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Simple Summary: This study addresses the challenge of accurately monitoring the feeding behavior
of cattle, which is crucial for their health and productivity. The aim was to compare two versions of a
computer vision algorithm, YOLO (v8 vs. v10), which identifies objects in images, to evaluate how
well they can recognize the feeding activities of beef cattle. By recording videos of bulls on a farm
and analyzing them using YOLO algorithms, we found that both versions were effective at detecting
these behaviors, but the latest version was slightly better and faster at learning. This new version
also showed a reduced tendency to repeat errors. The conclusion is that the latest version of YOLO is
more efficient and reliable for real-world use on farms. This advancement is valuable to society as
it helps farmers better monitor and manage cattle feeding, leading to healthier animals and more
efficient farming practices.

Abstract: This study highlights the importance of monitoring cattle feeding behavior using the
YOLO algorithm for object detection. Videos of six Charolais bulls were recorded on a French
farm, and three feeding behaviors (biting, chewing, visiting) were identified and labeled using
Roboflow. YOLOv8 and YOLOv10 were compared for their performance in detecting these behaviors.
YOLOv10 outperformed YOLOv8 with slightly higher precision, recall, mAP50, and mAP50-95 scores.
Although both algorithms demonstrated similar overall accuracy (around 90%), YOLOv8 reached
optimal training faster and exhibited less overfitting. Confusion matrices indicated similar patterns
of prediction errors for both versions, but YOLOv10 showed better consistency. This study concludes
that while both YOLOv8 and YOLOv10 are effective in detecting cattle feeding behaviors, YOLOv10
exhibited superior average performance, learning rate, and speed, making it more suitable for
practical field applications.

Keywords: computer vision; feeding activities; beef cattle; YOLO; precision livestock farming

1. Introduction

In recent years, scientific interest in analyzing animal behavior as a cornerstone for in-
formed decision-making in cattle farming has increased. Accurate recording of parameters
such as feeding frequency and duration provides invaluable insights into the nutritional
monitoring of cattle, facilitating the formulation of balanced diets that ensure well-being,
productivity, and a reduction in the environmental impact of the herd [1]. Furthermore,
beyond nutritional considerations, deviations in feeding behavior patterns, such as reduced
intake or abnormal feeding habits, can serve as early indicators of underlying health is-
sues [2]. However, continuous visual observation is labor-intensive, time-consuming, and
not worth the limited benefits gained. Since the emergence of Industry 4.0 technologies
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in the livestock sector, machine learning algorithms coupled with cameras have assisted
in this task over the past decades. These machine learning algorithms, specifically object
detection algorithms, make it feasible and efficient to assess individual animal behaviors
across diverse farm sizes and types, showcasing their versatility and applicability across
various livestock management contexts [3].

When discussing object detection (involving many objects in a single image), the You
Only Look Once (YOLO) algorithm has already demonstrated its utility in monitoring feed-
ing and animal behavior across different species [4–7]. Regarding cattle, YOLO has been
used to detect feeding behaviors in cows [8,9], monitor estrus [10], and track individual cat-
tle behavior [11]. While other computer vision algorithms, such as ResNet, Faster R-CNN,
and RetinaNet, have been applied in animal science, YOLO represents a favorable balance
between accuracy, a unified structure, flexibility, and, crucially, when considering on-farm
applications, high speed and real-time performance [12]. Several authors have compared
YOLO’s performance in the real-time object detection of cattle and emphasized its potential
for monitoring multiple animals simultaneously in various feeding environments [13].

