and a dedicated reference database of 18S eukaryotic

sequences which have been thoroughly analyzed and annotated

(http://keydnatools.com, [61]).

First, a series of 18S sequences of fungi containing most of the

65 unique primers was retrieved from the Silva database. Primers

were aligned in order to precise their locations (column ‘‘position’’;

Data S1, Sheet ‘‘02_Primer_selection’’). Next, analyses using the

databases described above allowed the evaluation of each primer

individually for their yield for fungi with 0, 1, 2 and 3 mismatches

and to select a subset of ‘‘good’’ primers. The selection criterion

was the ratio between the number of sequences matched at k = 2

and k = 0. This ratio measures whether the primer detected

significantly more fungal sequences with two mismatches than

with no mismatch. A well designed primer was therefore a primer

that has a small ratio k2/k0 (threshold set at 1.2), because it cannot

be improved using more degeneracies. Primers with large ratio

k2/k0 were discarded from the following analyses. A good primer

is a primer that binds with a high percentage to every fungal clade

but to a much lower extend to non fungal clades.

Second, the selected primers were combined into 33 primer sets.

The relevant primer set was selected according to the length of the

amplicon produced, its specificity and coverage for Fungi. A subset

was derived from theses 33 primer sets according to the length of

the amplicon produced that should be short [14] to enhance the

accuracy and the reproducibility of the method (Data S1, Sheet

‘‘03_Selected_sets’’). The threshold was determined by the length

of the amplicon produced by the primer set nu-SSU-0817/nu-

SSU-1196, a primer set previously used in combination with real-

time Q-PCR: 384 bp. This resulted in the selection of a subset of

23 primer sets that were tested for their specificity and coverage for

Fungi with exact match (Data S1, Sheet ‘‘04.1_Sets_evaluation’’).

This was performed on the Silva Reference sequence database

(release 102) to check if the primer sets would not match bacterial

or archaeal groups (495,824 Reference Sequences for the SSU

genes) because these are well checked, unlike Eukaryotic

sequences. Our own well-annotated database of 21,080 eukaryotic

SSU rRNA gene sequences was used to check that no fungal group

would be missed and also to see if other eukaryotic phyla could be

detected by the different primer sets. Note that some sequences

which were very short were not used. The yield for each primer set

was retrieved and primers were compared to a theoretical optimal

primer set (matching only fungal sequences and every fungal

sequence) to determine which primer sets would be the more

specific and would have the best coverage of Fungi. This was done

through an ascendant hierarchical classification on the pearson’s

correlation coefficient similarity matrix based on centred and

scaled data (raw data provided in Data S1, Sheet ‘‘04.2_Sets_

evaluation_HAC’’). The best primer sets that clustered with the

theoretical optimal primer set were: nu-SSU-0817/nu-SSU-1196;

FF390/FR1 ; nssu897R/nu-SSU-1196 and nssu1088R/SR2.

Among these four primer sets, the specificity for Fungi was

checked in details to determine which one is best for the real-time

Q-PCR approach. Different numbers of mismatches (0, 1, 2, 3)

were allowed in the analysis to see if the primer set sequences to be

used in real-time Q-PCR could be improved : a primer set can be

improved if inserting mismatches significantly increases the hit

frequency in the targeted phylum without increasing the hit

frequency of non-targeted phyla.

Real-Time Q-PCR Conditions. For each soil DNA extract,

the real-time Q-PCR products were amplified on an ABI PRISM

7900HT (Applied Biosystems, France) using SYBRGreenH as

detection system in a reaction mixture of 20 ml containing

1.25 mM of each primer, 500 ng of T4 gene 32 protein

(Appligen, France), 10 ml of SYBR Green PCR master mix,

including HotStar TaqTM DNA polymerase, QuantiTec SYBR

Green PCR Buffer, dNTP mix with dUTP, SYBR Green I, ROX

and 5 mM MgCl2 (QuantiTec, SYBR Green PCR Kit,

QIAGEN, France), 2 ml of template DNA, and DNAse –

RNAse-free water to complete the final 20 ml volume.

The real-time Q-PCR conditions consisted of an initial step of

600 s at 95uC for enzyme activation, a second step corresponding

to the PCR cycle (40 cycles) with 15 s at 95uC, 30 s at 50uC for

hybridization, and an elongation step of 60 s at 70uC. Data were
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acquired at the end of this elongation step. A final step was added

to obtain a specific denaturation curve from 70uC to 95uC with

increments of 0.2uC s21. Purity of the amplified products was

checked by observation of a single melting peak and the presence

of a single band of the expected length on 2% agarose gel stained

with ethidium bromide. Real-time Q-PCR products obtained

from DNA from a pure culture of Fusarium oxysporum 47 (INRA

Dijon fungal collection) were cloned in a plasmid (pGEM-T Easy

Vector System, Promega, France) and used as standard for the

real-time Q-PCR assay after quantification with a Biophotometer

Plus (Eppendorf, Germany). As purified soil DNA extracts may

still contain PCR inhibitors, serial dilutions of the DNA templates

(obtained from the 5 soils used to validate FR1 / FF390 primer set

specificity) were used to determine the amount of DNA to be used

in the real-time Q-PCR assay. The quantities of purified DNA

used per well were 10 ng, 5 ng, 2.5 ng, 1 ng, and 0.5 ng.

Clone Library Construction and Sequencing. The PCR

products obtained from the five soils used to set up the real-time

Q-PCR conditions (template quantity: 2.5 ng) were cloned into

the pGEM-T Easy Vector System (Promega, France) according to

the manufacturer’s instructions. Eighty-nine clones, distributed

across the 5 soil samples (number of clones per sample: 7 to 38),

were isolated. The DNA of each clone was extracted by ‘‘heat/

cold’’ shocks. The plasmid inserts from each clone were amplified

using Sp6 and T7 primers. The amplicons were run in 1.5% w/v

agarose gel to determine the length of the insert. The inserts were

sequenced using the SP6 primer (Cogenics, Meylan, France) and

the resulting sequences were deposited in GenBank under the

accession numbers referenced in Table S2.

Sequence Identification. Clone sequences were cleaned of

plasmid sequence fragments (VecScreen, GENBANK) and

affiliated using NCBI-Blast [62].

The distribution of clones sequences in different fungal groups

was evaluated by aligning the sequences against reference

sequences (Table S3) using seaview [63] and the maximum

parsimony tree was computed using Phylowin [63] and visualized

with the Dendroscope program [64].

Statistical Analysis
The number of 18S rRNA copies ng21 of DNA derived the

real-time Q-PCR measurements were converted to a number of

18S rRNA copies g21 of dry soil to allow the comparison between

soil samples. A Kruskal-Wallis test was applied to check for

significant differences in 18S rRNA gene copy number between

the soils. Land-use types were compared with each other by

multiple pair comparison. Correlations between soil physico-

chemical characteristics and fungal 18S rRNA gene copy number

were investigated by applying Pearson’s correlation coefficient to

the raw data. The significance level was set at the 5% probability

level.

Supporting Information

Figure S1 Amplicon length distribution for the 33
primer sets tested in the in silico analysis. Red dashed

line represents the amplicon length threshold set by the primer set

nu-SSU-0817/nu-SSU-1196. A primer set was selected for the

next steps if the in silico analysis if its amplicon length was below

the threshold limit.

(TIF)

Figure S2 Hierarchical ascendant classification of the
primer sets. Dotted line: significance threshold at the 5%

probability level. Clusters above the threshold limit are significant.

(TIF)

Figure S3 Distribution of clones obtained by the
cloning-sequencing approach in the different fungal
phyla without introducing reference sequences. Numbers

on dendrogram branches are bootstrap values. Colors correspond

to the phyla to which clones were affiliated as documented in

Table S2.

(TIF)

Table S1 Detailed hit frequencies (%) of the in silico
analysis of FR1/FF390 and nu-SSU-0817/nu-SSU-1196
primer sets for Bacteria, Archaea, Eukaryota, eukary-
otic phyla and fungal phyla. The analysis allowed k

mismatches, k ranging from 0 (original primer set sequences) to

3 (test of primer set sequences improvement).

(DOC)

Table S2 Clone sequences affiliation, sequence length
and accession numbers in GENBANK database. na: not

available.

(DOC)

Table S3 Affiliation and accession numbers of reference
sequences from GENBANK database.

(DOC)

Table S4 Glomeromycota amplification on pure culture
DNA extracts by real time Q-PCR in combination with
FR1/FF390 primer set. NAN: Not A Number. The concen-

tration of DNA extracts from pure cultures of Glomus sp. was not

determined because very small volumes were available. This

precluded having accurate estimates of the number of 18S rRNA

gene copies in Glomus sp. extracts in this test. Nevertheless, the aim

of this test was only to check if Glomus sp. DNA was amplified by

the primer set FR1/FF390 in real-time Q-PCR conditions, which

was the case. BD: lower than detection threshold.

(DOC)

Table S5 Glomeromycota amplification on Medicago
truncatula rhizosphere DNA extracts by real time Q-
PCR in combination with FR1/FF390 primer set.

(DOC)

Table S6 Real-Time Q-PCR amplification results for
the 5 soil samples used to test the specificity for fungi of
FR1/FF390 primer set and to set up the template
quantity in the real-time Q-PCR assay. NAN: Not A

Number.

(DOC)

Table S7 Real-Time Q-PCR amplification results for
the 24 soil samples used for the ecological validation of
real-time Q PCR in combination with FR1/FF390
primer set. NAN: Not A Number.

(DOC)

Data S1 In silico analysis of literature primers and
primer set selection. Sheet 01_Primers_List. List of the
primers tested in the in silico analysis. Sheet 02_Pri-
mer_selection. Individual evaluation of each primer and
primer selection results. Each primer was evaluated individ-

ually for its yield for fungi with 0, 1, 2 and 3 mismatches. A subset

of ‘‘good’’ primers was selected according to the ratio between the

number of sequences matched at k = 2 and k = 0 which measured

whether the primer detected significantly more fungal sequences

with two mismatches than with no mismatch. A well designed

primer was therefore a primer that has a small ratio k2/k0

(threshold set at 1.2), because it cannot be improved using more

degeneracies. Primers with large ratio k2/k0 were discarded from
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the following analyses. A good primer is a primer that binds with a

high percentage to every fungal clade but to a much lower extend

to non fungal clades. Sheet 03_Selected sets. Primer sets
evaluation for the length of the amplicon produced by
PCR. A subset of primer sets was selected according to the length

of the amplicon produced. The selection criterion was a short

amplicon, shorter than the threshold limit determined by the

length of the amplicon produced by primer set nu-SSU-0817–nu-

SSU-1196. Sheet 04.1_Sets_evaluation. Fungal specificity
and coverage evaluation of each primer set with exact
match. Data presented are the hit frequency (%) of each primer

set for each phyla. Sheet 04.2_Sets_evaluation_HAC. Raw
data for hierarchical ascendant classification analysis of
the primer sets. Data presented are a number of
matched sequences. The first raw indicates the names
of the different phyla matched by the primer sets.
Number into brackets represent the total number of sequences per

phyla. The results of the hierarchical ascendant classification

analysis are presented in Figure S2.

(XLS)
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a b s t r a c t

Soil microbial communities play an important role in soil carbon functioning, particularly in forest ecosys-
tems. Their variation in response to climate change may affect soil carbon processes, highlighting the
importance of understanding how environmental factors affect microbial communities. This study aimed
to determine to what extent an increase in the quantity of fresh litter may affect heterotrophic miner-
alization of organic carbon and bacterial community structure in soil and litter. A litter manipulation
experiment was performed in situ in a temperate deciduous forest. Three treatments of fresh litter inputs
were considered: litter exclusion, natural conditions (control) and litter addition (twice the natural rate).
Microbial and functional ecological approaches were combined to consider bacterial community struc-
ture in soil and litter using a molecular fingerprinting technique, and measurement of soil respiration
both in terms of efflux intensity and isotopic composition of respired CO2 (natural abundance) over one
year.

The quantity of fresh litter seemed to affect soil and litter bacterial community structure and to interact
with soil temperature and moisture to determine the temporal variation in the bacterial community on
a month to season scale. In addition, this study highlighted the large temporal variability in soil and
litter bacterial community structure and that this variability may affect our ability to relate bacterial
community structure to respiration processes. This highlights the need for an intensive characterisation
of the bacterial community structure to relate its variations to variations in soil respiration processes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Terrestrial ecosystems play a crucial role in the global carbon
cycle (Schlesinger and Andrews, 2000). In forest ecosystems, soil is
of key importance in determining the carbon sink or source status of
the ecosystem, because it is the largest stock of old carbon: ca. 70%
of the carbon stock (Schlesinger and Andrews, 2000); and a large
CO2 source: 40–70% of the total ecosystem respiration (Janssens
et al., 2001; Chambers et al., 2004). But in the context of climate
change, soil carbon cycling is likely to be modified. According to the
different scenarii, ecosystem productivity is predicted to increase
with atmospheric CO2 concentration (Norby et al., 2004; Handa
et al., 2006; IPCC, 2007), leading to an increase in leaf biomass,
leaf carbon:nitrogen ratio, and thus carbon allocation to soils (King

∗ Corresponding author at: INRA-Université de Bourgogne, UMR Microbiologie
du Sol et de l’Environnement, CMSE, 17, Rue Sully, B.V. 86510, 21065 Dijon Cedex,
France. Tel.: +33 3 80 69 36 44; fax: +33 3 80 69 32 24.

E-mail address: nicolas.chemidlin@dijon.inra.fr (N. Chemidlin Prevost-Boure).

et al., 2004; Liu et al., 2005). In forests, this may strongly influence
soil respiration by accelerating newly allocated carbon turnover
(Lichter et al., 2005; Hoosbeek et al., 2007), in parallel to potential
priming effects in soil (Sulzman et al., 2005; Fontaine et al., 2007;
Nottingham et al., 2009) through variations in microbial commu-
nity composition (Fontaine et al., 2003; Nottingham et al., 2009).

Microbial community composition plays a crucial role in deter-
mining the diversity of carbon mineralization processes and their
stability in response to stress (Ramsey et al., 2005; Schimel et al.,
2007; Nottingham et al., 2009). Indeed, in situ studies (trans-
plantation experiments or environmental experiments; Reed and
Martiny, 2007) showed that variations in soil microbial community
were related to variations in the rates of different soil processes
involved in carbon and nitrogen cycling (Waldrop et al., 2000;
Balser and Firestone, 2005; Reed and Martiny, 2007). The func-
tional significance of microbial community composition needs to be
documented in the context of climate change, with particular ref-
erence to how variations in environmental factors determined by
climate change affect soil microbial community structure and, con-
sequently, soil functioning. This would help to better understand

0929-1393/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.apsoil.2010.11.006
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soil process modification and variability in response to variations
in environmental factors and to facilitate the modelling of these
processes (Davidson and Janssens, 2006), which is crucial in the
context of climate change (Reed and Martiny, 2007).

Numerous studies have identified environmental factors affect-
ing soil microbial community composition, at different spatial
scales: from the ecosystem level to a 1 m range (Myers et al., 2001;
Wilkinson and Anderson, 2001; Fierer et al., 2003; Lejon et al., 2005;
Dequiedt et al., 2009); and different temporal scales: seasonal to
monthly (Myers et al., 2001; Rogers and Tate, 2001; Fierer et al.,
2003; Medeiros et al., 2006). These variations were mainly related
to dominant plant species (Myers et al., 2001; Lejon et al., 2005), soil
characteristics such as pH and texture (Fierer and Jackson, 2006),
organic matter amount and quality (Bardgett et al., 1997; Lejon
et al., 2007), and climatic factors such as the frequency of rainfall
events (Fierer et al., 2003; Drenovsky et al., 2010). These factors
have also been shown to induce variations in soil processes that
were linked to modifications in the composition of the soil micro-
bial community. Following soil transplantation, strong variation in
soil temperature and moisture were found to affect carbon and
nitrogen cycling by modifying the soil microbial community (Balser
and Firestone, 2005; Waldrop and Firestone, 2006), and changes in
land use affected carbon cycling (Waldrop et al., 2000). But climate
change is also predicted to increase the primary productivity of ter-
restrial ecosystems, increasing carbon allocation to soil (De Lucia
et al., 1999; King et al., 2004; Liu et al., 2005; Crow et al., 2009).
To explore the consequences of increasing carbon allocation to soil
in the context of climate change, many studies took advantage of
free air CO2 enrichment (FACE) experiments (Phillips et al., 2002;
Carney et al., 2007; Allison et al., 2007, 2008; Lipson et al., 2006) and
highlighted significant modifications in the soil microbial commu-
nity and soil processes. However, in these experiments, variations
in carbon allocation to soil were mainly determined by litter fall and
root biomass/exudation and the relative impact of these two carbon
sources remains to be discussed. Litter-manipulation experiments
mimic the increase in litter fall observed during FACE experiments,
and therefore may offer a complementary strategy to study the
impact of varying carbon allocation to soil on the microbial com-
munity, and its consequences for soil carbon functioning. Using this
method, Rinnan et al. (2008) showed that soil microbial commu-
nity composition of a subarctic heath soil was modified after fresh
litter addition.

In this study, we performed in situ a litter-manipulation experi-
ment in a temperate deciduous forest to determine to what extent
an increase in fresh litter amount affects total soil respiration,
heterotrophic mineralization of organic carbon and the bacterial
community in soil and litter. Manipulation consisted of the real-
location of fresh litter to experimental plots according to three
treatments: litter exclusion (E); control (C), i.e. natural fresh lit-
ter amount; and litter addition, i.e. at twice the natural amount
(A). CO2 efflux intensity was used as a measure of C mineralization
activity in total soil and of microbial activity in bulk soil (with-
out roots) and litter through in situ measurements and laboratory
incubations (bulk soil and litter), respectively. Fresh litter reallo-
cated to the plots was naturally significantly 13C depleted compared
with soil (−1.8‰, Chemidlin Prévost-Bouré et al., 2010). Therefore,
the isotopic composition (ı13C) of respired CO2 was used to assess
potential modifications in respiration substrates following litter
allocation. The results relative to these measurements are detailed
in a related paper (Chemidlin Prévost-Bouré et al., 2010). Briefly,
total soil respiration (FS) showed a significant increase with the
quantity of fresh litter. The variation in FS in the A treatment was
related to “priming effect” processes in soil accounting for 32% of FS
on average (Chemidlin Prévost-Bouré et al., 2010). Added to that,
despite the absence of variation in ı13C of respired CO2 from soil or
litter following litter-manipulation, it experienced significant tem-

poral variation during the experiment. In view of these significant
effects, it was considered useful to evaluate changes in soil and lit-
ter bacterial community structure in response to variation in leaf
litter quantity, and to investigate the potential linkage of bacterial
community structure variations with changes in respiration. Study-
ing this link is “a substantial scientific challenge” according to Fitter
et al. (2005) that may be achieved by coupling microbial ecology
and functional ecology approaches.

In the present paper, the objective was to determine if these
modifications of leaf litter amount affected bacterial community
structure in soil or litter, and if these potential variations could
be related to variation in soil respiration. To answer these ques-
tions, analyses of bacterial community structure in soil and litter
were performed concomitantly with in situ and laboratory mea-
surements of CO2 efflux intensity and carbon isotopic composition.
Measurements of bacterial community structure were performed
using an automated DNA fingerprinting method (ARISA, Ranjard
et al., 2001) directly applied on DNA extracted from soil and decom-
posing leaf litter. Then, measurements of bacterial community
structure were related to CO2 efflux intensity and isotopic compo-
sition in a co-inertia analysis to explore the link between bacterial
community structure and soil functioning.