The YOLO algorithm was created through DarkNet and was first presented in June
2016 at the Caesar’s Palace Conference Center in Las Vegas, Nevada, by Joseph Redmon [12].
Over the following years, he published improved versions of the algorithm—YOLOv2 [14]
and YOLOv3 [15]—until he stopped his research career due to concerns about the mil-
itary applications of his algorithm. Bochkovskiy continued Redmon’s work, releasing
YOLOv4 [16]. Two months after YOLOv4’s launch, Glenn Jocher from Ultralytics® released
YOLOv5, which was developed using PyTorch instead of DarkNet [17]. After this version,
the YOLO algorithm continued to be developed as open-source by independent program-
mers, leading to the most recent version, YOLOv10. In this work, we focused on YOLOv8,
the latest version significantly enhanced by Ultralytics®, and YOLOv10 (or YOLOX), the
most recent version developed by independent researchers (THU-MIG, Tsinghua Univer-
sity’s Multimedia Intelligence Group). Real-time detection algorithms are among the tools
shaping the future of technologies used in animal production due to their ability to provide
solutions that aid in decision-making on farms. Therefore, we concentrated on using the
YOLO algorithm in this study to determine feeding behavior in cattle.

Other studies have evaluated cattle behavior from a flank view [18] or a top view [19].
In this study, we recorded feeding behavior from the front view to better capture the entire
head movement of the animal and the close interaction between the animal’s mouth and
the feed. Specifically, this work focused on three distinct activities at the feeder: (1) visiting,
which indicates the animal’s presence without ingesting; (2) chewing, which reflects the
animal’s health status and rumination function; and (3) biting, which corresponds to the
act of eating itself, allowing the determination of ingestion. These activities are the most
representative feeding behaviors of cattle and allow for the estimation of other relevant
performance indicators such as individual intake, ingestion time, eating rate, and health
status [2]. The objective of this study was to compare the performance of YOLOv8 and
YOLOv10 models in detecting the following three key activities during the feeding behavior
of steers: biting, chewing, and visiting the feeder.

2. Materials and Methods
2.1. Animals, Diet and Measurements

Videos were recorded on a commercial Charolais farm covering 173 hectares (Tart-Le-
Bas, Burgundy, France), which is located at the agricultural high school of Quetigny, France.
For this experiment, a total of 12 young Charolais bulls (581 ± 37 kg, 16 ± 1.4 months
old) were monitored for individual dry matter intake (DMI). In France, commercial beef
fattening usually takes place on former dairy farms; therefore, the feeders are similar to
those found on dairy farms, which influenced the decision to place the camera in front of
the animals. Animals were recorded for 7 min per day just after feed distribution, with
one video recorded per day, yielding a total of 24 videos over 24 non-consecutive days
across two consecutive months. Videos averaged 7 min because, after this time, most
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animals left the feeder. In addition, the video storage capacity was also a limiting factor.
The animals were housed in a covered barn with straw bedding and were fed twice daily:
first at 8:00 AM with alfalfa hay ad libitum, as well as an energy and protein concentrate,
and again at 4:00 PM with just alfalfa hay [90% DM, 0.7 UFV, 483 g NDF/kg DM, 175 g
CP/kg DM] ad libitum. Video recordings of intake and ingestion time were conducted
during the second meal distribution. The reason for recording animals during the second
meal was that during the first meal, the animals were hungrier, and dominance behaviors
that could affect prediction were more likely to occur. Fresh matter intake was measured
by manually weighing individual feed amounts per animal [offered feed minus refused
feed] using an electronic scale (Rubbermaid® Digital Utility Scale–400 lbs ×.5 lb). Samples
to measure DM were taken weekly, stored in a homogeneous manner, and analyzed in an
external laboratory.

2.2. Recording System

Videos were recorded using an RGB-D camera, Intel® RealSense™ D455 (Intel, Santa
Clara, CA, USA), mounted on a tripod and connected to a computer, as shown in Figure 1.
The videos were captured using Intel software (Intel RealSense SDK 2.0 v2.51.1). During
the recordings, animals were manually identified by their number to enable individual
predictions later. The camera used in this study has three sensors—an infrared sensor,
an RGB sensor, and a depth sensor (3D). The camera has an RGB depth field of view of
90◦ × 65◦. In this study, only two dimensions were required, so only the RGB sensor was
used. The camera software was configured to record videos at 5 frames per second. To
minimize the impact of lighting bias, videos were recorded at the same time each day, from
the same angle, and at a distance of 5 m from the center of the feeder.
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2.3. Data Set Description and Labelling