2. Methods

2.1. Site description

The experiment was performed in the Barbeau national forest
(CARBOEUROPE IP network site – cluster FR1, site FR-Fon; 48◦29′N,
02◦47′E; 60 km South-East of Paris, France; 90 m elevation). This is a
managed mature oak forest (Quercus petraea L., 100–150 years old)
with a dense understorey of coppiced hornbeam (Carpinus betulus
L.). The climate is modified temperate maritime. The soil is a gleyic
luvisol (FAO-ISRIC-ISSS 1998) of 0.8 m depth on millstone bedrock
and the humus is an oligomull. Soil pH measured in water ranges
from 4.5 to 5.4 and soil carbon content ranges from 0.2% to 14% of
soil dry mass (decreasing with depth).

2.2. Experimental design

A 17.6 m2 experimental area representative of the stand was
chosen. From mid-October to the end of December 2005, fresh lit-
ter was collected from the experimental area with a net (0.5 mm
mesh) installed 50 cm above the soil surface. Lateral litter inputs
were prevented by completely surrounding the experimental area
with another net directly attached to the posts supporting the col-
lection net (0.5 mm mesh, 50 cm height). The collected fresh litter
was air dried at ambient temperature and species composition was
determined. It comprised oak (70% of total dry mass) and hornbeam
(30% of total dry mass).

The experimental area was divided into 12 plots (each
1.2 m × 1.2 m) delimited by a PVC fence of 20 cm height. The plots
were distributed following a randomised-complete-blocks design
arranged into four blocks, each composed of three plots with one
treatment each. Once before starting the experiment, the homo-
geneity of soil conditions among plots was checked for multiple
parameters. The results are described in Chemidlin Prévost-Bouré
et al. (2010).

In each block, three treatments were applied: fresh litter exclu-
sion (E), control (C, 486 g m−2 litter dry mass) and fresh litter
addition (A, 972 g m−2 litter dry mass). Litter was applied in the
ratio of 70% oak to 30% hornbeam. Fresh litter collected during fall
2005 was deposited on 24 March 2006. During litter fall of autumn
2006, new litter inputs were avoided by placing the collecting nets
upon and around the experimental area.
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Monthly measurements of soil water content (0–10 cm depth,
annual mean: 15.4% in the E treatment and in the control, and 15.3%
in the A treatment) and temperature (10 cm depth, annual mean:
11.4 ◦C in every treatment, measurements performed between
9 am and 4 pm) showed that the soil temperature and water content
were not affected by leaf litter quantity (Chemidlin Prévost-Bouré
et al., 2010), although monthly measurement might not have
captured the entire dynamics of soil temperature and moisture.
However, litter bag studies also demonstrated that leaf litter degra-
dation was not affected by the quantity of fresh litter (degradation
coefficients: 2.01 × 10−3 and 1.93 × 10−3, in the C and A treatments,
respectively, Chemidlin Prévost-Bouré et al., 2010).

2.3. Soil and litter sample collection

Soil and litter samples were collected monthly during one year
from all the treatment plots.

Three soil cores (0–10 cm depth, 1.2 cm diameter) were ran-
domly taken from each plot, combined and sieved at 2 mm in the
field to give a sample of ca. 50 g equivalent dry mass of soil. As
the homogeneity between plots had been verified for pedological
characteristics and soil respiration (Chemidlin Prévost-Bouré et al.,
2010), a composite soil sample was obtained for each treatment
by mixing subamples from the four plots for a treatment in equal
proportions.

Each month and for each plot, three litter samples were taken
at random and combined. After lyophilisation (Christ alpha 2–4,
Bioblock Scientific, Germany) and grinding in liquid N2, a com-
posite litter sample was obtained for each treatment by mixing
subsamples from the four plots in equal proportions.

Finally, every composite sample was divided into three sub-
samples that were analyzed independently. The compositing
approach was chosen according to Leckie et al. (2004) who
demonstrated that composite sampling was a suitable method
to characterize the genetic structure of microbial communities,
limiting between-plot variability that can hamper the analyses
of the DNA fingerprint. This approach was necessary to reduce
intra-treatment variability and to increase the representativity of
microbial community profiling (Schwarzenbach et al., 2007).

2.4. Bacterial community structure analysis

2.4.1. Extraction and purification of total DNA from soil and litter
samples

For each sampling date and treatment, three subsamples
weighting 1.3 g each were taken from the composite soil sample,
and three subsamples weighting 0.5 g each were taken from the
composite litter sample. All subsamples were analyzed indepen-
dently.

Then, DNA extraction was performed following the procedure
described in Ranjard et al. (2003) for both soil and litter samples,
using a sample: extraction buffer ratio of 4:1 (v/w). DNA concen-
tration ([DNA]) of crude extracts was determined as described in
Ranjard et al. (2003) using a calf thymus standard curve. Crude
DNA concentration ([DNA]) was used as an estimate of microbial
biomass in soil and litter. Indeed, several studies have demon-
strated a highly positive linear relationship between DNA recovery
and C-biomass measurement (Chloroform Fumigation Extraction
method), indicative of the size of the microbial biomass, in agri-
cultural (Marstorp et al., 2000; Widmer et al., 2006; Bouzaiane
et al., 2007) and forest soils (Bundt et al., 2001; Blagodatskaya et al.,
2003), and to a lesser extent in organic layers of humus (Leckie et al.,
2004).

Purification of crude DNA extracts was also performed as
described in Ranjard et al. (2003) using PVPP (polyvinyl polypyrroli-
done) minicolumns (BIORAD, Marne la Coquette, France) and

Geneclean Turbo kit (Q Biogene®, France) following the recommen-
dations of the manufacturer.

2.4.2. Automated RISA fingerprinting
The Bacterial Automated Ribosomal Intergenic Spacer Analysis

(B-ARISA) technique is a molecular fingerprinting method (Ranjard
et al., 2000) that takes advantage of the length polymorphism
of bacterial ribosomal InterGenic Spacer (IGS) and of the relative
abundance of the different IGS sizes to characterize the genetic
structure of soil bacterial communities.

The bacterial ribosomal IGS was amplified using the PCR pro-
tocol described in Ranjard et al. (2000). 25 ng of DNA was used as
the template for PCR volumes of 25 �l. PCR products were puri-
fied using the MinElute Kit (QIAGEN, Courtaboeuf, France) and
quantified using a calf thymus DNA standard curve. 2 �L of the
product was added to deionized formamide and denatured at
90 ◦C for 2 min. B-ARISA fragments were resolved on 3.7% poly-
acrylamide gels under denaturing conditions as described in Lejon
et al. (2005) on a LiCor® DNA sequencer (ScienceTec). The data
were analyzed using the 1D-Scan software (ScienceTec), converting
fluorescence data into electrophoregrams, where peaks repre-
sented PCR fragments. The height of the peaks was calculated in
conjunction with the median filter option and the Gaussian inte-
gration in 1D-Scan, and represented the relative proportion of the
fragments in the total products. Lengths (in base pairs) were cal-
culated by using a size standard with bands ranging from 200 to
1659 bp.

2.5. Statistical analysis

Since the three subsamples derived from each treatment were
analyzed independently for both microbial biomass and bac-
terial community structure, they were treated as independent
replicates (see Section 2.3). In addition, the availability of data
from 11 independent samplings ensured a robust data set for
analysis.

The effect of the treatments on microbial biomass estimated by
means of [DNA] was tested through non-parametric paired tests
(Friedman repeated measures one-way analysis of variance on
ranks, cited as RMANOVA; and the Kruskal–Wallis test). The signifi-
cance level was set at 5% and the test was performed with Statistica
software (Statsoft Inc, Tulsa, USA).

Data obtained from the 1D-Scan software were converted into a
table summarizing the band presence (peak) and intensity (Gaus-
sian area of peak) using the PrepRISA program (Ranjard et al., 2001):
each row corresponded to a sample and each column corresponded
to a band detected at least in one sample. 100 bands were integrated
for each B-ARISA profile with a 2 bp resolution to ensure a robust
analysis (Ranjard et al., 2003). The data were then analyzed through
a principal component analysis (PCA) performed on the covariance
matrix of the samples. Convex hulls were drawn over replicates of
a treatment and the discrimination of the samples according to the
treatment or the sampling period was tested through a Monte Carlo
permutation test.

Euclidean distances derived from sample profiles were used as
a measure of the magnitude of bacterial genetic structure mod-
ification between two treatments and calculated as described in
Ranjard et al. (2008). The significance of this modification was
tested using a Monte Carlo permutation test with at least 1000
permutations.

Soil functional factors (CO2 efflux intensity and ı13C
averages ± one standard error data), resulting from in situ mea-
surements (total soil respiration) and laboratory measurements
(bulk soil and litter incubations), were organized in a data matrix
which was subjected to a principal component analysis (PCA) of
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Fig. 1. Temporal variation in soil microbial biomass estimated by means of crude DNA concentration ([DNA], expressed in �g gdry mass−1) in litter and soil in each treatment:
E (litter exclusion, white bars), C (control, grey bars) and A (litter addition, black bars). Error bars represent standard error of the mean.

the correlation matrix. A co-inertia analysis (Dray et al., 2003) was
used to study the relationships between the genetic structure of
the bacterial communities and the set of functional factors. Co-
inertia is a symmetric multivariate method used for coupling two
or more data sets. It is based on the co-inertia criterion (also used
in canonical correspondence analyses) and aims at maximizing the
concordance (co-structure) between the data sets. A randomisation
test of 1000 permutations was carried out to check the significance
of the co-structure between the data sets (Monte Carlo test). When
the co-structure between B-ARISA and soil functioning factors was
significant, the corresponding correlation circle of the factors was
drawn and superimposed on the B-ARISA factorial map to highlight
the relationship between the CO2 efflux intensity or ı13C averages
and the microbial community structure among the samples.

All statistical analysis on molecular fingerprints was performed
using the ADE-4 software (Thioulouse et al., 1997).

3. Results

3.1. Dynamics of soil microbial biomass

Fig. 1a and b presents the temporal variations in [DNA] in lit-
ter and soil, respectively. The RMANOVA test showed that [DNA]
was not affected by the quantity of fresh litter either in litter
(P > 0.6), or in soil (P > 0.1). In both soil and litter, the seasonal
trend for [DNA] was similar in each treatment, with significant
variation over the course of the experiment (P < 0.01). Tempo-
ral variation in [DNA] in soil and litter were different from one
another in both the C and A treatments. In soil, [DNA] increased
from June to August, then decreased until early November and
increased again at the end of the experiment. By contrast, in lit-
ter, [DNA] increased from September to the end of December and
then decreased.
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3.2. Dynamics of soil and litter bacterial community structure

Complex B-ARISA profiles were obtained in soil and lit-
ter and visual comparisons of profiles highlighted differences
between soils sampled at different periods (Supplemental
Fig. S1).

The results of Principal Component Analysis (PCA) of soil B-
ARISA profiles obtained for each date in each treatment are
presented in Fig. 2. PCA analysis of the soil bacterial community
structure confirmed visual observations; with the different sam-
pling periods distinctly discriminated along the first principal axis
(PC1), that accounted for at least 29% of total variability, and much
less so along PC2, that accounted for at least 14.0% of total variabil-
ity. A permutation test confirmed that time was an important factor
in discriminating soil bacterial community structure (BCS) both on
PC1 and PC2. In the C and A treatments, conversely to the E treat-
ment, July 2006 samples were clearly discriminated from the others
along PC2. In addition, the Monte Carlo test distinguished between
a warm period (from May 2006 to October 2006, Tsoil > 10 ◦C) and
a cold period (from November 2006 to March 2007, Tsoil < 10 ◦C)
in the E and C treatments. These two periods were not distinct in
the A treatment. Temperature and moisture seemed to be impor-
tant factors in determining the variations in bacterial community
structure, particularly on PC2 in the control and A treatments, and
on PC1 in the E treatment.

PCA analysis of litter B-ARISA profiles (Fig. 3) showed that the
sampling dates were well distributed along PC2 which accounted
for 24.6% and 16.4% of total variability in the C and A treatments,
respectively. In both cases the convex hulls did not overlap, indi-
cating temporal variation in litter bacterial community structure
at a monthly time scale. Such PCA discrimination allowed the dis-
tinction of a cold and a warm period, along PC2. The period of soil
drought (July 2006) was not discriminated from the other sampling
dates in the analysis.

3.3. Effect of treatment on the structure of the bacterial
community

Euclidean distances derived from the sample profiles were used
as an estimate of the magnitude of genetic structure modification
in the E and A treatments relative to the control; and between the
E and A treatments. This method was applied to both soil and litter
data.

Differences were observed in soil bacterial communities
between E treatment and treatments C and A in May, June, and
August 2006, and in February and March 2007 (Fig. 4a). The E treat-
ment was also different from the A treatment in October 2006.
Litter quantity also affected soil BCS as differences were observed
between control and A treatment in May and October 2006, and
in February and March 2007. On the other hand, no differences
were observed between treatments in July and September 2006,
and from November 2006 to January 2007.

When considering litter bacterial communities in C and A treat-
ments per date, no effect of litter treatment on litter BCS was
observed until December 2006. Differences between treatments
were also observed in January and March 2007.

3.4. Relationships between the bacterial community structure
and soil functioning

As soil and litter bacterial community structure changed among
treatments and over time, the relationships between the bacterial
community structure data and the corresponding soil function-
ing data presented in Chemidlin Prévost-Bouré et al. (2010) were
investigated by co-inertia analysis. In bulk soil, the co-inertia anal-
ysis did not reveal any significant correlation between variation in

Fig. 2. Principal component analysis representation of the temporal variation in
soil bacterial community under litter exclusion (A), Control (B) and litter addition
(C) treatments. Samples were taken monthly without interruption from May 2006
until March 2007. Sampling periods when mean soil temperature at 10 cm depth was
higher than 10 ◦C are represented in white and those when mean soil temperature
was lower than 10 ◦C are represented in grey. July 2006, when the soil temperature
was at a maximum and the soil water content was below the theoretical wilting
point, is represented in black.
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Fig. 3. Principal component analysis representation of the temporal variation in lit-
ter bacterial community in control (B) and litter addition (C) treatments. Samples
were taken monthly without interruption from May 2006 until March 2007. Sam-
pling periods when mean soil temperature at 10 cm depth was higher than 10 ◦C are
represented in white and those when mean soil temperature was lower than 10 ◦C
are represented in grey. July 2006, when the soil temperature was at a maximum
and the soil water content was below the theoretical wilting point, is represented
in black.

the bacterial community structure and the soil functioning factors.
Contrastingly, in litter, the Monte Carlo test revealed a signifi-
cant co-structure between litter bacterial community structure and
functioning factors in the A treatment (D = 0.009). In this case, sam-
pling dates were distributed along PC1 (54%) and PC2 (25%) as
observed in Fig. 5 and the co-structure was observed between litter
bacterial community structure and litter CO2 efflux intensity (FL)
and carbon stable isotopes composition (ı13CFL ) measured in the
laboratory. By contrast, total soil CO2 efflux intensity (FS) and car-
bon stable isotopes composition (ı13CFS ) measured in situ did not
seem to be related to litter BCS. No co-structure was observed in
the control (D = 0.137).

4. Discussion

Soil microbial communities are a crucial component of carbon
cycling in forest ecosystems and their response to climate change
could affect soil carbon processes (Davidson and Janssens, 2006).
Therefore, it is important to better understand how environmental
factors affect microbial communities. In Chemidlin Prévost-Bouré
et al. (2010), we have demonstrated that increasing the quantity
of fresh litter significantly increased the intensity of total soil CO2
efflux (FS) which was 1.9 times higher in the A treatment than in
the Control. This increase in FS was related to a priming effect in

the A treatment (32% of total soil CO2 efflux measured in situ, esti-
mated according to the method presented in Crow et al. (2009), in
agreement with the definition provided by Bingeman et al. (1953)
and updated by Kuzyakov (2010). Intensity of priming effect has
previously been related to variations in microbial community com-
position through in vitro experiments (Bernard et al., 2007) and field
experiments (Carney et al., 2007), which may lead to variation in
respired substrates that could affect the isotopic composition of
CO2 efflux from total soil, bulk soil or leaf litter. These observations
highlight the need to evaluate variation in bacterial community
structure in soil and litter, and to relate these data to soil respira-
tion in order to better understand the link between soil biodiversity
and functioning.

4.1. Seasonal variation in soil and litter microbial biomass

In this study, neither soil nor litter microbial biomass were
affected by the quantity of fresh litter. This lack of variation may
be due to the method used to measure microbial biomass that tar-
gets the whole microbial biomass and not only its active part which
is commonly assumed to represent only a few percent of the total
microbial biomass (Nannipieri et al., 2003). Therefore, litter-related
variation in the ratio of active to total microbial biomass cannot
be excluded. In all treatments, soil and litter microbial biomass
exhibited seasonal variation, which is consistent with other stud-
ies performed in forest, grasslands, and agricultural plots (Wardle,
1998; Bardgett et al., 1999).

The high soil microbial biomass recorded in summer has
been frequently observed in forests or tree-dominated ecosystems
(Wardle, 1998; Jiang and Xu, 2006; Miller et al., 2009). However,
the high levels of soil microbial biomass recorded in winter after
a decline in autumn were surprising and may have resulted from
microbial growth in winter in response to favourable conditions
provided by the relatively high soil temperature (8.0 ◦C on aver-
age in winter 2007 compared to an annual mean of 11.4 ◦C), and
high soil water content (20.4% on average for an estimated field
capacity of 20.2%) increasing the accessibility to water soluble
C, and potential fresh carbon inputs via root death, fresh carbon
being a growth-limiting factor for soil microorganisms (Ekblad and
Nordgren, 2002).

In litter, the seasonal variation in microbial biomass was differ-
ent from that in soil. The maximum litter microbial biomass was
observed in late autumn and could have resulted from the coloni-
sation of litter by soil microorganisms.

4.2. Seasonal variation in soil and litter bacterial community
structure

Soil and litter bacterial community structures varied with sea-
son with differences between a warm and a cold period being
observed in all treatments except for soil in the A treatment, despite
climatic conditions being identical in all treatments (Chemidlin
Prévost-Bouré et al., 2010). Therefore, at the seasonal time scale,
variation in bacterial community structure in soil or litter might be
dependent on temperature (Bardgett et al., 1997; Myers et al., 2001;
Rogers and Tate, 2001; Petersen et al., 2002; Buckley and Schmidt,
2003). At a monthly time scale, the absence of substantial overlap
of samples in the PCA analysis suggests that the genetic structure
of soil bacterial communities may experience rapid change, which
may be partly determined by variation in soil moisture. Indeed,
the water stress observed in the superficial soil layer (July 2006)
was concomitant with a strong modification of soil bacterial com-
munity structure and many studies have highlighted the effect of
soil moisture and rainfall frequency on soil bacterial community
structure (Wilkinson et al., 2002; Fierer et al., 2003; Papatheodorou
et al., 2004; Williamson and Wardle, 2007). In contrast, in litter,
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Fig. 4. Comparison in Euclidean distances of (A) soil bacterial community structure between the different litter treatments: E vs. control (black bars, reference: control), E
vs. A (grey bars, reference: E), and control vs. A (white bars, reference: control), and (B) litter bacterial community structure in the control (reference) and the A treatment.

bacterial community structure was not affected by soil drought
stress. The difference in response between soil and litter bacte-
rial communities to water stress might be conceptually explained
by a pre-adaptation process (Tobor-Kaplon et al., 2005; Bressan
et al., 2008) in litter that is more frequently submitted to dry-
ing/rewetting cycles than soil, making litter microbial communities
more resilient than soil microbial communities in response to this
kind of perturbation.

The warm and cold periods in this study correspond respec-
tively to a period of active photosynthesis in trees and exudation
of labile carbon compounds (Ekblad and Hogberg, 2001), and to
a period of highly reduced tree activity. During these periods,
variation in tree physiology may induce changes in the quan-
tity and/or composition of root exudates which are determinant
for variation in soil bacterial community structure (Marschner
et al., 2002). In litter, the literature suggests that seasonal vari-
ation in litter bacterial community structure is mainly driven
by the changes in leaf litter biochemical composition dur-
ing litter decomposition (Aneja et al., 2006; Nicolardot et al.,
2007; Bastian et al., 2009). Primarily, easily degradable com-
pounds (residual sugars and starch) are decomposed rapidly
leading to an increase in the relative abundance of more com-
plex molecules (cellulose) and recalcitrant material (lignin) in
litter (Fernandez et al., 2003; Aneja et al., 2006), contributing
to the selection of particular groups of microorganisms able
to decompose recalcitrant materials. This trend may have been
strengthened in our study by the experimental exclusion of lit-

ter in autumn 2007, avoiding the input of new easily degradable
compounds in the experimental area at the beginning of the cold
period.

4.3. Influence of litter quantity on variation in bacterial
community structure in soil and litter

In litter, variation in the bacterial community structure was
observed only at the end of the experiment during the “cold” period.
As litter decomposition rates were the same, we may assume that
increasing the quantity of litter may have affected the litter bacte-
rial community by increasing the availability of ecological niches
(physical or trophic; Ranjard and Richaume, 2001). However, as
differences appeared only during the “cold” period, favourable tem-
peratures may have buffered the impact of leaf litter amount on
bacterial community structure during warmer periods.

In soil, nutrient availability might have differed between the
plots where litter was excluded and the plots with litter (natu-
ral amount or double amount) because of nutrient leaching from
the litter compartment to the soil (Gaillard et al., 1999; Park and
Matzner, 2003). This may have selectively affected different groups
of soil microorganisms between litter exclusion plots and plots with
litter. In both C and A treatments, the litter degradation rate was the
same and litter microbial biomass was not affected either, leading
to the assumption that the release of molecular compounds from
litter to soil was larger in the A than in the C treatment, stimu-
lating under-represented soil microorganisms in the A treatment
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Fig. 5. Co-inertia analysis of the relationships between the structure of the litter bac-
terial community and CO2 efflux intensity (Fs) and the carbon isotopic composition
(ı13CFS ) of litter in the A treatment. Sampling periods when mean soil temperature at
10 cm depth was higher than 10 ◦C are represented in white and those when mean
soil temperature was lower than 10 ◦C are represented in grey. July 2006, when
the soil temperature was at a maximum and the soil water content was below the
theoretical wilting point, is represented in black. Arrows represent the contribu-
tion of each functional variable (FS, Fl, ı13CFS and ı13CF1 ) to the discrimination of
the bacterial community structure of the different litter samples in the co-inertia
analysis.

(Marschner et al., 2002; Aneja et al., 2006; Williamson and Wardle,
2007). This hypothesis is in agreement with the long-lasting prim-
ing effect recorded in the A treatment (representing 32% of total
soil CO2 efflux intensity; Chemidlin Prévost-Bouré et al., 2010) and
with the conceptual model of Fontaine et al. (2003). Indeed, higher
nutrient leaching in the A treatment may have: (i) stimulated r-
strategist growth which may in turn stimulate K-strategist growth
according to mechanism 1 of Fontaine et al. (2003), or (ii) decreased
the competition between r- and K-strategist populations, allow-
ing K-strategist growth and the consumption of soil organic matter
according to mechanism 2 of Fontaine et al. (2003). However, this
does not preclude the intervention of roots in the priming effect
processes as suggested in Chemidlin Prévost-Bouré et al. (2010)
and proposed by Kuzyakov (2010). Further investigation is needed
to validate these hypotheses.

Additionally, the leaf litter amount may have modulated the
impact of climatic factors in determining the amplitude of soil
bacterial community structure variations, as soil bacterial commu-
nity structure seemed to be affected by temperature only in the E
treatment and in the Control at a seasonal time scale, and no differ-
ences in soil bacterial community structure were observed between
the treatments during the drought stress period. Such interaction
between litter amount and environmental factors has been recently
reported for a dwarf shrub/graminoid heath in Sweden (Rinnan
et al., 2008) and for a litter bag experiment (Aneja et al., 2006) and
may have important consequences for the response of soil bacterial
community structure to climate change.

4.4. Link between soil respiration and bacterial community
structure

The link between microbial community composition and soil
processes has been previously investigated through environmen-

tal studies and transplantation studies on carbon and/or nitrogen
cycles (Waldrop et al., 2000; Balser and Firestone, 2005; Carney and
Matson, 2005; Lipson et al., 2006; Reed and Martiny, 2007). In this
environmental study, we attempted to relate temporal variations
in bacterial community structure and CO2 efflux characteristics
(intensity, carbon stable isotope composition) in total soil, bulk
soil and litter through a co-inertia analysis. Total soil CO2 efflux
intensity and isotopic composition were measured in situ, while
bulk soil and litter CO2 efflux intensities and isotopic compositions
were determined by means of laboratory incubations (Chemidlin
Prévost-Bouré et al., 2010).

According to the co-inertia analysis, the structure of the litter
bacterial community seemed to be related to CO2 efflux charac-
teristics in the A treatment but not in the control. These different
trends between the control and the A treatment may be explained
by seasonal uncoupling of microbial community composition (Bell
et al., 2009). Indeed, in this study, litter bacterial community struc-
ture tended to evolve differently between the control and the A
treatment at the end of the experiment, highlighting potentially
different responses to temperature and moisture.

When seasonal variations in litter bacterial community struc-
ture seemed related to the CO2 efflux characteristics (A treatment),
the link was mainly observed for litter CO2 efflux intensity (FL)
and carbon stable isotope composition (ı13CFL ) and not for total
soil CO2 efflux intensity (FS) or carbon stable isotope composi-
tion (ı13CFS ). This difference may be explained by the relatively
small contribution of litter to total soil respiration in our system
(2–18%, Chemidlin Prévost-Bouré et al., 2010), statistically uncou-
pling litter bacterial community structure from total soil CO2 efflux
characteristics.

In contrast to litter, soil bacterial community structure seemed
to exhibit a weaker link with CO2 efflux characteristics whatever
the treatment was. According to Nicolardot et al. (2007), litter
is much more selective than soil. Therefore, it may be assumed
that functional redundancy is higher in soil than in litter, which
would limit our ability to relate bacterial genetic structure and
CO2 efflux characteristics in soil. This limitation may have been
enhanced by the relatively small proportion of active bacterial taxa
in soil (Rogers and Tate, 2001; Dilly, 2006; Bernard et al., 2007;
Blagodatskii et al., 2008).

In addition, other microorganisms may have played an impor-
tant role in respiration processes, particularly fungi. This may have
precluded linking soil bacterial community composition and CO2
efflux characteristics. The importance of fungi in soil functioning,
particularly in forests, has been recognized and well documented.
Nevertheless, this study underlines the importance of bacteria in
the degradation of organic matter in these soils.

5. Conclusion

This study provides evidence for the importance of litter amount
and its interactions with abiotic factors (temperature and/or mois-
ture) in determining the dynamics of soil and litter bacterial
community structure in forest ecosystems, interactions that may
influence the relationship between soil respiration processes and
bacterial community structure. However, this needs to be con-
firmed through further experiments taking advantages of litter
manipulation, soil transplant and labelling techniques to decipher
the respective importance of biotic and abiotic factors in determin-
ing the dynamics of bacterial community structure and its link to
soil functions.
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a b s t r a c t

In the context of climate change, the amount of carbon allocated to soil, particularly fresh litter,
is predicted to increase with terrestrial ecosystem productivity, and may alter soil carbon storage
capacities.

In this study we performed a 1-year litter-manipulation experiment to examine how soil CO2 efflux
was altered by the amount of fresh litter. Three treatments were applied: litter exclusion (E), control (C,
natural amount: 486 g m−2) and litter addition (A, twice the natural amount: 972 g m−2).

Litter decomposition rate was not affected by fresh litter amount. However, the addition or exclusion
of fresh litter quickly increased or decreased total soil CO2 efflux (FS) significantly, but the relative con-
tribution of fresh litter to total soil respiration remained unchanged between the C and A treatments,
as determined by laboratory measurements. Variation in FS among treatments was not related to mod-
ification of its temperature sensitivity which was not affected by fresh litter amount (Q10: 3.5 for E,
3.2 for C, 3.6 for A). While litter exclusion was the main cause of the FS decrease in the E treatment,
only 68% of FS was directly attributable to litter addition in the A treatment. The remaining 32% of FS

in the A treatment was related to a real priming effect that appeared to be a long-lasting phenomenon.
This priming effect lasting over 1 year may be related to a continuous release of organic compounds
from litter to soil because of the progressive decomposition of leaf litter. Q estimates and isotopic
10

data lead to the hypothesis that the priming effect corresponded to the activation of the whole soil
system.

As a consequence, the increase in ecosystem productivity may lead, via an increase in the amount of
litter, to an increase in carbon turnover in soil. Further labelling experiments involving high-frequency
carbon stable isotope measurements of CO2 efflux would help to clarify the relative importance of bulk

e pri
soil and rhizosphere in th

. Introduction

In the context of climate change, the importance of the lit-
er compartment as a carbon source for total soil CO2 efflux (FS)
ill increase according to the predicted increase in litter fall with
tmospheric CO2 concentration (King et al., 2004; Liu et al., 2005;
row et al., 2009). Several studies have investigated the contribu-
ion of the leaf litter layer to FS by means of organic layer removal
Buchmann, 2000; Li et al., 2004) or carbon stable isotope tech-

∗ Corresponding author. Present address: INRA-Université de Bourgogne, UMR
icrobiologie du Sol et de l’Environnement, CMSE, 17, rue Sully, B.V. 86510, 21065
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ming effect.
© 2010 Elsevier B.V. All rights reserved.

niques (13C depleted litter, Ngao et al., 2005). In temperate forest
ecosystems, the estimates of leaf litter contribution to FS exhibit a
large range of seasonal variation: from 2% to 20% of annual soil CO2
efflux in both deciduous (Edwards and Sollins, 1973; Bowden et al.,
1993; Ngao et al., 2005) and coniferous forests (Nakane et al., 1997;
Buchmann, 2000).

The quantity of fresh litter remains an important factor affect-
ing soil carbon cycling. Long-term litter-manipulation experiments
performed in situ showed that an increase in the quantity of fresh
litter led to an increase in FS (Boone et al., 1998; Subke et al., 2004;

Sulzman et al., 2005; Crow et al., 2009). Moreover, several labora-
tory studies have provided valuable evidence that variation in fresh
organic carbon amount or quality may affect soil carbon cycling
via “priming effect” processes: an increase in soil organic carbon
mineralization following the input of fresh organic carbon residues

dx.doi.org/10.1016/j.apsoil.2010.06.004
http://www.sciencedirect.com/science/journal/09291393
http://www.elsevier.com/locate/apsoil
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Bingeman et al., 1953; Kuzyakov et al., 2000; Nottingham et al.,
009); and via changes in diversity of organisms involved in soil
unctioning (Fontaine et al., 2004; Nottingham et al., 2009). These
tudies suggest that a priming effect commonly occurs in most
lant–soil systems as frequent fresh organic residue inputs appear
hrough litterfall or fine root death. Quantitative variations in fresh
rganic carbon inputs to soil (determined by climate change) are
ikely to rapidly affect the whole soil organic carbon mineraliza-
ion process under natural conditions (Fontaine et al., 2004, 2007;
ulzman et al., 2005; Crow et al., 2009). Understanding how soil car-
on cycling may be modified needs consideration of the response of
eterotrophic respiration components (litter respiration and bulk
oil respiration; referred to in the following as Fl and Fm, respec-
ively) to quantitative variations of fresh organic carbon inputs.

In parallel with CO2 efflux, measurements of the natural abun-
ance of 13C have been used to improve our knowledge of the
rigins of carbon pools used for soil respiration. In forest soils, clear
emporal variation in CO2 efflux ı13C values (up to 3.5‰) has been
bserved (Ekblad et al., 2005; Högberg et al., 2005; Mortazavi et
l., 2005; Marron et al., 2009) and correlated with variation in the
ontribution of the different respiration sources to total soil res-
iration and to shifts in the ı13C values for respiration substrates
Ehleringer et al., 2000; Biasi et al., 2005; Högberg et al., 2005; Tu
nd Dawson, 2005; Kuzyakov, 2006). As a result, ı13C measure-
ents would help to examine whether the amount of litter induces
significant change in the respective contributions of the different

oil components and/or respiration substrates mobilised by some
priming effect” process (Fontaine et al., 2007).

In this study, we performed an in situ litter-manipulation exper-
ment over 1 year to determine to what extent an increase in the
mount of fresh litter affects the heterotrophic mineralization of
rganic carbon in a temperate deciduous forest. Litter manipula-
ion lasted 1 year and consisted in the allocation of fresh litter to
xperimental plots according to three treatments: litter exclusion
E); natural fresh litter amount, i.e. control (C); and litter addition at
wice the natural amount (A). Every month, measurements of the
ate and carbon isotopic composition (ı13C) of total soil CO2 efflux
ere performed in situ (field measurements) and measurements of

he rate and carbon isotopic composition (ı13C) of heterotrophic
O2 efflux in litter and soil (without roots) were performed in
itro (short-term incubations, laboratory measurements). In par-
llel, soil and litter bacterial community structure were monitored
y means of molecular fingerprinting. “Functional” data (CO2 efflux
nd carbon isotope composition measurements) are presented in
his manuscript. Data concerning the dynamics of microbial com-

unities are presented by Chemidlin Prévost-Bouré et al. (in press)
here they are related to “functional” data to explore the link

etween bacterial community structure and soil functioning.

. Materials and methods

.1. Site description

The experiment took place in Barbeau National Forest (CAR-
OEUROPE IP network site [Cluster FR1, Site FR-Fon]; 48◦29′N,
2◦47′E; 60 km southeast of Paris, France; 90 m elevation). This
ite is a managed mature oak forest (Quercus petraea L., 100–150
ears old) with a dense understorey of coppiced hornbeam (Carpi-
us betulus L.). The mean annual temperature was 10.7 ◦C and the
nnual rainfall was 680 mm (1980–1996).
The soil was a gleyic luvisol (IUSS Working Group WRB, 2006)
f 0.8 m depth on millstone bedrock covered with an oligomull
umus. The soil texture was loam in the top soil (USDA referential;
and: 41.9%; Clay: 19.3%; Silt: 38.8%) and clay loam at the bot-
om of the soil profile (USDA referential; Sand: 35.2%; Clay: 32.8%;
ied Soil Ecology 46 (2010) 26–34 27

Silt: 32.0%). The main soil characteristics were determined by the
INRA Soil Analysis Laboratory at Arras (France). The granulometric
fractions were determined according to the French norm NF X 31-
107 by the dispersion of mineral particles after destruction of the
organic matter by hydrogen peroxide and separation of the parti-
cles into different classes by sedimentation (particles <50 �m) and
sieving (particles >50 �m; Gee and Bauder, 1986). Gleyic colour
patterns were observed from 30 cm depth down to the bottom of
the soil profile. The soil pH measured in water (NF ISO 10390, in a
1:5 (v/v) ratio of soil and water suspension) and the soil carbon con-
tent (in a 1 g sample calcinated at 550 ◦C and crushed to 250 �m)
both decreased with depth. The soil carbon content was 14.5% of
soil dry mass at the soil surface and 0.2% of soil dry mass at 10 cm
depth.

2.2. Experimental design

A 17.6 m2 experimental area (two 1.2 m × 7.3 m rows) repre-
sentative of the stand was chosen. From mid-October to the end
of December 2005, fresh litter was collected from the experimen-
tal area with a net (0.5 mm mesh) installed 50 cm above the soil
surface. Lateral litter inputs were prevented by surrounding the
experimental area with another net (0.5 mm mesh). The collected
fresh litter was air-dried at ambient temperature and the species
composition was determined as oak (70% of total dry mass) and
hornbeam (30% of total dry mass).

The experimental area was divided into 12 adjoining plots (each
1.2 m × 1.2 m) delimited by a PVC fence of 20 cm height. Treatments
were applied in the field following a randomised-complete-block
design with one replicate of each treatment per block. Before start-
ing the experiment, the homogeneity of the plots was checked once
for: environmental conditions (soil water content, soil tempera-
ture at 10 cm depth); carbon content and isotopic composition of
total soil organic carbon and “old” litter (naturally deposited during
autumn 2005); FS, Fm, ı13CFS and ı13CFm . The carbon content and
the isotopic composition of total soil organic carbon and remaining
litter were determined using the GC-C-IRMS system described in
Section 2.7. “Old” litter mass was estimated by sampling litter in
the four corners of the plots (15 cm × 15 cm), drying at 50 ◦C and
weighing.

The three treatments were: litter exclusion (E), natural condi-
tions, i.e. control (C, 486 g m−2 litter dry mass) and litter addition (A,
972 g m−2 litter dry mass). Litter was added to treatments C and A
on 24 March 2006 in the observed 7:3 oak:hornbeam ratio. During
leaf fall in autumn 2006 new litter inputs were avoided by replacing
the collecting nets upon and around the experimental area.

Every measurement described in the following was performed
monthly from May 2006 to March 2007, except for litter mass loss
which was measured every 2 months. Carbon isotopic composition
is expressed in ‰ relative to the Pee Dee Belemnite standard.

2.3. Fresh litter degradation measurements

During litter deposition, 12 litter bags (mesh size: 1 mm) con-
taining 5 g of litter ground by hand were placed in each plot of the C
and A treatments. Three litter bags were collected every 2 months;
their contents were dried at 50 ◦C for 48 h and weighed. Fresh lit-
ter mass loss was estimated by calculating the difference between
the initial litter dry mass and the remaining litter dry mass. The
fresh litter degradation coefficient (k) was estimated according to

Granier et al. (2000) as the exponent of an exponential decay rela-
tionship between remaining litter dry mass (Mt) and time since
deposition (t, days). M0 is the initial litter dry mass:

Mt = M0 × e(−k×t) (1)
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.4. Field measurement of total soil CO2 efflux intensity: FS

FS was measured in the field on circular collars (12 cm diam-
ter, 7 cm height, 4 collars per plot) buried 2 cm into the soil
efore litter addition. In each collar the litter mass per unit area
as equivalent to that in the relevant plot. Four measurements
ere performed per plot (one per collar) and averaged. Manual

S measurements were conducted on these collars monthly with a
IRAS analyser (PP Systems International Inc., Amsbury, MA) con-
gured in closed system with SRC-1 soil respiration chamber (wind
peed = 0.1 m s−1, as recommended by Le Dantec et al., 1999). Mea-
urements lasted 2 min or the time needed for an increase in CO2
oncentration of 100 ppm in the chamber. Prior to measurements,
he stability of fluxes was tested on two collars per plot by three
epeated measurements. Mean FS values were calculated for each
lot, expressed in �mol m−2 s−1. Measurements were converted to
C m−2 for comparison with fresh litter mass loss derived from the
resh litter degradation model.

During FS measurements, the soil temperature was measured at
0 cm depth around each collar using a linear precision resistance
robe (STP-1, PP Systems). The soil water content (SWC, %) was
easured for the 0–10 cm layer by drying soil at 105 ◦C and relating

he mass loss to soil dry mass.