Intel software was used to extract individual frames from the videos. Fifty frames
per video were randomly selected to create a database (1200 frames in total), which was
divided into three datasets—a training set (70%), a validation set (10%), and a test set (20%).
During the study period, 20 videos were recorded, numbered sequentially from 1 to 20 to
reflect the order in which they were captured, documenting cattle growth and changes in
environmental conditions. To minimize biases and ensure balanced representation in our
datasets, we strategically divided the videos based on their numbering: odd-numbered
videos were used for the training dataset, while even-numbered videos were designated for
the test dataset. This method ensured that both datasets included varied images throughout
the entire period, maintaining a strict separation between training and test data to accurately
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assess the model’s ability to generalize to new, unseen conditions. Figure 2 shows examples
of the image diversity used in this work.
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Figure 2. Examples of the images used in individual activities classification.

The frame subsets were manually labeled using the online software “Roboflow” “https:
//roboflow.com/” (accessed on 12 September 2023). Roboflow (Figure 3) enables users
to generate the necessary YOLO text files for training and evaluation. These files contain
annotations in a specific format that includes the class label and normalized coordinates of
the bounding boxes representing the object’s location in the image. Each line in a text file
corresponds to one object and follows this format: <object-class> <x_center> <y_center>
<width> <height>, where all values are normalized between 0 and 1 (e.g., 0 0.534 0.622
0.142 0.256) [20].
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Three distinct feeding behaviors were meticulously identified and labeled in the
selected frames, as depicted in Figure 4. These behaviors were classified as follows:

1. Visiting: Characterized by the animal standing with its head elevated and not engag-
ing in any feeding activity, signifying the absence of feed intake.

2. Biting: Defined by the animal lowering its head toward the feeder, suggesting active
engagement with the feed and typically indicating the initial action of feed intake.

3. Chewing: Marked by the animal raising its head yet displaying clear signs of mastica-
tion, evidenced by the presence of feed in the mouth.
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Figure 4 provides visual examples of these behaviors, each captured from a front-
facing perspective to ensure clarity in the observable actions. The images serve as a visual
reference for the classification criteria applied during the manual labeling process, enabling
precise and consistent categorization across the datasets.

2.4. YOLOv8 and v10 Network Structure

The YOLOv8 and v10 algorithms are based on the same principles but have different
neural network structures (Figure 5). These models represent significant updates in the
YOLO (You Only Look Once) series, known for their real-time object detection capabili-
ties. Each model seeks to push the boundaries of speed, accuracy, and efficiency in object
detection. YOLOv8, building upon advancements from previous iterations, introduces
several architectural improvements aimed at enhancing model performance and efficiency.
It continues to leverage components like CSPNet from earlier versions but also incorporates
new methods to optimize latency and parameter efficiency. The shift from a traditional
backbone like CSP-Darknet53 to more efficient designs enables YOLOv8 to offer better
performance with reduced computational overhead [21–24]. YOLOv10, the latest in the
series, brings even more profound architectural innovations, focusing on both model ef-
ficiency and accuracy. One of the key innovations is the introduction of a lightweight
classification head that utilizes depth-wise separable convolutions—a technique that sepa-
rates the convolutional process into depth-wise and point-wise operations. This adjustment
significantly lowers computational costs and reduces model parameters without sacrificing
performance. Additionally, YOLOv10 incorporates holistic model design strategies, such
as the consistent dual assignments for NMS-free training and rank-guided block design,
further enhancing its efficiency and effectiveness. Extensive testing shows that YOLOv10
provides state-of-the-art performance and efficiency across various model scales, demon-
strating improvements in both average precision and inference latency compared with its
predecessors [25].
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2.5. Training