.5. The role of litter in the modification of total soil CO2 efflux
ntensity

To determine the role of litter in the modification of total soil
O2 efflux intensity, the CO2 efflux intensity measured in situ was
ompared to the expected CO2 efflux intensity calculated as fol-
ows:

S,E
EXPECTED = FS,C − LMMC (2)

S,A
EXPECTED = FS,C + LMMC (3)

here, in Eq. (2), FS,E
EXPECTED is the expected flux in the E treatment

alculated from the measured efflux in the control (FS,C) minus the
ecay of litter (LMMC) in the control, which corresponds to the lit-
er excluded in the E treatment; and where, in Eq. (3), FS,A

EXPECTED is
he expected flux in the A treatment calculated from the measured
fflux in the control (FS,C) plus the decay of litter (LMMC) in the con-
rol, which corresponds to the litter added in the A treatment. Every
fflux was calculated in gC m−2. These equations were previously
escribed by Crow et al. (2009). If the expected efflux intensity is
quivalent or higher than the measured efflux intensity, the differ-
nce in the efflux intensity between the treatment and the control
ay be attributed to the decomposition of litter. If the expected

fflux intensity is lower than the measured efflux intensity, it would
e assumed that litter decay cannot be the only source explaining
he increase of efflux intensity and that this increase corresponds
o soil priming according to Crow et al. (2009). In these conditions,
oil priming (PE) would be determined as the percent of total soil
O2 efflux measured in situ according to the equation described by
row et al. (2009):

E = 100 ×
[

FS − FS
EXPECTED

FS

]
(4)
here, for a given treatment, FS corresponds to soil respiration
easured in situ and FS

EXPECTED is the expected soil respiration
etermined according to the equations described above (Eq. (2) or
3)).
ied Soil Ecology 46 (2010) 26–34

2.6. Laboratory measurement of heterotrophic CO2 efflux in litter
and soil without roots: Fl and Fm

2.6.1. Sampling
Soil and litter samples were collected monthly in every plot

according to the treatment. The soil sample consisted of three ran-
domly taken soil cores (0–10 cm depth, 1.2 cm diameter) which
were combined and sieved at 2 mm in the field (ca. 50 g equivalent
dry mass of soil).

Litter samples were also composite samples constituted of three
samples randomly taken in each C and A plots. Litter samples per
plot corresponded to ca. 2.5 g equivalent dry mass of litter.

2.6.2. CO2 efflux measurement
About 1.5 h after sampling, soil and litter samples were incu-

bated in the laboratory using flasks sealed with a Teflon® septum.
Measurements were carried out on three 5 g replicates per plot for
soil and one replicate for litter because of limited material. At the
beginning of the incubation, flask air was decarboxylated by push-
ing air several times through a soda-lime column. Then samples
were incubated for 13–20 h to avoid strong variations in terms of
microbial biomass and diversity, and to limit shifts in metabolic
pathways or mineralized carbon sources (Andrews et al., 1999).
Incubations were performed in a water bath regulated at the soil
temperature previously recorded in the field. At the end of the incu-
bation, 25 mL of flask air was sampled with a 50 mL valved syringe
(SGE) and injected into new flasks flushed with pure nitrogen. Air
samples were analysed for their CO2 concentration and ı13CCO2 (see
Section 2.7 for details).

Fl and Fm were calculated as the ratio between CO2 concentra-
tions accumulated during the incubation over incubation time. To
scale to field measurements, laboratory measurements of Fl were
converted from �mol g−1 dry mass s−1 to �mol m−2 s−1 using lit-
ter dry mass present on the field plots. Litter dry mass on the field
plots was determined as the difference between the initial litter dry
mass and the litter mass lost during the elapsed time between the
start of the experiment and the date of sampling as estimated via
the exponential decay function derived from fresh litter degrada-
tion measurements. Then, Fl was used to estimate the contribution
of fresh litter to total soil CO2 efflux. Fm was also expressed in
�mol m−2 s−1 using the apparent density of soil (1.35) and soil core
volume (1.13 × 10−5 m3). Conversely to Fl measurements, Fm mea-
surements were only used to test the impact of the treatment on
heterotrophic soil CO2 efflux intensity. Because sieving modified
the conditions of diffusion, these measurements did not allow the
estimation of the contribution of Fm to total soil CO2 efflux.

2.7. Measurement of the isotopic composition of respired CO2:
ı13CFS , ı13CFl

and ı13CFm

The isotopic ratio of total soil-respired CO2 (ı13CFS ) was deter-
mined in the field for each plot by the Keeling plot method (Keeling,
1958). Soil air was sampled in the field using a pump-equipped
EGM-1 analyser (PP Systems) and a custom cylindrical closed cham-
ber (25.4 L, 12 cm height) made of transparent acrylic resin and
equipped with a fan. The chamber was laid on a collar inserted
2 cm into the soil. For each Keeling plot, five air samples were
taken directly from the closed circuit using 50 mL valved syringes
(SGE, Australia). Air samples were taken every 100–250 ppm CO2
increase in the range 500–1500 ppm. Air samples were analysed for

their ı13CCO2 with an elemental analyser (Model NA-1500, Carlo
Erba, Milan, Italy) coupled to an isotopic ratio mass spectrometer
(VG Optima, Fison, Villeurbanne, France; measurement standard
error = 0.2‰). Linearity and stability of the analysis system were
tested during measurements by analysing standard air samples of
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ig. 1. Temporal variation in soil temperature at 10 cm depth (T10 cm, diamonds, do
E, white bars), control (C, grey bars) and litter addition (A, black bars). Error bars re

ifferent CO2 concentration and with the same ı13C. ı13CFS was
stimated as the y-intercept of the linear regression between the
nverse of CO2 concentration (x-axis) and ı13CCO2 (y-axis). Linear
egression was performed using the Ordinary Least Square linear
egression model. Estimates having a standard error higher than 5%
f the estimated value were excluded (Chemidlin Prévost-Bouré et
l., 2009).

The same system was used to measure ı13CFl
and ı13CFm on air

amples taken from the laboratory incubation assays. A standard
urve was established from the CO2 concentration of standard air
amples and the corresponding peak height, and used to determine
he CO2 concentration in the samples.
.8. Statistical analysis

For each field session, measured variables were averaged per
reatment as arithmetical means, excepted ı13CFS . Mean ı13CFS

ı13CFS ) was calculated by weighting each estimate by its standard

able 1
nvironmental conditions (soil water content, soil temperature at 10 cm depth); carbon co
eposited during autumn 2005); total soil and bulk soil respirations (FS and Fm, respectivel
pplication. The isotopic composition of the litter used for the treatments (ı13C of added

E

Mean (±SE) n

Soil water content (SWC, %) 20.8 (±1.0) 4
Soil temperature (T10 cm, ◦C) 2.7 (±0.5) 4
Soil organic carbon (%, 0–10 cm) 1.71 1
Old litter (g m−2) 505 (±73) 4
ı13C of soil organic carbon (0–10 cm depth, ‰) −26.19 1
ı13C of old litter (‰) −27.1 (±0.1) 4
ı13C of added litter (‰)
FS (�mol m−2 s−1) 0.28 (±0.03) 4
Fm (�mol m−2 s−1) 2.7 (± 0.9) 3
ı13CFS (‰ versus PDB) −24.4 (±0.3) 3
ı13CFm (‰ versus PDB) −24.5 (±0.7) 4
ine) and soil water content (SWC, %, bars) in the three treatments: litter exclusion
nt standard error of the mean (n = 3–4).

error (Murtaugh, 2007). Equations are:

ı13CFS =
n∑

1

wi × ı13CFS,i
(5)

with

wi =

⎛

⎜⎜⎜⎜⎝

1/SE(ı13CFS,i
)
2

n∑

1

1/SE(ı13CFS,i
)2

⎞

⎟⎟⎟⎟⎠
(6)

SE(ı13CFS,i
) is the standard error of the ith estimation of ı13CFS , and

n the total number of observations.

The standard error of the mean was calculated as follows:

SE(ı13CFS ) =

√√√√
(

1
n − 1

)
×

n∑

1

(wi × (ı13CFS,i
− ı13CFS )

2
) (7)

ntent and isotopic composition of total soil organic carbon and “old” litter (naturally
y) and their isotopic composition (ı13CFS and ı13CFm , respectively) before treatment
litter) is also given. SE, standard error of the mean.

C A

Mean (±SE) n Mean (±SE) n

20.4 (±0.6) 4 21.9 (±1.7) 4
2.7 (±0.5) 4 2.7 (±0.5) 4
2.63 1 1.47 1

477 (±73) 4 531 (±107) 4
−26.11 1 −26.06 1
−26.9 (±0.3) 4 −27.2 (±0.2) 4

−27.95(0.2) 16
0.29 (±0.03) 4 0.31 (±0.04) 4
3.7 (±0.4) 4 4.4 (±0.3) 4

−24.2 (±0.4) 3 −24.1 (±0.4) 2
−24.3 (±0.2) 4 −24.5 (±0.4) 4
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Fig. 2. Temporal variation in total soil CO2 efflux (FS) in the litter exclusion (E, dotted
line), control (C, grey) and litter addition (A, black) treatments, respectively. Error
bars correspond to one standard error of the mean. Inserted graphic: response of
FS to soil temperature at 10 cm depth (T10 cm) in the litter exclusion (E, black filled

S
treatments were compared to the expected total soil CO2 efflux
intensity (FS

EXPECTED) in these treatments. In the A treatment, field
measurements of FS (FS,A) were significantly higher (P < 0.001) than
FS,A

EXPECTED (Fig. 3). Under these conditions, soil priming corre-
0 N. Chemidlin Prévost-Bouré et al.

Non parametric paired tests (Friedman repeated measures
ne-way analysis of variance on ranks, cited as RMANOVA; and
ilcoxon’s test for paired samples on ranks) were used to check for

ifferences between the three treatments. Significance level was
et at 5%. All statistical analyses were performed using Statistica
oftware (Statsoft Inc., Tulsa, USA).

. Results

.1. Homogeneity of treatment plots before litter manipulation

The results of assessments carried out on the plots prior to the
tart of the experiment are reported in Table 1. No significant dif-
erences were observed for soil water content or soil temperature.
oil organic C content and its isotopic composition were similar in
ach treatment, as were “old” litter mass and isotopic composition.
he treatments were also homogeneous in terms of FS, Fm and their
sotopic composition.

Additionally, the isotopic composition of soil organic C was
ignificantly different from that of the fresh litter used for the
xperiment (P < 0.05, �fresh litter−soil = −1.8‰).

.2. Soil temperature and moisture variations

Soil temperature (T10 cm) ranged between 2.7 and 18.5 ◦C with an
nnual mean of 11.4 ◦C (Fig. 1). The highest values were observed
n summer. In March 2007, T10 cm was 4.5 ◦C higher than values
bserved at the same period 1 year earlier because winter 2007
as particularly warm (Piao et al., 2008). Soil water content (SWC,

–10 cm) was not affected by the quantity of fresh litter and ranged
rom 7.6% to 26.0% during the study period in the E, C and A
lots. SWC variations were negatively correlated to T10 cm varia-
ions (|r| > 0.85). SWC was lower than the “theoretical” wilting point
hreshold (estimated using the model of Saxton et al. (1986)) in July
006, indicating a drought-constraint. This corresponds to a 15-day
eriod (27 June–12 July 2006) during which only 10 mm of rain was
ecorded.

.3. Fresh litter decomposition

In both C and A plots, an exponential decay function well fitted
he data for litter dry mass loss with time (r2 > 0.7). Litter degrada-
ion rate was not significantly different for the C and A treatments
s the decay constants (k in Eq. (1)) in these treatments were not
ifferent: 2.01 × 10−3 (standard error: 6.47 × 10−5) and 1.93 × 10−3

standard error: 5.84 × 10−5), respectively.

.4. Response of total soil CO2 efflux to variations in fresh litter
mount

Fresh litter amount had a significant impact on FS measured in
he field (RMANOVA, �2 = 22; P < 0.0001), as presented in Fig. 2 .
S was significantly reduced in the E treatment (by 25–45%) com-
ared to the control (C, Wilcoxon’s test, P < 0.001) while FS was
ignificantly increased in the A treatment (by 60–120% depend-
ng on the period considered) compared to the control (Wilcoxon’s
est, P < 0.004). No block effect was detected (Kruskal–Wallis test,
> 0.5). However, fresh litter addition or exclusion did not mod-

fy the seasonal trends of FS. The maximum values occurred in
une 2006 (2.2, 3.0 and 5.6 �mol m−2 s−1 for E, C and A treat-

ents, respectively) and the minimum in March 2007 (0.4, 0.5 and

.9 �mol m−2 s−1 for E, C and A treatments, respectively). In July
006, FS was slightly reduced compared to June 2006 despite a
igher soil temperature. In each treatment, the seasonal variations

n FS were well explained by a Q10 relationship to temperature
r2 > 0.8). In this relationship, Q10 values (3.5, 3.2, 3.6 in the E, C
circles), control (C, grey filled circles) and litter addition (A, open circles) treatments,
respectively. A Q10 model: FS = RS10 × Q10((T10 cm − 10)/10); well fitted FS tempera-
ture response. Q10 estimates: 3.5, 3.2, 3.6 in the E, C and A treatment, respectively.
RS10 estimates: 0.8, 1.1, 2.0 �mol m−2 s−1 in the E, C and A treatments, respectively.

and A treatments, respectively) were not affected by the treatment,
whereas basal respiration at 10 ◦C (0.8, 1.1, 2.0 �mol m−2 s−1 in
the E, C and A treatments, respectively) was significantly (P < 0.05)
changed by the fresh litter amount.

3.5. Role of litter in the modification of total soil CO2 efflux
intensity

To determine whether the significant variation in total soil CO2
efflux intensity (FS) could be attributed to the addition or the exclu-
sion of fresh litter, the field measurements of F in the E and A
Fig. 3. Measured (in situ) and expected total soil CO2 efflux over time in the litter
exclusion (E) and litter addition (A) treatments across the experiment. Solid lines:
measured total soil CO2 efflux in the E (grey) and A (black) treatments. Dashed lines:
expected total soil CO2 efflux in the E (grey) and A (black) treatments. Errors bars
are standard errors of the mean (n = 4).
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ponded to +32% of FS measured in the A treatment. In the E
reatment, FS measured in the field (FS,E) was not significantly
ifferent from FS,E

EXPECTED (P > 0.2), showing that litter decompo-
ition in the control accounted for the difference in soil respiration
etween control and E treatment.

.6. Response of heterotrophic CO2 efflux in litter and soil to
ariations in fresh litter amount

Laboratory measurements of fresh litter CO2 efflux (Fl) in the A
reatment were twice as high as in the control (Fig. 4; Wilcoxon’s
est, P < 0.01), but differences were constrained by season (no dif-
erences in September 2006 and February 2007). Mean Fl was 0.13
nd 0.22 �mol m−2 s−1 in the C and A treatments, respectively. This
ifference was determined by fresh litter amount, since fresh litter
espiration per g of dry mass was similar in the control and A treat-
ents (P < 0.60). Fresh litter contribution to total soil CO2 efflux

anged from 2% to 18% for both control and treatment A, and the
igher litter contribution was observed during the period of leaf

all.
Heterotrophic CO2 efflux in soil (Fm), measured in the labora-

ory, was not affected by litter addition (treatment A) or exclusion
treatment E) (Fig. 4b, RMANOVA, �2 = 4.9, P < 0.10). Similar ranges
f Fm were observed in all treatments: ca. 0.5–4 �mol m−2 s−1. The
easonal variations of Fm were also similar among the three litter
reatments and were not related to incubation temperature.

.7. The isotopic composition of total soil-respired CO2 and
eterotrophically respired CO2 from litter and soil

Litter treatment did not significantly affect ı13CFS measured in
he field (RMANOVA, �2 = 3.8, P < 0.15), which ranged from −27.9‰
o −22.5‰, in all treatments (Fig. 5a). Nevertheless, a trend was
bserved for ı13CFS with CO2 from treatment E being generally
lightly 13C-enriched relative to other treatments.

Exclusion or addition of fresh litter did not affect ı13CFm

�2 = 4.9, P < 0.09, Fig. 5b). Ranges of variation of ı13CFm were
etween −21.7‰ and −28.7‰ through the measurement period.
13CFm exhibited a clear increase in summer and a decrease dur-
ng winter. CO2 derived from heterotrophic respiration in soil was
lways 13C-enriched relative to total soil organic matter (mean
pparent discrimination: 2.2‰).

13 13
Like ı CFm , ı CFl
was not affected by fresh litter addition

P < 0.60). Mean annual ı13CFl
was −25.9‰ and −26.3‰ in the con-

rol and A treatments, respectively (Fig. 5c). ı13CFl
was not different

rom ı13CFS and most of the time was 13C-enriched relative to lit-
er organic matter (mean apparent discrimination: 1.3‰ estimated

ig. 5. Monthly variation in isotopic composition of respired CO2 from total soil (A, ı13CFS )
itter exclusion (E, open circles), control (C, grey filled circles) and litter addition (A, blac
ars represent standard errors of the means calculated according to Murtaugh (2007). Nu
(C, grey filled circles) and litter addition (A, black filled circles) treatments; (B) in
soil (Fm) in the litter exclusion (E, open circles), control (C, grey filled circles) and
litter addition (A, black filled circles) treatments. Error bars represent the standard
error of the mean (n = 2–4).

per date of sampling, data not shown). The range and the temporal
dynamics of ı13CFl

were similar to those of the isotopic composition
of root respired CO2 (root excision method, data not shown).
4. Discussion

During the experiment, soil temperature and soil water content
(SWC) were not modified by the treatment. A similar observa-
tion had been previously reported for soil temperature (Sulzman

, soil without roots (B, ı13CFm ) and litter (C, ı13CFl ) in the different litter treatments:
k filled circles). ı13C values are expressed in ‰ relative to the PDB standard. Error
mber of observations for mean calculations ranged from 2 to 4.
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t al., 2005) but not for SWC. This lack of variations of SWC may
e explained by the dense canopy above the experimental area
leaf area index = 5.1; Delpierre et al., 2009) which strongly lim-
ted water evaporation from soil, particularly during the vegetative
eriod (Rey et al., 2002). During this period, SWC variations may
ave mainly been driven by root water uptake. Added to that, the
umus layer remained thin despite litter addition. Therefore, litter
ddition at our site may not have significantly modified the resis-
ance of the humus layer to water infiltration into soil and water
vaporation from soil (Baldocchi et al., 2000; Schäfer et al., 2002)
hroughout the experiment.

Temporal variations in FS reported in this study for the differ-
nt treatments (E, C and A) were in the range of those reported in
he literature for different types of temperate deciduous forests:
.5–6.0 �mol m2 s−1 (Davidson et al., 1998; Hibbard et al., 2005;
incent et al., 2006). The reduction in FS observed in July 2006,
hile soil temperature was rising, was attributed to a drought

vent appearing in every treatment. In accordance with differ-
nt field studies (Boone et al., 1998; Epron et al., 2004; Sulzman
t al., 2005), the addition/exclusion of fresh litter significantly
ncreased/decreased FS, without modifying the contribution of
resh litter to FS. These variations in FS between treatment E,
ontrol and treatment A were not explained by variations in the
emperature sensitivity of FS (Q10). Indeed, Q10 was not signifi-
antly modified by the quantity of fresh litter and differences in
S between treatments were mainly explained by changes in basal
oil respiration at 10 ◦C (FS10). In every treatment, the Q10 value
3.2–3.6) was in the range of those reported in the literature (Boone
t al., 1998; Davidson et al., 1998; Perrin et al., 2004; Gaumont-
uay et al., 2006), and was in the range of those corresponding

o recalcitrant material according to Davidson and Janssens (2006)
nd Davidson et al. (2006). Therefore, the stability of the Q10 may
e related to a higher consumption of soil organic matter relative to

itter organic matter, which would limit the imprint of litter quan-
ity itself on the Q10. This hypothesis is supported by the relatively
mall contribution of Fl to FS (8% on average). Consequently, the
ariations in FS and FS10 between treatments would be related to
ariations in soil activity mediated by the quantity of fresh litter.

Modifications of soil activity, and then of FS and FS10, may be
elated to changes in microbial biomass, according to the trend
bserved by Soe and Buchmann (2005), and/or to changes in
oil microbial community composition (Nottingham et al., 2009),
nd/or changes in substrate availability or composition since
icrobial biomass is carbon-limited in soils (Kuzyakov et al., 2000;

kblad and Nordgren, 2002; Fontaine et al., 2003; Crow et al.,
009). In our study, since no variation in soil microbial biomass
as observed among treatments (Chemidlin Prévost-Bouré et al.,

n press), the hypothesis linking variation in FS and FS10 between
reatments to variation in microbial biomass is not supported. Sig-
ificant seasonal variation in the genetic structure of soil and litter
acterial communities was observed during the experiment and
lso following treatment application. However, in contrast to litter,
he variation in the genetic structure of the soil bacterial commu-
ity was not statistically related to variation in FS or Fm. Therefore,

t is more likely that, in our case, the variation in FS and FS10
etween treatments was related to changes in substrate availability
r composition in soil. This hypothesis is supported by field mea-
urements: the reduction in FS in the E treatment following litter
xclusion was equivalent to litter respiration, and soil priming was
etected in the A treatment as a consequence of the addition of
resh litter. But this hypothesis does not seem to agree with the

aboratory measurements of Fm, which were not modified by lit-
er addition or exclusion. Nevertheless, Crow et al. (2009) provided
aluable evidence that soil priming may occur with no differences
n Fm (shortly after the start of incubation) or even reduced Fm (at
he end of the incubation) in the added litter plots relative to the
ied Soil Ecology 46 (2010) 26–34

control plots. Added to that, it appears that very small differences
in the determination of Fm (in a range close to that of the confidence
interval of the measure) are likely to produce large differences in
respiration rate when extrapolated to the soil column. In our study,
such small differences may have been masked by the impact of
soil sieving on CO2 emission (Kuzyakov, 2006). Therefore, we may
conclude that the variations in FS and FS10 may have been deter-
mined by modification of substrate availability or composition in
soil, promoting the use of soil C.

In accordance with the definition provided by Bingeman et al.
(1953) and refined by Kuzyakov et al. (2000), soil priming detected
in the A treatment corresponds to a “real” priming effect, i.e. a
priming effect for which the carbon source corresponds to organic
matter and not microbial biomass, which remained unchanged by
the treatment (Blagodatskaya and Kuzyakov, 2008). The contribu-
tion of the priming effect estimated here (32% of FS measured in the
A treatment on average) was in the range of those reported in situ by
Sulzman et al. (2005) and Crow et al. (2009). According to Fontaine
et al. (2003) and Kuzyakov et al. (2000), the addition of fresh organic
matter may have allowed the co-metabolic decomposition of more
recalcitrant soil organic matter (SOM). This would be supported
by Q10 estimates but not by the lack of variation in ı13CFS . Indeed,
according to the linear mixing model (Phillips and Gregg, 2001),
if only SOM had been mineralized during priming, the contribu-
tion of Fm to FS would have been modified and then ı13CFS would
have been less negative in the A treatment than in the control,
especially during the vegetative period when differences between
ı13CFS , ı13CFl

and ı13CFm were maximal (2–3‰), above the limit
needed to discriminate between CO2 sources (Phillips and Gregg,
2001). Because this increase was not observed, we may assume that
primed respired CO2 was not only derived from SOM but also from
the rhizosphere as proposed by Subke et al. (2004) and that litter
addition activated the whole soil system, accelerating C turnover
processes. Further labelling experiments involving high-frequency
carbon stable isotope measurements of CO2 efflux would help to
clarify the relative importance of bulk soil and rhizosphere in the
priming effect.

Priming effect phenomena have been previously reported in lab-
oratory studies (Hamer and Marschner, 2005; Kuzyakov and Bol,
2006; Fontaine et al., 2007), but only in a few field studies using
complex carbon sources like litter (Subke et al., 2004; Sulzman et
al., 2005; Crow et al., 2009). Here, FS data suggest that the priming
effect lasted for over 1 year, compared to a few days to weeks in lab-
oratory studies. This long-lasting priming effect may be related to a
continuous release of organic compounds from litter to soil because
of the progressive decomposition of leaf litter. This is in agree-
ment with the trends observed in the literature for the duration of
a priming effect with increasing substrate complexity: e.g. Hamer
and Marschner (2005) reported fast 1-day priming after addition of
simple organic compounds (fructose, alanine), whereas Fontaine et
al. (2007) and Nottingham et al. (2009) reported a priming effect
that lasted 30 days after pure cellulose addition or chopped/ground
maize litter, respectively.

Temporal variation in isotopic data can also be informative. The
isotopic values were in the range of those reported in the literature
for ı13CFS (e.g. Ekblad and Hogberg, 2001; Bhupinderpal-Singh et
al., 2003; Ngao et al., 2005) and for ı13CFm (Andrews et al., 1999,
2000; Tu and Dawson, 2005). Both ı13CFS , ı13CFm and ı13CFl

showed
temporal variations throughout the experiment (amplitude of vari-
ations: from 2.4‰ to 6‰). Over the whole season, these temporal
variations were not related to soil climatic conditions (soil temper-

ature, SWC). Nevertheless, some of them have probably been influ-
enced by climatic conditions: ı13CFS , ı13CFm and ı13CFl

increased
during the drought stress, which is in agreement with the response
of photosynthesis to a drought stress (Farquhar et al., 1989) and
the link between plant physiology and soil respiration (Högberg
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t al., 2001). Plant physiology may not be the only determinant
f ı13CFS , ı13CFm or ı13CFl

temporal variations. Indeed, these varia-
ions could also be the result of changes in the isotopic composition
f the mineralized organic compounds or in isotopic discrimination
uring organic matter decomposition (Santruckova et al., 2000;
ynn et al., 2006). These changes may be determined by varia-

ions in the composition of the soil microbial community that were
emonstrated, in our study, to occur with time both in soil and lit-
er (Chemidlin Prévost-Bouré et al., in press). Temporal variation
n ı13CFl

was found to be significantly related to temporal varia-
ion in the litter bacterial community in the A treatment, but not
n the other treatments and not in soil. Considering concomitantly
emporal variation in ı13C and microbial community composition

ay provide valuable clues to better understand organic matter
ineralization dynamics and to test mineralization models deal-

ng with microbial community variation (Neill and Gignoux, 2006).
his would need “high frequency” isotopic measurements (CO2 and
rganic matter) and isotopic labelling techniques to distinguish
etween active and non-active microbial populations.

. Conclusions

Litter manipulation showed that soil CO2 efflux was stimulated
hen fresh litter was added and was reduced when fresh litter
as excluded. The observed activation was not determined by dif-

erences in soil climatic conditions (temperature and moisture)
etween treatments or by variation in temperature sensitivity (Q10)
f FS. Indeed, it appears to be the result of a real priming effect,
or which the intensity may be affected by seasonal variation in
oil climatic conditions. This priming effect represented a large
roportion of soil CO2 efflux in the litter addition treatment and
robably resulted in the activation of the whole soil system. This
tudy highlights the complexity of direct and indirect intercon-
ections between soil carbon source components in the context
f climate change as modifying the size of the young carbon pools
here litter) may lead to the fast remobilization of older soil C stocks
hrough respiration, particularly in temperate forests. In addition,
his study highlights the importance of labelling experiments to
mprove our knowledge of litter–soil interaction and to decipher
he mechanisms of organic matter mineralization.
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Summary

This study provides the first maps of variations in
bacterial community structure on a broad scale based
on genotyping of DNA extracts from 593 soils from
four different regions of France (North, Brittany,
South-East and Landes). Soils were obtained from the
soil library of RMQS (‘Réseau de Mesures de la Qualité
des Sols’ = French soil quality monitoring network).
The relevance of a biogeographic approach for study-
ing bacterial communities was demonstrated by the
great variability in community structure and specific
geographical patterns within and between the four
regions. The data indicated that the distribution of
bacterial community composition might be more
related to local factors such as soil type and land
cover than to more global factors such as climatic
and geomorphologic characteristics. Furthermore,
the regional pools of biodiversity could be ordered:
South-East � North > Brittany > Landes, according to
the observed regional variability of the bacterial com-
munities, which could be helpful for improving land
use in accordance with soil biodiversity management.

Although microorganisms are the most ubiquitous,
diverse and abundant living organisms on earth and
despite their key role in biogeochemical cycles, in com-
parison with macroorganisms, few investigations have
been carried out on the distribution of soil microbial com-
munity diversity on a broader scale than agricultural fields
or forest sites. Indeed, most studies have focused on
cataloguing the microbial diversity in particular sites and
describing how communities have been affected by envi-
ronmental perturbations (for review see Ranjard et al.,
2000) without integrating the spatial scale in microbial
community assembly (Papke and Ward, 2004). As a
result, the survey of microbial diversification and the dis-
tribution patterns of microbial diversity on a large scale
are poorly documented and understood (Martiny et al.,
2006). Ecologists have long recognized that beta-diversity
(how community composition changes across a land-
scape) can offer valuable insights into the relative influ-
ence of dispersal limitations, environmental heterogeneity
and environmental and evolutionary changes in shaping
the structure of ecological communities (Green et al.,
2004).

In this context, the aim of our study was to investigate
the geographic distribution patterns of bacterial commu-
nity structure by considering a broad spatial scale of sam-
pling. For this, we characterized the bacterial communities
from soils in the RMQS soil library (‘Réseau de Mesures
de la Qualité des Sols’ = French soil quality monitoring
network) (Fig. 1). This library represents 2200 soils
sampled with a 16 km ¥ 16 km systematic grid over the
entire French territory and representative of the different
land uses, soil types and climatic conditions occurring in
France (for more details see Arrouays et al., 2002 and
Supporting information). We focused on characterizing
the bacterial community structure in 593 soils sampled
from four different geographical regions (North, Brittany,
Landes and South-East, Fig. 1). These regions were
chosen for their particular geographic, pedo-climatic and
land use characteristics (as described in the JRC Soil
Atlas of Europe, http://eusoils.jrc.ec.europa.eu/projects/
soil_atlas). The soil bacterial community structure was
directly genotyped from soil DNA extracts, using a
B-ARISA (Bacterial-Automated Ribosomal Intergenic
Spacer Analysis) fingerprinting approach (Ranjard et al.,
2003) optimized for medium throughput in the platform
GenoSol (http://www.dijon.inra.fr/plateforme_genosol).
The ARISA fingerprinting was used as it allows the rapid
examination of the genetic structure of complex bacterial
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communities and has been demonstrated to be sensitive
and relevant for evaluating modifications in community
composition in space and time (Ranjard et al., 2001;
2003).

Complex B-ARISA profiles were obtained for each soil
and compiled into a single matrix (Ranjard et al., 2003),
which was analysed using a generalization of multivariate
spatial correlation analysis called MULTISPATI (see Dray
et al., 2008 and Supporting information for a detailed
description of this method). This analysis takes into
account the spatial position of sampling sites on the basis
of neighbouring relationships between sites (see Fig. 1).
One of the biggest advantages of MULTISPATI scores is
that they maximize spatial autocorrelation. Consequently,
they can be used to draw easily interpretable geographi-
cal maps. Computations were conducted using the R
software (R Development Core Team, 2008), with the
ade4 (Chessel et al., 2004; Dray and Dufour, 2007) and
spdep (Bivand et al., 2008) packages (for more details
see the ‘Materials and Methods’ section in the Supporting
information file).

The factorial map deduced from the MULTISPATI
analysis of all B-ARISA profiles demonstrated the consid-
erable variability of the bacterial community structure

within and between the four different regions (for more
detailed results see Supporting information for Fig. S1).
Significant regional and national variations of soil bacterial
communities were apparent, which were consistent to
those observed on micro- or field scales (Ranjard and
Richaume, 2001; Ranjard et al., 2001) and with other
studies on broader spatial scales (Fierer and Jackson,
2006). The site scores of the first three axes of global
MULTISPATI analysis were first interpolated using a geo-
statistical interpolation method and then geographically
mapped for each studied region (Fig. 2) to determine the
distribution patterns of soil bacterial community variability
(for more details see Supporting information). Mapping of
the first MULTISPATI score revealed a moderate regional
variability within Landes and Brittany and a high similarity
in community structure between these two regions (Fig. 2
Axis 1). In contrast, the North and South-East regions
exhibited much greater regional variability and distinct
community structures compared with Landes and Brittany.
Mapping of the second MULTISPATI score (Fig. 2 Axis 2)
discriminated between Brittany and Landes as well as
between North and South-East whereas mapping of the
third MULTISPATI score (Fig. 2 Axis 3) revealed greater
regional heterogeneity and the evidence of new spatial

Brittany (142)

North (273)

South-East
(124)

Landes
(54)

Brittany (142)

North (273)

South-East
(124)

Landes
(54)

Fig. 1. Location and delimitation of the four studied regions in France. Numbers in parentheses indicate the number of soils samples analysed
in each region. The neighbouring relationship between the sampling sites is indicated on the map (this relationship corresponds to a
one-square move of the Queen on a chess board: each site can have up to eight neighbours).
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South-East

Brittany

Landes

North

Axis 1 Axis 2 Axis 3

Fig. 2. Maps of interpolated MULTISPATI scores for the first three MULTISPATI axes (columns) and for the four geographical regions (rows).
Each map is a spatial synthesis of the B-ARISA genetic structure of indigenous bacterial communities from the corresponding soils sampled in
the four regions of France.
Axis 1, Axis 2 and Axis 3 represent the mapping of MULTISPATI scores for the first three axes. Colours on the map are proportional to the
score values (see Fig. S1 in Supporting information), and the colour code is given by the following scale:

-0.174/-0.129 -0.037/-0.011

-0.128/-0.102 -0.01/0.022

-0.101/-0.083 0.023/0.054

-0.082/-0.062 0.055/0.079

-0.061/-0.038 0.08/0.108

Similar colours and scores on a given axis indicate similar genetic structure of bacterial community.
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structures. On the basis of these maps, the null hypoth-
esis of microbial biogeography, corresponding to a
random spatial distribution of microorganisms, could be
rejected (Martiny et al., 2006). These maps further evi-
denced that bacterial community can have biogeography
with significant and specific spatial assemblages accord-
ing to the studied region. Interestingly, similar community
structures appeared to occur in non-contiguous regions,
suggesting that environmental conditions (geomorpho-
logic, pedo-climatic, land cover {), rather than geographic
distance, could be of major importance in shaping com-
munity structure (Martiny et al., 2006). This observation
contrasts with previous suggestions that geographic dis-
tance could be a useful predictor of microbial community
turnover and assemblage for other types of ecosystems
(mountain lakes, Reche, 2005) as well as for other types
of microorganisms (fungi in desert ecosystem, Green
et al., 2004).

The particular and homogeneous assemblage of bac-
terial communities in the Landes and Brittany regions
could not be explained by a geographic isolation of these
regions due to the presence of natural barriers (mountain,
sea, desert . . . ; http://eusoils.jrc.ec.europa.eu/projects/
soil_atlas, elevation p. 121) or by particular climatic con-
ditions (http://eusoils.jrc.ec.europa.eu/projects/soil_atlas,
climate p. 122). However, the mapping of French soil
types according to their physico-chemical characteristics
(http://gissol.orleans.inra.fr/programme/bdgsf/carte.php)
appeared to match well with the bacterial community dis-
tribution within and between regions, supporting the
hypothesis of a strong influence of edaphic parameters.
More precisely, in the Landes region a single sandy acidic
soil type (podzol) has been described for all the studied
sites (IUSS Working Group WRB report 2006), which
might partly explain the low variability of the bacterial
community in this region. This hypothesis is supported by
previous studies dealing with the description of bacterial
diversity on continental or field scales that demonstrated
the more important influence of soil characteristics, such
as pH (Fierer and Jackson, 2006) and/or soil texture
(Johnson et al., 2003), than climatic or land cover char-
acteristics. The higher variability of soil types described in
the North and South-East regions (http://gissol.orleans.
inra.fr/programme/bdgsf/carte.php) might support also a
relationship between soil-type distribution and community
assemblage on a broad scale. In parallel, Mantel tests
and partial Mantel tests were used to investigate the
relationships between geographical distances, physico-
chemical characteristics of soil samples (texture, pH,
CEC, Corg, N, CaCO3, P, Ca, Mg, K contents) using
Euclidean distances, and Sørensen similarity coefficient
between B-ARISA profiles. All computations were done
with the R software (R Development Core Team, 2008),
using the vegan (Oksanen et al., 2009) and labdsv

(Roberts, 2007) packages. A simple Mantel test showed
that there is a very highly significant correlation between
B-ARISA profiles and soil physico-chemical characteris-
tics (r = 0.326, P < 0.001). There is also a significant
correlation between B-ARISA profiles and geographical
distances (r = 0.225, P < 0.001). But, after controlling for
geographical distances, a partial Mantel test showed that
there is still a very highly significant correlation between
B-ARISA profiles and soil physico-chemical characteris-
tics (r = 0.277, P < 0.001).

The spatial variation of community structure might
also be related to the more or less regional variability of
land cover (http://image2000.jrc.it/; http://eusoils.jrc.ec.
europa.eu/projects/soil_atlas, land cover p. 123). The
Landes region is mainly characterized by a monospecific
forest cover with (monoclonal) Pinus pinaster, intensively
exploited for wood production. Such a homogenous over
exploitation of soil in this region might be consistent
with the low regional variability observed for community
assemblage. In contrast, the higher variability recorded in
the three other regions could be related to the greater land
use variability, which includes forest, grassland and agri-
cultural crops. Consequently, the Landes region can be
defined as a biotic province with very few types of par-
ticular habitats in terms of climatic, pedological and land
cover characteristics, leading to a homogenous distribu-
tion of bacterial community composition.

This study represents the first exploratory step of an
extensive biogeographical study to be applied to the whole
French territory. Although our results remain descriptive,
they implicitly support the second hypothesis of Bass-
Becking (1934) deduced from the work of Beijerinck
(1913), i.e. ‘everything is everywhere, but, the environment
selects’, implying that different contemporary environ-
ments maintain distinctive microbial assemblages. In other
respects, our data also evidenced that microbial biogeog-
raphy differs fundamentally from the biogeography of
macro-organisms, which appears to be more influenced by
global parameters such as climate or geomorphology
(Green and Bohannan, 2006). Finally, regional pools of
microbial diversity could be ordered according to the
regional variability of the bacterial community structure,
i.e. South-East � North > Brittany > Landes, thus demon-
strating the need to better understand the biogeographical
patterns of microbial communities in order to improve our
capacity to manage and protect soil biological diversity on
a large scale.
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Abstract Disentangling the autotrophic and hetero-
trophic components of soil CO2 efflux is critical to
understanding the role of soil system in terrestrial
carbon (C) cycling. In this study, we combined a
stable C-isotope natural abundance approach with the
trenched plot method to determine if root exclusion
significantly affected the isotopic composition (δ13C)
of soil CO2 efflux (RS). This study was performed in

different forest ecosystems: a tropical rainforest and
two temperate broadleaved forests, where trenched
plots had previously been installed. At each site, RS

and its δ13C (δ13CRs) tended to be lower in trenched
plots than in control plots. Contrary to RS, δ

13CRs

differences were not significant. This observation is
consistent with the small differences in δ13C mea-
sured on organic matter from root, litter and soil. The
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lack of an effect on δ13CRs by root exclusion could be
from the small difference in δ13C between autotrophic
and heterotrophic soil respirations, but further inves-
tigations are needed because of potential artefacts
associated with the root exclusion technique.

Keywords Stable carbon isotopes .

Natural abundance . Soil respiration . Trenched plot .