The models were trained on Google Colab utilizing a Tesla T4 GPU with 15,360 MiB
of memory. Necessary libraries, such as “numpy” for numerical operations, “cv2” for
image processing, and the YOLO models from the “ultralytics” package, were imported.
Additionally, “supervision” and “roboflow” libraries were installed to assist with model
training and data handling. The YOLO models were initialized with pre-trained weights.
These weights serve as a starting point, allowing the model to build upon previously learned
features, thereby speeding up the training process and improving the initial performance.
The dataset configuration file (“data.yaml”) specifies the training and validation data paths
as well as the number of classes. This file is essential for informing the model about the
structure and content of the dataset. The training command was issued using the “yolo”
command-line interface. Key parameters include the following: Task and Mode—the
task was set to object detection (“detect”), and the mode was set to training (“train”);
Model and Data—the model was specified, and the dataset configuration file was provided
(“data.yaml”); Training Parameters—the models were trained for 500 epochs with an image
size of 640 pixels and a batch size of 8. These parameters control the duration and intensity
of the training process; Patience—the “patience” parameter was set to 50, meaning that if
validation performance did not improve for 50 consecutive epochs, training would stop
early to prevent overfitting.

During training, the model used automatic mixed precision (AMP) to speed up compu-
tation and reduce memory usage. The model architecture, including layers and parameters,
was printed for verification. Data augmentation techniques, such as blur and color ad-
justments, were applied to the training images to improve the model’s robustness. The
optimizer used for training was “AdamW”, which was automatically selected to optimize
the learning rate and momentum parameters. The model logged its progress to Tensor-
Board, allowing for the real-time monitoring of training metrics, such as loss and accuracy.
Throughout the training process, the model periodically validated its performance on the
validation dataset. This validation helped monitor the model’s ability to generalize to new
data and prevent overfitting. The training continued for the specified number of epochs or
until early stopping criteria were met. Upon completion, the model’s weights were saved.

2.6. Evaluation Indicators

To accurately evaluate the performance of the models, we used common evaluation
indicators in target detection algorithms: precision, recall, mean average precision (mAP),



Animals 2024, 14, 2821 7 of 15

and F1-score. In terms of precision and recall, there are four possible outcomes when
predicting a test sample: True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN). These evaluation indicators are defined as follows:

• Precision is the ratio of TP predictions to the total number of positive predictions made
by the model (both TP and FP). It reflects the accuracy of the positive predictions.

• Recall is the ratio of TP predictions to the total number of actual positive cases (TP and
FN). It measures the model’s ability to identify all relevant instances.

• Average Precision (AP) is defined as the area under the precision-recall curve; AP
provides a single value that summarizes the model’s precision and recall performance
at various threshold levels.

• Mean Average Precision (mAP) is the mean of the average precision values for all
classes. It serves as a comprehensive measure that evaluates the overall performance
of the model across different object classes.

• F1-Score is the harmonic mean of precision and recall. It balances these two metrics by
providing a single score that accounts for both false positives and false negatives.

Additionally, the changing trend of the model’s loss curve can also be used to assess
the model’s performance. A faster loss curve fitting speed, better fit, and lower final loss
value generally indicate stronger performance. Furthermore, a Python code was developed
to evaluate the performance of the trained object detection models using a set of test
images and their corresponding annotations. The process begins by importing necessary
libraries for numerical operations, image processing, file handling, and model operations.
The Intersection over Union (IoU) function is defined to calculate the overlap between
predicted and ground-truth bounding boxes, providing a measure of prediction accuracy.
The code reads the ground truth annotations from the test dataset, which are formatted
in YOLO style and converted into absolute coordinates. The trained YOLO model is
then loaded using the specified model weights and directories for test images, and their
annotations are set. The code initializes dictionaries to count TP, FP, and FN for each class
and sets up lists to store precision and recall values. The code iterates through each image
in the test directory, reading the image and its corresponding ground truth annotations.
The model makes predictions, extracting bounding boxes and their corresponding class
labels, which are then compared with the ground truth annotations. If a prediction matches
a ground truth (having the same class ID and an IoU greater than 0.5), it is counted as a TP.
If no match is found, the ground truth is counted as an FN, and any remaining predictions
are counted as FP. After processing all images, the code calculates precision, recall, F1-score,
and average precision for each class.