Rainforest . Temperate forest

Introduction

Soil plays an important role in the ecosystem carbon
(C) cycle by sequestrating as much as 70% of total
forest ecosystem C as organic matter (Malhi et al.
1999) and contributing 40–70% to total annual forest
respiration through soil respiration (RS) (Chambers et
al. 2004; Epron et al. 2004a; Janssens et al. 2001;
Bonal et al. 2008). As a consequence, RS is a major
component determining the source or sink status of a
forest ecosystem.

Several studies have focused on RS in various
ecosystem types and all reported it was highly spatially
and temporally variable (Buchmann 2000; Epron et al.
2004a, b; Fang and Moncrieff 2001; Gaumont-Guay et
al. 2006; Högberg et al. 2001; Longdoz et al. 2000;
Saiz et al. 2006; Salimon et al. 2004; Yim et al. 2003).
Both spatial and temporal variability of RS were related
to variations in environmental factors and in C inputs
via roots or litter (Epron et al. 2004b; Fang et al. 1998;
Högberg et al. 2001; Longdoz et al. 2000) affecting the
use of two C pools in soil (Epron et al. 2001): (1) a
short residence-time C pool (fast C pool) of photosyn-
thetic assimilates and root exudates that are respired as
autotrophic respiration (Ra) by roots and associated
microorganisms; and (2) a long residence-time C pool
(slow C pool) of litter and soil organic matter (SOM)
that are respired as heterotrophic respiration (Rh)
mainly by microorganisms not associated with roots.
Disentangling the processes using these two C pools is
decisive in understanding soil functioning and model-
ing soil respiration in terrestrial ecosystems in the
context of global environmental change (Baggs 2006).

To separate the components of soil respiration that
uses either the slow or fast C pools, different methods
are applied. Non-isotopic methods are based on cutting
off the fast C pool inputs either by trenching (Boone et
al. 1998; Buchmann 2000; Lee et al. 2003; Li et al.

2006) or tree girdling (Gottlicher et al. 2006; Högberg
et al. 2001). Applying these methods on different
ecosystems significantly reduces RS and allows calcu-
lation of the heterotrophic contribution to RS (see the
review of Subke et al. 2006). However, these methods
are still subject to uncertainties linked to decomposi-
tion of severed roots or soil water content differences
among plot types (Ngao et al. 2007).

C isotope-based methods are extensively used to
study soil functioning. There have been many in situ
measurements of the isotopic composition of soil-
respired CO2 in both C3 and C4 ecosystems (Buch-
mann et al. 1997; Davidson 1995; Ekblad et al. 2005;
Fessenden and Ehleringer 2003; Steinmann et al.
2004). These methods allow targeting of specific soil
processes via isotopic labeling (Andrews et al. 1999;
Kuzyakov et al. 2001; Ngao et al. 2005) or picturing
the whole soil functioning at natural abundance. This
last method successfully separated the Ra and Rh

components of RS in ecosystems characterized by C3 /
C4 successions (Cheng 1996; Rochette et al. 1999).
This separation was possible because the isotopic
compositions (through the δ13C notation) of the fast
and slow C pools were very different (> 10‰).
However, most terrestrial ecosystems do not have
such large differences between the fast and slow C
pools, i.e. differences in δ13C < 2‰ are common
(Balesdent et al. 1993; Bowling et al. 2008). In a
review on C3 ecosystems, in vitro root respiration was
clearly depleted compared to in vitro soil respiration
(Bowling et al. 2008). On the contrary, microbially
respired CO2 seems to be 13C enriched by 1–4‰
compared to bulk SOM (Andrews et al. 1999;
Bowling et al. 2008; Tu and Dawson 2005). Such
observations should be confirmed in situ, but similar
discrepancies would be expected between autotrophic
and heterotrophic soil respirations. According to
Phillips and Gregg (2001), such discrepancies would
lead to accurate estimates of autotrophic and hetero-
trophic contributions to total RS. Therefore, it is valid
to determine if natural abundance of stable C-isotopes
can separate Ra and Rh in ecosystems with small
differences of isotopic composition between the slow
and fast C pools. To our knowledge, only two studies
tackled this question using soil static-chamber meth-
ods. In a boreal forest, Subke et al. (2004) showed
that CO2 efflux from soil without root respiration
(girdled plots) was 13C-depleted compared to rooted
soil (ungirdled plots), but differences were not
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significant. In another study, Formanek and Ambus
(2004) performed an in vitro / in situ experiment and
showed that δ13C of root respiration was in—between
those of soil humus and mineral horizons respiration.

The main objective of this study was to determine
whether δ13C of soil CO2 efflux measured in situ was
significantly affected by root exclusion in different
ecosystems. Keeling plots (Keeling 1958) made with
closed dynamic systems in a tropical evergreen forest
(Paracou, French Guyana) and in two temperate
deciduous forests (Barbeau and Hesse, France) were
performed to compare the isotopic composition of
CO2 evolved from control and trenched plots.

Material and methods

Experimental sites

The Paracou site (French Guiana, 35 m elevation) is
located in the Paracou Research Station (Gourlet-
Fleury et al. 2004) within the “Guyaflux experimental
unit” that covers 200 ha of tropical wet forest (Bonal
et al. 2008). Mean annual air temperature and rainfall
over the past 10 years (1998–2008) were 25.7°C and
3,041 mm, respectively. Soils are mostly acrisols
(FAO-ISRIC-ISSS 1998) developed over a Precam-
brian metamorphic formation called the “Bonidoro
series” and composed of schist and sandstone.

The Hesse experimental sites (Hesse 1 and Hesse 2)
are in the Hesse National Forest (CARBOEUROPE site,
northeastern France, 300 m elevation; Granier et al.
2000). The Hesse 1 site is in the center of a 65 ha stand
of 35 year-old European beech (Fagus sylvatica L.).
The Hesse 2 site is in a mixed 20 year-old stand
dominated by European beech. Mean annual air
temperature and precipitation are 9.2°C and 820 mm,
respectively. The soil is a stagnic luvisol (FAO-ISRIC-
ISSS 1998) of 120 cm depth covered by an oligo-mull
humus.

The Barbeau experimental sites (Barbeau 1 and
Barbeau 2) are located in Barbeau National Forest
(CARBOEUROPE site, southeast of Paris, France,
90 m elevation). The Barbeau 1 site is located in an
oak (Quercus petraea L.) high forest stand. The
Barbeau 2 site is located in an oak forest with cop-
piced hornbeam stand. Mean annual air temperature
and rainfall are 10.7°C and 690 mm, respectively
(1980–1996). Soil is a gleyic luvisol (FAO-ISRIC-ISSS

1998) of 80 cm depth, developed on millstone bedrock
and covered by an oligo-mull humus.

All sites belong to the French network of forest
ecosystems (Observatoire de Recherche en Environ-
nement “fonctionnement des écosystèmes forestiers”).

Experimental design

Trenched plots (TP) were installed at each experi-
mental site to suppress the autotrophic component of
total soil respiration. Trenches were dug around areas
without trees and the delimited plots were lined using
a thick plastic film to prevent external root ingrowth.
One control, untrenched plot (CP), was selected near
each TP. TP and CP characteristics for each experi-
mental site are summarized in Table 1. At Paracou
site, trenches were dug down to a stone line
composed of coarse fragments of lithorelics (60 cm
depth). At Barbeau sites, they were dug down to the
bedrock (80 cm depth). At Hesse sites, trenches were
dug down to the clay horizon (90 cm depth). In all
cases, these layers are almost impermeable to roots,
preventing root ingrowth. At the time of the measure-
ments, at any site, there was no evidence of root
ingrowth into the TP plots. At Paracou sites, root
ingrowth was observed only several months after the
completion of this study, associated to a sharp
increase of soil respiration in the TP plots (data not
shown). At Barbeau and Hesse sites, such an increase
of soil respiration was not observed (data not shown).

Measurements started at least 1 month after trench-
ing (Lee et al. 2003), with details in Table 1. The
measurements were carried out during the main
phenological phases: leafy and unleafy seasons in
temperate forests (Hesse and Barbeau); or during the
main climatic periods: wet and dry periods in the
tropical forest (Paracou). At Hesse sites, measurements
were in March, May and September 2005. At Barbeau
sites, measurements were from March 2005 to May
2006. At the Paracou site, measurements were at the
end of the long dry season of August–November 2004,
and during the short dry period of March 2005 that
interrupts the rainy season of December–July.

Isotopic composition of soil CO2 efflux

The isotopic composition of soil CO2 efflux (δ13CRs)
was determined on CP and TP using the Keeling plot
method (Keeling 1958). Soil CO2 efflux was mea-
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sured by an accumulation chamber connected to an
infrared gas analyzer (EGM 1 or EGM4, PP Systems,
Hitchin, UK, in Barbeau and Paracou, respectively;
and LI-6200, Li-Cor Inc, Lincoln, NE, USA, in
Hesse) in closed circuit mode. The Li-Cor chamber
model Li-600-9 was used at Hesse, while laboratory-
made chambers were used at Barbeau and Paracou
sites. These two chambers were constituted of a
Perspex (acrylic resin) cylinder (25.4 dm3, 12 cm
height in Barbeau and 5 dm3, 52 cm height in
Paracou) equipped with a small fan (airflow 13.5 m3

h−1). During measurements, soil respiration chambers
were laid on permanent collars inserted 2-3 cm into
soil (one per TP and one per CP at Paracou and
Barbeau; three per CP and two per TP at Hesse).
Chambers were equipped to allow air sampling during
measurements

Air samples were collected every 50–100 ppm
CO2 increase in the range 400–1,000 ppm. At
Barbeau sites, five air samples were collected during
CO2 increase using 50 cm3 valved syringes (SGE,
Australia) directly connected to the chamber. At both
Hesse and Paracou sites, 5-6 air samples were
collected during CO2 increase using a specific
sampling device allowing air to be driven from the
chamber into 10 cm3 Exetainer glass vials (Labco,
High Wycombe, UK), and closing of the Exetainer
vial in airtight conditions. This system is described in
detail by Ngao et al. (2005). At the time of syringe
collection (Barbeau) or Exetainer cap closure (Hesse
and Paracou), the CO2 concentration was recorded.
The time lag between detection in the gas analyzer
and the vial collection was < 1 s due to the flow rate
of the instruments (0.3–1.5 L min−1). The expected
[CO2] changes during these time lags were within the
range of instrumental error (1 ppm).

The isotopic composition of sampled CO2

(δ13CCO2) was determined using isotopic ratio mass
spectrometers (IRMS): a VG Optima IRMS (Fison,
Villeurbanne, France) connected to an elemental
analyzer (model NA-1500, Carlo Erba, Milan, Italy)
for the Barbeau samples, and a Delta S IRMS (Delta
S, ThermoFinnigan, Bremen, Germany) connected to
a gas purification device (Gas-Bench II, ThermoFin-
nigan) for the samples from Hesse and Paracou. The
methods cited above are described in Maunoury et al.
(2007) for the Barbeau samples; and in Ngao et al.
(2005) for Hesse and Paracou. Analyses were per-
formed within a week after each field session.T
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Isotopic analysis standard error was 0.2‰. All
isotopic composition values are expressed relative to
the international PDB standard.

Isotopic composition of organic matter

Soil (0–15 cm) and aboveground litter were sampled
during each field session at Paracou and Hesse. At
Barbeau, soil and aboveground litter were sampled
during three field sessions. For each sampling session,
one measurement per CP plot was performed. Each
measurement was performed on one soil sample at
Paracou and on a composite sample (3 soil cores) at
Hesse and Barbeau. Soil was sieved to 1 mm. All fine
roots (< 1 mm diameter) were separated from bulk
soil after sieving. Samples were dried at 60°C and
ground. Ground litter, root and soil samples were
analyzed for δ13C determination using an elemental
analyzer (model NA-1500) connected to the IRMS.

Soil respiration (RS) measurements

At Hesse and Paracou sites, RS was measured before air
sample collection using the same chamber as previ-
ously described for the determination of δ13CRs. At the
Barbeau sites, RS was measured on 10 collars each in
the CP and TP. These collars were inserted 2 cm into
the soil in the vicinity of the Keeling plot collar.
Measurements were performed with a soil respiration
chamber (SRC-1, PP systems) linked to a CIRAS-1 gas
analyzer (PP systems). Wind speed, measured inside
the chamber with a thermal anemometer (Testo, Model
Lenzkirch, Germany) was 0.4 m s−1 as recommended
in Le Dantec et al. (1999). In addition, no system
presented any difference in pressure between the
headchamber and the outside, arguing for no major
leak and no perturbation of the CO2 diffusion gradient
due to over/underpressure (Longdoz et al. 2000).

Data analysis

In each forest, RS recorded on TP were not corrected
for dead root decomposition, and arithmetic means of
RS were calculated for each field session: 10 collars at
Barbeau, 4 at Paracou, and 2–4 at Hesse sites.

The δ13CRs was estimated from a linear regression
fitted through “transformed” CO2 concentration
([CO2]) and δ13CCO2 values. We tested two different
transformation methods. Firstly, a linear regression was

fitted through the inverse of [CO2] (independent
variable) and δ13CCO2 (dependent variable) where
δ13CRs was the intercept (Keeling 1958). Secondly, a
linear regression was fitted through [CO2] (indepen-
dent variable) and the product of [CO2] and δ13CCO2

(dependent variable) where δ13CRs was the slope
(Miller and Tans 2003). In both cases, we used both
ordinary least squares linear regression (model I) and
geometric mean linear regression (model II) (Sokal and
Rohlf 1995). Model I assumes that the independent
variable is measured without random error and the
optimization of the regression parameters is made to
minimize errors on the dependent variable. Model II is
more robust since it assumes that both dependent and
independent variables are measured with some error.
Model II optimizes the regression parameters to
minimize errors on both dependent and independent
variables (Sokal and Rohlf 1995). The correlation
coefficient (r) was calculated in each case.

The standard error of δ13CRs was determined as the
standard error of either the intercept or the slope of
the regression when Keeling or Miller-Tans methods
were used, respectively.

In Hesse and Paracou, mean δ13CRs (d13CRs)
values obtained over replicate collars and the standard
error of the mean (SEðd13CRsÞ) were calculated as
described in Murtaugh (2007). In this method, mean
δ13CRs and its standard error are corrected for the
error made on each estimation.

d13CRs ¼
Xn
i¼1

wi*d
13CRs;i ð1Þ

with wi ¼
1

SE d13CRs;ið Þ2Pn
i¼1

1

SE d13CRs;ið Þ2

0
BB@

1
CCA ð2Þ

SE(δ13CRs,i) is the standard error of δ13CRs ith

estimation, and n the total number of observations
(n=4 in Paracou; n=2–4 in Hesse).

SE d13CRs

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

� �
*
Xn
i¼1

wi* d13CRs;i � d13CRs

� �2
� 	s

ð3Þ
Overlapping of confidence intervals calculated

from the standard error of the mean in Hesse and
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Paracou, and from the standard error of the parameter
in Barbeau (no replication), was used as a criterion to
determine if δ13CRs was significantly different be-
tween TP and CP for each date of measurement. The
same criterion was used to test if δ13C differed
between root, soil and litter bulk organic matter.
Treatment effect on RS was tested by one way
analysis of variance for repeated measurements (one
way RM-ANOVA) on raw data. Significance level
was P<0.05.

Results

Comparison of δ13CRs estimation methods

The different transformation methods and regression
models were compared using the complete dataset
from the three forests. First, Miller–Tans and Keeling
transformations were compared using the same model
(linear regression model I in Fig. 1a; model II in

Fig. 1b). δ13CRs estimated by Keeling method was
similar to that estimated by Miller–Tans method either
when linear regression model I or model II were
applied (slopes=0.98 and r=0.98). In each case,
slopes were not significantly different from 1.

Model I and II linear regressions were compared
for the same variable transformation method (Keeling
in Fig. 1c; Miller–Tans in Fig. 1d). In both case,
estimations of δ13CRs were equivalent, whatever the
linear regression model used (Fig. 1c and d; slope=
0.99, r=0.98). Thus, whatever the chosen transfor-
mation method and linear regression model, there
were similar estimates of δ13CRs.

Several outliers were excluded from the 95%
confidence interval of the regression line (Fig. 1)
and were characterized by a standard error > 5%
(corresponding approximately to a 1‰ error here) of
the estimated δ13CRs. Afterwards, these outliers were
excluded from the dataset. Since both transformation
methods and both regression models gave similar
estimates of δ13CRs; that obtained by the Keeling

Fig. 1 Relationships between δ13CRs estimated using the two
transformation methods (Keeling or Miller–Tans) and the two
linear regression models (Model I or model II). δ13CRs,K I is
δ13CRs estimated using Keeling method associated to linear
regression model I. δ13CRs,K II is δ13CRs estimated using
Keeling method associated to linear regression model II.

δ13CRs,MT I is δ13CRs estimated using Miller–Tans method
associated to linear regression model I. δ13CRs,MT II is δ13CRs

estimated using Miller–Tans method associated to linear
regression model II. Open squares correspond to outliers that
were excluded from the 95% confidence interval
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transformation fitted with linear regression model I
was further used to compare δ13CRs of CP and TP.

Soil respiration

As expected, over the entire experiment period, RS

was always higher in CP than in TP at all experi-
mental sites (Fig. 2). RM-ANOVA analysis on raw
data showed that over this period trenching had a
significant effect at Paracou and Barbeau (P<0.05
and 0.01, respectively), but not at Hesse site (P<0.3
and 0.6 at Hesse 1 and 2, respectively).

Isotopic composition of soil CO2 efflux

In Paracou, the difference between CP and TP was
only −0.4‰ in October 2004 and +0.3‰ in March
2005, δ13CRs being 1.3‰ less negative in March than
in October (Fig. 3a). In Hesse 1 and Hesse 2,
differences between δ13CRs values in CP and TP
ranged between −1.0 and +1.9‰, depending on the
sampling date (Fig. 3b and c). In Barbeau 1 and
Barbeau 2, the difference in δ13CRs between CP and
TP also showed a temporal variability with the δ13CRs

in TP being most often lower than CP (Fig. 3d and e).

Fig. 2 Temporal variations
of soil respiration in a Par-
acou (n=4), b and c Hesse 1
and Hesse 2 (n=2 to 4); d
and e Barbeau 1 and Bar-
beau 2 (n=8 to 10). Control
plots (CP) measurements
correspond to the filled
symbols and trenched plots
(TP) measurements corre-
spond to the open symbols.
Error bars represent ± 1
standard error of the mean
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The difference between CP and TP ranged from −1.5
to +4.5‰. However, at each site, these differences
were not significant, except at the end of April 2005
in Barbeau 1, and in mid-June in Barbeau 2.

δ13C of bulk organic matter

Mean δ13C of root, litter and soil bulk organic matter
are reported in Table 2 (ROM, LOM and SOM,
respectively). At all sites, ROM and LOM were
significantly different from SOM (P<0.05). ROM
was significantly different from LOM at Paracou and
Hesse (P<0.01).

Discussion

Partitioning soil respiration into autotrophic and
heterotrophic components is necessary to analyze the
response of soil respiration to disturbances or changes
in climate; however, most available methods are
based on root exclusion and have strong potential
drawbacks (Balesdent and Mariotti 1996; Ngao et al.
2007). The usefulness of stable isotope signatures for
partitioning autotrophic and heterotrophic compo-
nents has been recognized (Kuzyakov 2006) but it is
still scarcely used (Rochette et al. 1999) and its
applicability to forest ecosystems not tested. In such

Fig. 3 a Temporal varia-
tions of soil respired δ13C-
CO2in (a) Paracou (n=4), b
and c Hesse 1 and Hesse 2
n=2 to 4; d and e Barbeau 1
and Barbeau 2 (n=1). Con-
trol plots (CP) measure-
ments correspond to the
filled symbols and trenched
plots (TP) measurements
correspond to the open
symbols. At Paracou and
Hesse sites, error bars rep-
resent ± 1 standard error of
the mean. At Barbeau site,
error bars correspond to ± 1
standard error of the esti-
mated δ13C
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approaches, a single isotope linear-mixing model
that is based on mass conservation equations is com-
monly applied (Balesdent and Mariotti 1996) and
reported here:

Ra

Rs
¼ dRs � dhð Þ

da � dh
ð4Þ

Ra
Rs is the contribution of the autotrophic component

of soil respiration; δa and δh are the respective
isotopic composition of autotrophic and heterotrophic
sources; and δRs is the isotopic composition of RS.