3. Results
3.1. YOLOv8 and v10 Performance in Feeding Behavior Detection

Table 1 highlights that YOLOv10 generally outperforms YOLOv8 across several met-
rics. For instance, YOLOv10 shows a higher mean Average Precision (mAP) of 0.94 com-
pared to 0.92 for YOLOv8, indicating an overall improvement in object detection perfor-
mance. For the “biting” activity, both models exhibit excellent performance with nearly
perfect precision, recall, and F1-scores. However, for the “chewing” activity, YOLOv10
demonstrates higher precision, recall, and F1-score than YOLOv8, signifying better detec-
tion accuracy and reliability. In the “visiting” activity, YOLOv8 achieves perfect precision
but significantly low recall, resulting in a low F1-score. In contrast, YOLOv10 presents a
more balanced performance with considerably improved recall and F1-score, though with
a slight decrease in precision.

On average, the metrics for the “visiting” activity are significantly lower than those
observed for “chewing” and “biting”. This discrepancy may be due to the following
two factors: (1) the lower number of instances of “visiting” compared to the other activities,
which impacts the model’s training and thus the accuracy for this activity, and (2) the
“visiting” activity is more ambiguous as it only relates to the presence of the animal without
any feeding behavior (chewing or biting), making it more difficult to define. These metrics
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collectively suggest that YOLOv10 offers more robust and reliable performance across
different activities, making it a superior choice for applications requiring high-accuracy
object detection in our database. The number of instances differs between models because
YOLOv10 did not detect some instances that YOLOv8 did, leading to a lower count of
instances for certain classes in the YOLOv10 evaluation. This discrepancy arises due to the
models’ differing abilities to detect objects with an Intersection over Union (IoU) greater
than 0.5 and correctly match the activity labels.

Table 1. Results of YOLO model performance classifying feeding activities of cattle divided by
version v8 vs. v10.

Model Class Instances µ Precision * Recall * F1-Score * mAP *

YOLOv8

All 2040 - - - 0.92
Biting 1128 0.99 0.98 0.99 -
Chewing 762 0.84 0.98 0.91 -
Visiting 150 1.00 0.15 0.26 -

YOLOv10

All 1953 - - - 0.94
Biting 1081 0.99 0.98 0.99 -
Chewing 737 0.87 0.99 0.93 -
Visiting 135 0.98 0.37 0.54 -

µ Number of instances is the number of times that one precise activity appears (one activity can be several times
in the same frame). * Precision, recall, and mean average precision (mAP) reflect the model’s performance.

Figure 6 shows an example of the results of the animals’ feeding behavior recorded
through a frontal view with the predicted result (by the YOLO algorithm) of individual
feeding behavior. As can be seen from Figure 6 and in accordance with results shown in
Table 1, both versions of the YOLO algorithm can accurately identify animals’ ‘Biting’ and
‘Chewing’ activities with a confidence level above 0.98.
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Figure 6. Capture of a frame showing the YOLOv8 prediction of feeding activities of individual beef
cattle animals.

3.2. Confusion Matrix of Feeding Activities Predicted with YOLOv8 vs. v10

Figure 7 displays the normalized confusion matrices for YOLOv8m and YOLOv10m.
Both models demonstrate excellent performance in accurately predicting ‘Biting’ and
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‘Chewing’ behaviors, with YOLOv8m achieving 0.98 accuracy for both and YOLOv10m
achieving 0.98 and 0.99, respectively. However, both models exhibit a tendency to confuse
‘Visiting’ with ‘Chewing’. Notably, YOLOv8m shows greater confusion in this regard, with
only 0.15 accuracy in correctly identifying ‘Visiting’ compared to 0.37 accuracy observed in
YOLOv10m. This indicates that while both algorithms are highly effective at recognizing
‘Biting’ and ‘Chewing,’ YOLOv10m, despite its overall precision, struggles more with
distinguishing ‘Visiting’ from ‘Chewing.’ This confusion can be explained by the similarities
between these two activities and the relatively few instances of ‘Visiting’ recorded in
the database.
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3.3. Learning Rates and Parameters of YOLOv8 and v10

The learning rates of both YOLOv8 and YOLOv10 are shown in Figure 8. The com-
parative analysis reveals that while both YOLOv8 and YOLOv10 models are effective,
YOLOv10 generally exhibits better stability and lower validation losses across various
metrics. YOLOv8, on the other hand, converges faster during training but shows higher
validation losses, indicating potential overfitting. The consistently lower validation losses
of YOLOv10 suggest better generalization and robustness when applied to unseen data.

Finally, to achieve the best performance in predicting feeding activities, we set up
YOLOv8 and YOLOv10 with the standard parameters shown in Table 2.

Table 2. Standard parameters used in YOLOv8 and v10.

Feature * YOLOv8 YOLOv10

Layers 295 498
GFLOPs 79.1 64.0
Optimizer AdamW AdamW
Learning Rate 0.01 0.01
Momentum 0.937 0.937
Weight Decay 0.0005 0.0005
Warmup Epochs 3.0 3.0
Training Epochs 1000 1000
Batch Size 8 8
Image Size 640 640
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Table 2. Cont.

Feature * YOLOv8 YOLOv10

Freeze Layers model.22.dfl.conv.weight model.23.dfl.conv.weight

Augmentations Blur, MedianBlur, ToGray,
CLAHE

Blur, MedianBlur, ToGray,
CLAHE

Mixed Precision Yes Yes
Max Detections 300 300
Classes 3 3
Patience 50 50

* To better understand these parameters, previous researchers have reviewed them, explaining their meaning and
influence on model predictions [28].
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4. Discussion

As computer vision continues to grow in prominence within livestock management, it
is essential to evaluate the most commonly used algorithms. In this context, the present
study assessed two versions of object detection algorithms, YOLOv8 and YOLOv10, which
represent different development approaches within the YOLO framework. YOLOv8 is an
improved version of the original YOLO structure created by its inventor, while YOLOv10
was developed by independent researchers. The objective was to evaluate the performance
of these two versions in predicting cattle feeding behaviors, which are critical to cattle
productivity, health status, and daily performance. On average, YOLOv10 demonstrated
slightly better accuracy than YOLOv8 in predicting feeding activities and distinguishing
between them (confusion matrix). Moreover, YOLOv10 showed improved learning rate
outcomes, suggesting better overall model performance.

We evaluated the performance of YOLOv8 and YOLOv10 using several key metrics:
precision, recall, mean Average Precision (mAP), and F1-score. Precision, which measures
the accuracy of positive predictions, was particularly high for both models in detecting the
“biting” activity (0.99 for both YOLOv8 and YOLOv10). This indicates a strong capability to
correctly identify this behavior without false positives. Recall, which assesses the model’s
ability to identify all relevant instances, was lower for the “visiting” activity, particularly
in YOLOv8 (0.15). This suggests that the model had difficulty detecting all instances of
this behavior, potentially due to the fewer occurrences and the nature of the activity. The
mAP metric, which provides a comprehensive measure of the model’s performance across
different detection thresholds, was higher in YOLOv10 (0.94) than in YOLOv8 (0.92). The F1-
score, a harmonic mean of precision and recall, further highlights the overall performance.
For “chewing”, YOLOv10 outperformed YOLOv8 (0.93 vs. 0.91), indicating better detection
reliability. The slight improvement in mAP and F1-score in YOLOv10 suggests it may be
better suited for applications requiring high accuracy, especially in detecting less frequent
behaviors like “visiting”.