Applying this equation requires accurate estimates
of the isotopic composition of soil respiration;
differences in stable C-isotopic composition between
total soil respiration and its heterotrophic compo-
nents; and contrasted isotopic compositions of the
different sources. These requirements are evaluated
below.

Towards accurate estimates of the isotopic
composition of soil CO2 efflux

The use of the Keeling or Miller–Tans transformation
methods and the linear regression models I or II to
derive the isotopic signature of a respiratory flux are
still debated. Some authors recommend model II
(Pataki et al. 2003) while others state that only model
I provides an unbiased estimate of the isotopic
signature of a respiratory flux (Zobitz et al. 2006).
In this study, both transformation methods and both
regression models led to very similar estimates. This
was partly due to high r values and the large [CO2]
ranges used to establish the relationship between
[CO2] and δ13CCO2. A large [CO2] range reduces the
effect of low [CO2] values on the estimation of
regression parameters (Pataki et al. 2003; Sokal and
Rohlf 1995). The comparison of the different methods

also showed that they did not converge when the
standard error of δ13CRs estimate was > 5% of the
estimated value. This convergence could be a criteri-
on to evaluate accuracy of δ13CRs estimates.

Evaluating the difference of stable C-isotope
composition between total soil respiration
and its heterotrophic component

RS measured in CP and TP in Paracou are in the range
found in tropical forests (Buchmann et al. 1997;
Chambers et al. 2004; Epron et al. 2004b). Those
measured in Hesse and Barbeau are in agreement with
previous studies of temperate forests (Boone et al.
1998; Buchmann 2000; Epron et al. 2001). Over the
year, RS in CP were higher than in TP at all sites, but
differences were only significant in Paracou and
Barbeau. At Hesse, the decrease in RS by trenching
was not significant, probably because of the small
number of replicates; only three dates of measure-
ments were considered in this study. When consider-
ing the whole set of measurements made on these
plots (every 2 weeks from March 2004 to May 2005),
the difference in RS between TP and CP were
significant (Ngao et al. 2007). The differences were
consistent with previous reports (Bowden et al. 1993;
Epron et al. 2001; Lalonde and Prescott 2007; Subke
et al. 2006). This highlights that the CO2 release
during the decomposition of severed roots only partly
compensates for decreased respiration due to the
removal of root respiration. Therefore trenching
efficiently suppressed root respiration.

The number of replications in isotope data was
constrained by cost and the time required for δ13CRs

measurements. Whether the studied forest ecosystem
was temperate or tropical, the δ13C of soil respired
CO2 (δ

13CRs) of CP were consistent with the literature.
δ13CRs ranges from −28 to –21‰ (Bhudinperpal-Singh

Table 2 Mean (± SE) isotopic composition of root (ROM), litter (LOM) and soil (SOM) bulk organic matter, at Paracou (n=7), Hesse
(n=3), and Barbeau (n=3)

Site plot Root organic matter (ROM) Litter organic matter (LOM) Soil organic matter (SOM)

Paracou Mixed forest −29.4±0.3 −30.9±0.3 −28.6±0.1
Barbeau 1 Oak high forest −28.2±0.2 −28.2±0.2 −27.0±0.3
Barbeau 2 Oak forest with coppiced hornbeam −28.1±0.3 −28.1±0.2 −27.0±0.3
Hesse 1 Beech high forest −27.4±0.2 −29.0±0.2 −26.4±0.1
Hesse 2 Mixed beech forest −28.0±0.1 −29.5±0.2 −26.9±0.2
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et al. 2003; Ekblad and Hogberg 2001; Fessenden and
Ehleringer 2003; Mortazavi et al. 2005; Ngao et al.
2005; Steinmann et al. 2004) and from −28 to –26‰
(Buchmann et al. 1997; Salimon et al. 2004), in
temperate and tropical forests, respectively.

The comparison of δ13CRs measured in control and
root exclusion (trenching) conditions has never been
reported. This difference of δ13CRs between CP and
TP plots could be used to approximate the difference
(δRs−δh) in Eq. 4. Here, despite the difference of
stable C-isotope composition observed in vitro be-
tween root and microbial CO2 (Andrews et al. 1999;
Bowling et al. 2008; Tu and Dawson 2005), there
were no pronounced differences between CP and TP,
in agreement with observations of Subke et al. (2004)
on girdled plots. This lack of marked difference in
δ13C between TP and CP is unlikely to be due to
respiration of severed roots. The delay between
trenching and measurements was very variable among
sites and soil respiration was already reduced by 12–
43% in TP without correcting for severed root
decomposition. The difference of δ13CRs between
CP and TP could have been significant with more
replications (n=20, standard method based on the
normal distribution of differences; Sokal and Rohlf
1995). However, the difference would remain small,
showing that the stable C-isotopic compositions of
CO2 from the autotrophic and heterotrophic compo-
nents of soil respiration are likely to be similar.
Consequently, measuring δ13CRs in— and outside
trench plots likely provides no additional information,
beyond measuring RS, to estimating the relative
contribution of Ra and Rh to RS. Nevertheless,
although this observation is a worthy methodological
point on the use of δ13C in root exclusion studies,
further studies are needed. Indeed, the decomposition
of root organic matter added by trenching may
smooth δ13CRs differences between the CP and the
TP plots. On another hand, trenching is known for
modifying soil moisture in the TP plot, which could
affect organic matter decomposition. At Barbeau sites,
no correlation was found between δ13CRs and soil
moisture throughout the season. Moreover, small
differences were also observed during girdling experi-
ments where soil moisture was not affected by the
treatment (Bhudinperpal-Singh et al. 2003; Högberg
et al. 2001; Subke et al. 2004). Therefore, soil
moisture modification may have little influence on
δ13CRs differences between TP and CP plots.

Evaluating the difference of stable C-isotope
composition between autotrophic and heterotrophic
sources

At all sites, δ13CRs was higher than δ13C for any kind
of organic matter, as frequently reported (Buchmann
et al. 1997; Ekblad and Hogberg 2001; Fessenden and
Ehleringer 2003; Mortazavi et al. 2005; Ngao et al.
2005). These discrepancies between soil CO2 efflux
and bulk organic matter are considered as apparent
isotopic fractionation underlying several actively
studied mechanisms that are far beyond the scope of
this study. Assuming similar fractionations for all
respiratory sources, the difference between ROM and
either SOM or LOM could be used to approximate the
difference (δa−δh) in Eq. 4. This approximation could
also be done by the difference in stable C-isotope
composition between root and soil respired CO2

measured in vitro (Tu and Dawson 2005). In any
case, this difference would be small.

Conclusion

In the present study, we showed that the δ13C of soil
CO2 efflux was not significantly affected by root
exclusion in three C3 ecosystems. This result is in
agreement with the small δ13C differences observed
between bulk organic matter of root, litter and soil.
Applying the differences (δRs−δh) and (δa−δh) esti-
mated above in Eq. 4 would lead to large uncertainties
in the partitioning of soil respiration (Phillips and
Gregg 2001; 2003); because differences are small
despite their potential statistical significance. There-
fore, the lack of marked difference would greatly limit
the applicability of stable C-isotopes as a tool for
separating Ra and Rh in C3 ecosystems. However,
seasonal changes in δ13CRs and in the difference in
δ13CRs between CP and TP probably reflects temporal
changes in the isotopic composition of available
substrates for respiration, especially for roots and
microbes in the rhizosphere that rely on recently
assimilated carbon. The analysis of this temporal
signal in soil respiration would be an opportunity to
quantify the contribution of recently assimilated
carbon to soil respiration, but will require frequent
or even continuous measurements of soil respiration
and its isotopic signature, certainly by means of 13C
labeling.
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Résumé 
Dans un contexte de transition agroécologique, le projet Agrinnov a permis de valider un tableau de 
bord d’indicateurs analytiques de la qualité biologique des sols agricoles permettant aux agriculteurs 
d’appréhender l’impact de leurs pratiques. Le projet AgrInnov a amené des chercheurs et des 
agriculteurs à collaborer. En parallèle du tableau de bord (comprenant des indicateurs de faune du sol, 
de microbiologie et agronomiques), des formations sur la biologie des sols ont été élaborées ainsi qu’un 
mode opératoire de transfert. Les formations et le tableau de bord ont été déployés sur un réseau 
national de plus de 250 fermes en grande culture et en viticulture. D’un point de vue scientifique, il a été 
démontré que moins de 10% des parcelles testées étaient dans un état critique en termes de biologie 
du sol ce qui est encourageant sur la qualité des sols agricoles, même si il faudrait développer leur 
surveillance sur un plus grand nombre de fermes et de systèmes de production afin d’avoir un 
diagnostic plus exhaustif et représentatif. D’un point de vue opérationnel, plus de 97% des agriculteurs 
ont suivi le projet jusqu’au bout avec un fort investissement de leur part. Par conséquent, le projet 
AgrInnov a fait la démonstration opérationnelle de l’application et de l’appropriation par les agriculteurs 
des nouveaux outils de diagnostic de la qualité des sols émanant directement de la recherche,  
Mots-clés : diagnostic biologique, sols agricoles, agroécologie, formation 
 

Abstract: Biological indicators of agricultural soil quality 
Within a context of agroecological transition, the Agrinnov project validated a set of indicators of the 
biological quality of agricultural soils to enable farmers to grasp the impact of their practices. AgrInnov 
project brought researchers and farmers to work together. To accompany the set of indicators of soil 
fauna, microbiology and agronomy, training sessions on soil biology have also been implemented 
together with an appropriate transfer procedure. The training sessions and the set of indicators were 
spread on a national network of more than 250 field-crop and viticulture farms. From an operational 
viewpoint, more than 97% of the farmers invested heavily in the project and stayed involved throughout 
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the project. From a scientific viewpoint, less than 10% of the tested plots were assessed to be in a 
critical state in terms of soil biology, which is encouraging on agricultural soil quality, even though the 
monitoring should be developed on a broader number of farms and production systems in order to have 
a more exhaustive and representative diagnosis. Thus the AgrInnov project demonstrated the 
application and adoption by the farmers of new research-based tools for diagnosing soil quality. 
Keywords: biological diagnosis, agricultural soil, training, agroecology 
 
Introduction-objectifs du projet. 
Le pilotage de la qualité des sols au sein des systèmes de production agricole français est 
essentiellement basé sur un suivi des caractéristiques physiques (état structural…) et chimiques (pH, 
reserve en N, P, K, quantité et type de matière organique …). Or, il n’est plus à démontrer que les 
organismes vivants du sol jouent un rôle fondamental dans son fonctionnement et plus largement dans 
certains services qui peuvent intéresser les productions agricoles (fertilité biologique, état sanitaire, 
dégradation des polluants…). De même, le concept d’assurance écologique démontre une relation 
positive entre la biodiversité et la productivité primaire ainsi qu’entre la biodiversité et la stabilité 
(durabilité) des écosystémes (Loreau et al., 2000). Par ailleurs, le sol représente la 3ème frontière 
biotique avec sa biodiversité qui correspond à 25% de la biodiversité totale (Maron et al., 2011). Parmi 
les organismes du sol, les macro-organismes sont considérés comme des ingénieurs de l’écosystème 
qui vont conditionner le biotope des autres organismes de la faune et microorganismes, modifiant ainsi 
les cycles biogéochimiques (Barot et al., 2007). Les microorganismes représentent quant à eux les 
organismes les plus diversifiés d’un point de vue taxonomique et fonctionnel (Bouchez et al., 2016) et 
sont les acteurs clés de la plupart des cycles biogéochimiques. Entre les deux, les organismes de la 
microfaune et mésofaune jouent aussi un rôle complémentaire dans l’évolution de la matière organique 
et les cycles des nutriments (Cortet et al., 1999). 
Dans un contexte agricole en pleine mutation, il apparaît aujourd’hui essentiel de se doter d’outils de 
surveillance de la qualité du sol permettant d’appréhender l’impact des pratiques (labour, pesticides, 
rotation, fertilisation) sur son fonctionnement biologique, et les services qu’il rend pour la production 
agricole. En effet, les organismes vivants du sol (faune du sol, bactéries, champignons) jouent un rôle 
fondamental dans son fonctionnement : dynamique des matières organiques et cycle du carbone et de 
l’azote, biodisponibilité des éléments nutritifs, dégradation de polluants organiques, rétention de 
polluants métalliques, action sur la structure des sols, etc. Ces communautés biologiques sont 
susceptibles de traduire l’ensemble des stress environnementaux de leur milieu et, par la précocité de 
leurs réactions, ils apparaissent donc comme de bons indicateurs de l’évolution des sols (Ranjard et al., 
2010). 
C’est dans ce contexte qu’est né le projet AgrInnov (CASDAR 2012-2015) qui visait à valider l’utilisation 
d’indicateurs biologiques de la qualité du sol, tout en créant un mode opératoire de transfert et des 
formations. Il devait aussi permettre de poser les fondations d’un réseau de veille à l’innovation agricole 
(REVA) articulé notamment autour du thème de l’impact des pratiques agricoles sur la vie biologique 
des sols. Celle-ci serait mesurée par des bioindicateurs ciblant les lombrics, les nématodes et les 
microorganismes, et couplés à des indicateurs agronomiques (état structural et physico-chimie du sol, 
dégradation de la matière organique). 
L’équipe projet a réuni les experts nationaux des indicateurs biologiques et agronomiques les plus à-
mêmes de répondre aux attentes des agriculteurs. Une des originalités et LE challenge du projet 
AgrInnov étaient de faire travailler ensemble les chercheurs avec les agriculteurs, chacun restant expert 
dans son domaine. Les agriculteurs avaient pour mission de décrire leurs besoins, de mesurer, et de 
trouver parmi les outils qui leurs seraient proposés, ceux qu’ils accepteraient de tester. Les chercheurs 
avaient pour mission de faire correspondre aux besoins de mesure des agriculteurs, des outils déjà 
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validés par la recherche, et de créer le contexte et l’accompagnement appropriés (formation, mode 
opératoire, documents de restitution) pour que les agriculteurs puissent les tester et se les approprier. 
Le choix des bioindicateurs retenus dans le cadre de ce projet était guidé par leur aspect 
opérationnel et l’existence d’un référentiel d’interprétation spécifique. Il a donc été développé un 
véritable diagnostic de la qualité biologique et agronomique des sols agricoles. En outre, pour faciliter la 
lecture des informations récoltées, l’équipe projet a développé des « indicateurs de synthèse ». Ces 
derniers combinent les valeurs issues de différents indicateurs élémentaires complémentaires, dont 
l’assemblage permet la caractérisation et le diagnostic agronomique des grandes fonctions du sol, 
comme le patrimoine biologique / assurance écologique, et la fertilité biologique. 
En parallèle du tableau de bord analytique, des formations sur la biologie des sols ont été mises en 
place afin d’accompagner l’appropriation des indicateurs biologiques. Celles-ci intégraient des aspects 
variés couvrant des notions de base en biologie des systèmes terrestres, la description des différents 
indicateurs disponibles, ou encore des études d’impact des pratiques agricoles sur la biologie du sol et 
les fonctions qu’elle porte. L’ensemble « tableau de bord et formation » a été déployé sur le réseau 
AgrInnov, créé dans le cadre du projet et constitué de fermes agricoles en grande culture (125) et en 
viticulture (123). AgrInnov a permis d’établir un contexte d’échange des savoirs dans lequel les 
agriculteurs pourront plus facilement mettre de côté une vision essentiellement productiviste de la 
parcelle, et s’approprier une vision d’un écosystème « piloté de manière à fournir durablement diverses 
catégories de biens et de services précisément qualifiés » (« Projet Transition Agroécologique pour la 
France » Ministère de l’agriculture, 2015). 
 
1. Constitution et rôle du Groupe de Travail Mixte (GTM) 
Une des originalités et le grand challenge du projet AgrInnov étaient de faire travailler directement les 
chercheurs et les agriculteurs. Les GTM étaient donc les rencontres lors desquelles les experts, 
chercheurs et formateurs développaient une formation et un tableau de bord sur la biologie des sols, qui 
devaient correspondre au mieux aux attentes et besoins des agriculteurs. Ainsi, les agriculteurs 
échangeaient avec les chercheurs lors des nombreuses phases d’interactions organisées dans le projet 
(formation, échantillonnage, rendu de résultats) afin d’identifier les outils les plus opérationnels pour eux 
et aussi les pratiques agricoles les plus éco efficientes au vu des résultats d’analyse.  
L’objectif des GTM était d’impliquer la plus grande diversité possible d’agriculteurs. Les groupes étaient 
donc basés sur le volontariat des agriculteurs. Les GTM ont permis notamment d’optimiser le nombre 
d’indicateurs du tableau de bord en éliminant les moins opérationnels mais aussi d’améliorer certaines 
techniques d’échantillonnage sur le terrain pour les rendre plus opérationnelles. Les agriculteurs ont été 
aussi fortement critiques et structurants sur la mise en place de la formation sur la biologie des sols 
agricoles pour qu’elle corresponde au plus près aux attentes de la profession. 
 
2. Inventaire et sélection des indicateurs  

2.1 Les indicateurs élémentaires 

Les bioindicateurs retenus dans le cadre de ce projet se basent sur des mesures de la faune 
(nématodes et lombrics) ainsi que des microorganismes du sol (bactéries et champignons). Ces 
organismes sont reconnus pour jouer un rôle essentiel dans le bon fonctionnement biologique des sols 
et la durabilité des agrosystèmes. Au sein de ces deux groupes, le choix des indicateurs a été fait sur la 
base de l’expertise des unités de recherche impliquées (INRA, Université). Les critères d’évaluation des 
indicateurs étaient : 
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- d’être validés scientifiquement (sensibilité, fiabilité, spécificité) via des programmes de recherche 
(ADEME Bioindicateur I et II, ANR ECOMIC-RMQS, ADEME RMQS-BIODIV, EU ENVASSO, EU 
Ecofinder…), 

- de disposer d’un référentiel d’interprétation pour la viticulture et les grandes cultures afin d’identifier 
la gamme de variation normale en fonction des types pédo-climatiques et d’usages des sols et ainsi 
permettre de diagnostiquer précocement l’impact des pratiques agricoles ainsi que les modifications 
du fonctionnement biologique des sols, 

- d’intégrer des fonctions biologiques supportant des services rendus par les agrosystèmes (fertilité, 
réduction des GES, protection des cultures, dépollution, durabilité…), 

- d’être mesurables à un coût économique abordable, facilement opérationnels sur le terrain et au 
laboratoire et donc utilisables et interprétables par les agriculteurs et les agents du développement 
rural, 

- d’avoir obtenu la validation du GTM constitué d’experts et d’agriculteurs. 
A la suite de la sélection effectuée, la liste finale des indicateurs retenus pour constituer le tableau de 
bord analytique AgrInnov (Figure 1) est la suivante : 
- Abondance lombricienne totale 
- Abondance des 4 groupes fonctionnels de lombriciens (épigé, épi-anécique, anécique, endogé) 
- Diversité et structure taxonomiques des communautés lombriciennes 
- Biomasse moléculaire microbienne 
- Rapport densité champignons/densité des bactéries 
- Diversité taxonomique des bactéries et des champignons 
- Abondance des nématodes libres 
- Diversité taxonomique des nématodes 
- Abondance des nématodes phytoparasites 
- Indice de structure des nématodes 
- Indice d‘enrichissement des nématodes 
- Structure du sol (par un test bèche) 
- Caractéristiques physico-chimiques des sols 
- Teneur en polluants métalliques (Cu, Ni, Pb…) 
- Dégradation de la matière organique (par la méthode du litter-bag) 
 
Grâce à la présence d’un référentiel d’interprétation spécifique à chaque type d’indicateur élémentaire, 
un véritable diagnostic de la qualité biologique et agronomique des sols agricoles a donc pu être 
développé. 
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Figure 1 : Liste des outils et indicateurs biologiques et agronomiques constituant le tableau de bord du projet 
AgrInnov 

 

2.2 Les indicateurs de synthèse© 
En parallèle, l’équipe projet a développé des indicateurs de synthèse© qui permettent d’avoir une 
vision plus synthétique de l’information fournie par l’ensemble des indicateurs. Ces indicateurs de 
synthèse intègrent différents indicateurs élémentaires agronomiques et biologiques complémentaires 
pour diagnostiquer des grandes fonctions du sol d’intérêt agronomique. A ce jour, deux indicateurs de 
synthèse ont été développés : 
- l’indicateur patrimoine biologique / assurance écologique, qui renseigne sur la capacité d’un 

sol à héberger une forte abondance et diversité d’organismes vivants mais aussi sur les équilibres 
biologiques entre ces organismes. 