However, YOLOv8’s faster convergence might make it a better choice in scenarios
where training time is limited and high accuracy across all metrics is not as critical. A survey
comparing YOLO versions from YOLOv1 to the state-of-the-art YOLOv10 has consistently
shown that newer versions offer better performance metrics like precision and recall due to
architectural refinements [29]. For instance, YOLOv10 integrates advanced post-processing
techniques and anchor-free detection heads, which further reduce computational overhead
while improving detection accuracy. YOLOv10 builds upon the advancements of its
predecessors by optimizing both the architecture and post-processing stages, leading to
superior performance in real-time object detection tasks [30]. Both biting and visiting
activities were predicted with high precision and recall (>0.98) by both YOLO versions
(Figure 9). This success is likely due to the distinct head movements associated with these
activities: head down touching the feed (biting) versus head up with the mouth closed
(visiting). However, the main challenge arose with the “chewing” activity, which had lower
prediction performance and was often confused with “visiting” (especially by YOLOv8).
This confusion can be explained by the subtle differences between these two activities—
mouth closed (visiting) versus mouth open with feed present (chewing). Other studies
have similarly pointed out the difficulty in determining chewing activity [31,32]. To address
this issue, other authors have proposed the following methods: (1) using accelerometers to
differentiate feeding activities based on head position [31]; (2) estimating chewing through
sound analysis (or combining video and sound), which offers an interesting proxy by
considering both visual and auditory differences [33–35]; and (3) incorporating multiple-
frame tracking algorithms into YOLO, which may allow the algorithm to better capture jaw
movements and improve prediction accuracy. This multi-frame algorithm has already been
applied with YOLO [36,37], and future research could evaluate its efficacy in improving
activity prediction in this context. This method could increase both YOLO’s prediction
performance and reduce the confusion between activities.
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YOLOv10’s superior performance in detecting the “visiting” activity, as evidenced by
its higher recall and F1-score compared to YOLOv8, can be attributed to several key factors
related to its architectural improvements and their impact on object detection capabili-
ties. YOLOv10 incorporates a more refined network structure that includes a lightweight
classification head with depth-wise separable convolutions [25]. This structural change
reduces computational costs and enhances the model’s ability to generalize across different
classes, particularly those with subtle distinctions, such as “visiting” versus other feeding
behaviors. As highlighted by the developments in the YOLO series [25], including versions
YOLOv6, YOLOv7, and YOLOv8, the architectural enhancements have significantly im-
proved the models’ feature extraction and classification capabilities. These advancements
include the introduction of decoupled head structures, enhanced neck modules for better
feature aggregation, and advanced convolutional layers. These features are particularly
crucial for tasks requiring fine-grained distinctions, as they enable the models to better
capture and classify subtle details in the input data. While YOLOv10 shows robust overall
performance, it is important to acknowledge areas where YOLOv8 exhibited strengths, par-
ticularly in faster convergence during training. YOLOv8 demonstrated quicker attainment
of lower training and validation losses, which can be advantageous in scenarios where
computational resources are limited or rapid model deployment is necessary. This quicker
convergence suggests that YOLOv8 may be more efficient in learning from data early in
the training process. However, YOLOv8’s performance comes with a trade-off. Despite
its faster convergence, YOLOv8 may not generalize as well in detecting less frequent or
more subtle behaviors, such as the “visiting” activity, where an animal is present at the
feeder without actively feeding. This could lead to the underreporting of critical events
related to animal monitoring. In contrast, YOLOv10, although requiring a longer training
period and maintaining slightly higher losses, offers a more balanced performance across
all activities [38]. This balance makes YOLOv10 more suitable for real-time applications in
precision livestock farming, where accuracy and reliability are paramount.

Finally, regarding the slight differences in learning rate between YOLOv8 and YOLOv10,
we recommend using the latter due to its improved processing speed and slightly greater
capacity for deployment under real-world conditions [39]. However, we acknowledge
that the differences between both versions are minor, and both versions (with their differ-
ent model structures) may perform well in field conditions. The next step is to correlate
these predicted activities with other parameters, such as health status, fertility, or perfor-
mance traits.



Animals 2024, 14, 2821 13 of 15

5. Conclusions

In this paper, we summarized the evolution of YOLO, one of the most well-known
object detection algorithms in computer vision, highlighting how YOLOv8 represents the
last version closely following the original architecture, while YOLOv10 has been improved
by independent developers, both as open source. We compared these two versions of the
YOLO algorithm to predict feeding activities in cattle from a frontal view. These feeding
activities are becoming increasingly relevant in animal production due to their relationship
with health, animal performance, and efficiency. The results of this study show that both
versions of the YOLO algorithm performed similarly in predicting feeding activities, in
terms of accuracy (precision, recall, and mAP) and confusion matrix, with YOLOv10 slightly
outperforming YOLOv8. However, where the difference is more pronounced between
these two algorithms is in the speed at which they reach optimal training and performance,