- l’indicateur fertilité biologique, qui renseigne sur la capacité d’un sol à dégrader la matière 
organique endogène ou apportée par les pratiques culturales (amendements, résidus de culture). 

 
Figure 2 : Indicateurs de synthèse© de la qualité biologique des sols. 
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3. Modalités de la mise en place au sein du réseau 

3.1 Mise en place d’un réseau national de fermes : le réseau AgrInnov. 
Après validation par le GTM de la liste d’indicateurs proposés dans l’étape 2, ceux-ci ont été déployés 
au sein du réseau AgrInnov. La stratégie développée était de dispenser dans un premier temps la 
formation sur la biologie du sol, et dans un second temps de laisser les agriculteurs réaliser les 
prélèvements de leur sol. Les résultats d’analyse regroupés dans un tableau de bord agricole leur sont 
ensuite retournés. Il a donc été décidé : 
- de créer des groupes d’agriculteurs exploitant des fermes proches géographiquement mais 

développant des pratiques différentes (pour évaluer aux mieux l’effet de pratiques différentes dans 
un pédoclimat comparable) ; 

- de ne traiter qu’une seule parcelle par agriculteur ; 
- de réunir 10 à 15 fermes par groupe. 
Il a ainsi été constitué 10 groupes d’agriculteurs et 10 groupes de viticulteurs représentant 
respectivement 125 et 123 parcelles, dont la Figure 3 présente la répartition à l’échelle du territoire. Ce 
réseau que nous avons baptisé « Réseau AgrInnov » a été mis en place et coordonné grâce aux 
acteurs du développement agricole (CA, ITA, APAD, groupements agricoles, …) 

 
Figure 3 : Réseau « Agrinnov » de fermes en grandes cultures et de domaines viticoles 
 

Ce réseau affiche une surreprésentation de certains systèmes de production au regard de leur place 
réelle dans le paysage agricole national, comme les exploitations en agriculture biologique ou 
agriculture de conservation des sols. Ceci peut s’expliquer par le fait que nous avons recherché 
l’adhésion d’agriculteurs et de viticulteurs volontaires, ce qui rassemble les plus concernés par l’impact 
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des pratiques sur la qualité des sols qui automatiquement, sont souvent les plus innovants dans leur 
domaine. 

3.2 Elaboration d’un guide d’échantillonnage 

Un groupe d’experts a été constitué pour réaliser un guide d'échantillonnage par type de production 
(grande culture et vigne). Ce choix est motivé par la spécificité de la configuration des rangs de vignes 
par rapport aux grandes cultures. Le groupe réunissait un expert de chaque indicateur, un expert en 
viticulture, et un en grande culture. Le guide d’échantillonnage détaille : 
- les conditions nécessaires et la période idéale pour les prélèvements, 
- les dispositifs d'échantillonnage (localisation relative des différents types de prélèvements), 
- le matériel nécessaire et la procédure détaillée de réalisation de chaque type de prélèvement 
- les conditions d'expédition et de conditionnement des échantillons. 
Tous les indicateurs élémentaires sont échantillonnés directement sur les parcelles agricoles. Certains 
sont analysés immédiatement sur le terrain (ex. comptage de vers de terre, test bèche) tandis que 
d’autres sont analysés en laboratoire spécialisé (ex. comptage de nématodes par observation 
microscopique, caractérisation de la biomasse et de la diversité microbienne par des outils de biologie 
moléculaire basés sur la caractérisation de l’ADN du sol). Une séquence technique et logistique 
rigoureuse a été développée pour organiser l’échantillonnage, l’envoi d’échantillons de sols et 
d’échantillons biologiques (par les agriculteurs), le stockage de ces échantillons et leur analyse et le 
référencement des résultats obtenus dans une base de données. 

3.3 Stratégie de mise en place au sein du réseau 
L’ensemble des outils développés (formation, tableau de bord et guide) a été testé auprès des fermes 
du nord-ouest de la France, soit une quarantaine au total. Les suggestions émises à l’issue de ce test 
ont alors été prises en compte par les chercheurs et les formateurs pour améliorer la formation mais 
aussi les procédures d’échantillonnage au terrain et l’accompagnement dans l’interprétation des 
résultats. De la même manière et dans le même temps, ces tests grandeur nature ont permis à l’équipe 
projet de réaliser une analyse critique des outils et des moyens de transfert qu’elle avait développés. 
Elle a ainsi pu améliorer l’organisation de ses actions, qu’il s’agisse : 
- Du contenu et de l’organisation des formations, 
- De la logistique de l’échantillonnage, 
- Du contenu, des documents, et de la présentation des sessions de restitution des résultats. 
Après le franchissement de cette étape cruciale, l’ensemble des outils de diagnostic finalisés a été 
diffusé au reste du réseau national, soit 248 parcelles réparties dans les quarts de France Nord Est, 
Sud Est et Sud Ouest. 
 
4. Formation, Restitution et Transfert 
Cette étape avait pour objet d’assurer le transfert et l’utilisation des outils développés dans le cadre du 
projet mais hors du réseau Agrinnov, vers les utilisateurs agriculteurs, conseillers/techniciens agricoles, 
étudiants et laboratoires commerciaux mettant en œuvre des analyses biologiques. Le transfert vers les 
étudiants ingénieurs et en licence professionnelle « production végétale » a été réalisé partiellement par 
les établissements d’enseignement partenaires d’AgrInnov (ISARA, ESA, AgroSup Dijon). Le transfert 
aux agriculteurs et conseillers/ techniciens a pu être largement mis en œuvre avec des outils de 
formation harmonisés. Ces formations étaient destinées à fournir les connaissances nécessaires pour 
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(i) mieux connaître la vie biologique des sols et les indicateurs retenus, (ii) prélever les échantillons, et 
(iii) savoir interpréter ses résultats par rapport à un référentiel et comprendre les variations observées. 
L’ingénierie des formations a été pensée en collaboration étroite avec les agriculteurs dans le cadre des 
GTM, afin de garantir la meilleure adéquation à leurs besoins. Ces interactions ont permis de valider le 
cahier des charges complet des formations sous la forme d’un kit de formation. La formation dure une 
journée et demie, et la première journée est divisée en deux parties : 
- la première partie théorique est dispensée en salle. Elle présente aux agriculteurs la biologie du sol, 

les services agronomiques et environnementaux rendu aux productions agricoles, et comporte des 
exemples de l’impact des pratiques agricoles. Elle permet aussi la présentation technique des 
différents indicateurs qui constituent le tableau de bord AgrInnov et explique leur intérêt. 

- la deuxième partie est composée de travaux pratiques. Elle a lieu l’après-midi sur une parcelle 
agricole d’un des agriculteurs stagiaires. Toutes les étapes d’échantillonnage de sols, de 
prélèvements biologiques (vers de terre), et de réalisation du test bêche et du litterbag, sont 
expliquées et réalisées. Cette partie de la formation s’appuie sur le guide d’échantillonnage élaboré 
dans le cadre du projet. 

Les formations ont eu lieu en automne ou au printemps, périodes les plus propices à l’échantillonnage 
tant en termes de conditions climatiques que de disponibilité des agriculteurs. Par la suite, les 
agriculteurs disposaient de 4 à 6 semaines pour échantillonner sur leurs parcelles et envoyer les 
échantillons aux différents experts/laboratoires. En parallèle, les agriculteurs étaient invités à remplir un 
questionnaire sur les pratiques agricoles de la parcelle échantillonnée. Les experts ont disposé de 3 à 6 
mois pour analyser les échantillons. 
Une dernière demi-journée de formation est consacrée à la restitution des résultats sur les lieux de la 
formation. Pour cette restitution un effort particulier a été mené par l’équipe projet pour développer des 
fiches synthétiques présentant les résultats pour chaque indicateur élémentaire et les indicateurs de 
synthèse (Figure 4). 
Les formations ont été coordonnées pour chaque quart de France par les partenaires locaux du projet 
AgrInnov : 
- au Nord-Ouest : CA 49 et ESA Angers ; 
- au Nord-Est : AgroSup Dijon ; 
- au Sud-Est : ISARA Lyon ; 
- au Sud-Ouest : IFV ; 
La coordination nationale a été réalisée par l’OFSV. 
Au total 20 groupes ont été formés, représentant environ 300 personnes : 248 agriculteurs et 50 invités 
(techniciens de chambres et de coopératives et agro fournisseurs). Au final, sur les 248 agriculteurs et 
viticulteurs qui ont suivi l'un de 20 ateliers de formation, 240 ont échantillonné de façon rigoureuse leur 
sol pour les faire analyser. 97% des agriculteurs et viticulteurs ont donc adhéré au projet jusqu’au bout. 
Il n’y a pas de différence significative de retour entre le réseau viticole et le réseau grande culture. 
Des enquêtes de satisfaction ont été mises en place et elles montrent le réel intérêt des acteurs du 
monde agricole à disposer d’outils de diagnostic sur la qualité biologique des sols afin d’évaluer l’impact 
de leurs pratiques et la durabilité de leur production (Figure 5). Elles montrent aussi que la démarche 
d’AgrInnov est pertinente pour diffuser ces outils et ces nouveaux concepts au niveau des agriculteurs. 
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Microorganismes Test bèche Litterbag Nématodes Vers de terre 

Indicateurs 
de synthèse 

 
Figure 4 : Fiche individuelle de résultats. 
 

 
Figure 5 : Résultats des enquêtes de satisfaction des agriculteurs et viticulteurs au sujet de la formation et du 
tableau de bord analytique AgrInnov 

 
5. Analyse issue des résultats du réseau national AgrInnov 

5.1 Clusterisation des itinéraires techniques en grande culture et en 
viticulture du réseau de parcelles AgrInnov 

Dans le projet, les agriculteurs ont rempli des enquêtes sur leurs pratiques et leur système de 
production. La compilation de ces enquêtes a permis d’analyser la représentativité de certaines 
caractéristiques des systèmes de production du réseau AgrInnov, (sans labour, bio, conventionnelle, 
ecophyto…) et de segmenter la population de parcelles en fonction des différents types d’itinéraires 
techniques (ITK). Une typologie mathématique de « clusterisation » a été combinée avec une typologie 
« à dire d’experts »  et a permis de définir les grands critères de segmentation: 
- Travail du sol 
- Assolement et longueur des rotations : couvert, diversité des rotations 
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- Fertilisation et amendement : engrais chimiques, apport de matière organique endogène ou 
exogène (MOE) 

- Protection phytosanitaire 
Ce tri statistique des itinéraires techniques était indispensable pour pouvoir confronter les résultats des 
indicateurs biologiques et agronomiques aux pratiques des agriculteurs. Les tableaux ci-dessous 
présentent les typologies issues respectivement des enquêtes en grandes cultures et des enquêtes en 
vignes. 

 
Figure 6 : Catégories d’itinéraires techniques au sein du réseau AgrInnov, en haut pour les grandes cultures et 
en bas pour les vignes. 
 

5.2 Analyse du tableau de bord complet 
Les Figures 7 et 8 représentent pour chaque groupe issu des typologies de pratiques les valeurs 
moyennes des paramètres des indicateurs biologiques et agronomiques. 
- « rouge » pour un score moyen inférieur au seuil d’alerte ; 
- « orange » pour un score compris entre le seuil d’alerte et l’optimum ; 
- «  vert » pour un score moyen supérieur à l’optimum. 
Ces premiers résultats montrent : 

- que les indicateurs élémentaires du tableau de bord sont complémentaires car ils ne donnent 
pas tous la même tendance au sein et entre les itinéraires techniques. 
- que la sensibilité des indicateurs est différente en fonction du système de production (grande 
culture vs viticulture) ; pour exemple, la biomasse moléculaire microbienne est majoritairement 
dans le vert pour les sols de grandes cultures mais majoritairement dans le rouge pour les sols 
viticoles. 

D’un point de vue plus général, la qualité biologique et agronomique des sols dans l’échantillon 
considéré est meilleure dans les sols de grande culture en comparaison des sols viticoles. Par ailleurs, 
ces résultats peuvent être partiellement influencés par les variations de type de sols et de climats entre 
les parcelles d’un même groupe d’itinéraires techniques. Toutefois, il apparait globalement difficile de 
différencier les itinéraires techniques uniquement en se focalisant sur les performances des indicateurs 
biologiques et agronomiques. 
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Figure 7 : Evaluation des systèmes de production en grandes cultures 
 

 
Figure 8 : Evaluation des systèmes de production en viticulture 
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5.3 Analyse des indicateurs de synthèse. 

La distribution de l’ensemble des parcelles analysées selon le résultat des indicateurs de synthèse est 
présentée dans la Figure 9. 
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Figure 9 : Analyse des indicateurs de synthèse© sur le réseau AgrInnov. 
 

Un des résultats marquants du projet AgrInnov est la démonstration que seulement 10% des sols des 
parcelles agricoles et viticoles étudiés sont dépréciés en termes de patrimoine biologique et de fertilité 
biologique ; ce résultat mériterait d’être consolidé en étendant l’étude sur un plus grand nombre de sols 
et de systèmes de production. Une analyse plus détaillée par système de production a toutefois montré 
que les sols viticoles sont plus altérés en termes de biologie et fonctions biologiques du sol que les sols 
en grande culture. Ceci peut s’expliquer par le fait que l’orientation productive initiale d’une parcelle en 
« grande culture » ou « vigne » est notamment dictée par le type de sol. Un autre paramètre explicatif 
est que les systèmes de production viticoles sont plus agressifs pour la biologie des sols et les fonctions 
et services qui en découlent. 
 
6. Modalités de valorisation et extension du projet  
Lors du déroulement du projet le site internet de l’OFSV (www.ofsv.org) a présenté les différentes 
avancées du projet et ses résultats opérationnels les plus marquants. De plus, des films sur les 
formations ont été réalisés et accompagnent le guide d’échantillonnage et d’analyse des différents 
bioindicateurs du projet. Ces films sont à ce jour finalisés et seront à disposition sur le site internet de 
l’OFSV qui sera réaménagé dans ce but. 
Le projet AgrInnov a abouti à l’organisation des Journées de l’Innovation Agricole, (www.jiag.info). Il 
s’agit d’un colloque de deux jours qui s’est tenu les 2-3 novembre 2015 au centre des congrès 
d’Angers. Ce colloque avait pour objectif de faire le bilan des projets de recherche et de développement 
menés par les instituts de recherche et technique, les chambres d’agriculture, les groupements 
agricoles etc. afin d’avoir une meilleure connaissance de la biologie des sols agricoles et la possibilité 
de développer des nouveaux outils de diagnostic et de conseil adaptés en agroécologie. Ce colloque 
était articulé autour de la présentation du projet AgrInnov et des avancées significatives qu’il a permis 
d’un point de vue technique, scientifique et opérationnel. Il a réuni plus de 325 personnes : agriculteurs, 
étudiants, décideurs, politiques, acteurs du développement agricole et chercheurs. Il a aussi permis de 
voir que les entreprises d’agro fourniture sont elles aussi demandeuses de ce genre de manifestation 
pour comprendre plus vite le besoin des agriculteurs et faire évoluer leur offre. 
D’autres modes de communication ont également été utilisés pour communiquer et vulgariser les 
résultats du projet AgrInnov (presse technique agricoles, presse grand public, congrès scientifiques 
nationaux et internationaux, manifestation agricoles etc…). Le recours à cette gamme très large de 
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canaux de communication a permis de toucher et de sensibiliser un public très large sur l’intérêt de la 
biologie du sol pour le diagnostic de l’état du sol dans un contexte d’agroécologie. 
 
Conclusion 
Le projet AgrInnov s’est terminé en juin 2015 et a fait la démonstration opérationnelle que les 
agriculteurs sont prêts à acquérir de nouvelles connaissances sur la biologie des sols et à modifier leurs 
pratiques selon ces nouvelles connaissances. Ceci n’est possible que par une interaction forte et à 
double sens entre les chercheurs et les agriculteurs. Par la suite, afin de pérenniser les groupes 
d’agriculteurs et de viticulteurs formés à l’échelle nationale, différentes initiatives régionales sont en 
train de voir le jour par l’intermédiaire notamment des financements FEADER et des Agences de l’eau, 
des contrats territoriaux, des contrats filières, de l’ADEME, des régions,….ou par l’intermédiaire de 
programmes comme Ecophyto. Au niveau des régions Bourgogne, PACA, Pays de Loire, Midi-
Pyrénées, Languedoc Roussillon, Poitou-Charentes et Champagne-Ardenne, les chambres 
d’agricultures, instituts techniques ou groupements agricoles (GIEE) vont déposer des demandes de 
financement (FEADER, Agence de l’eau, GIEE…) pour pérenniser et étoffer les groupes de viticulteurs 
et d’agriculteurs mis en place. Ce réseau, initié sur la base du réseau AgrInnov, s’appelle le REVA 
(Réseau de Veille à l’Innovation Agricole). La coordination nationale de ce réseau est assurée par 
l’Observatoire Français des Sols Vivants (www.ofsv.org) et la coordination locale par les différents 
organismes impliqués dans AgrInnov (AgroSup Dijon, ISARA, IFV, ESA, CA, Univ. Rennes…). En 
parallèle, l’équipe d’experts AgrInnov est en train de finaliser un partenariat plus pérenne pour protéger 
et diffuser la formation et le tableau de bord développés dans le projet.  
Dans ce contexte et à la suite d’AgrInnov, des structures de prestation ont été confortées dans leur 
position et d’autres ont vu le jour. La société ELISOL environnement et l’OPVT ont pu, grâce au projet, 
consolider leur rôle d’expert sur la faune du sol en lien avec les pratiques agricoles. De plus, l’ESA a 
développé une nouvelle structure (LEVAbag MD) qui permettra de diffuser une nouvelle prestation de 
service dans le monde agricole basée sur les litter bags. Par conséquent, les filières de formation et de 
diffusion du tableau du bord analytique sur les indicateurs de la biologie de sols agricoles sont initiées 
et consolidées grâce au projet AgrInnov. Ces filières pourront pleinement se positionner et s’exprimer 
dans le futur réseau REVA. 
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	A29_Vol55-4-Cannavacciulo
	BOOK_ATLAS FRANCAIS DES BACTERIES DU SOL_COUVERTURE
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice




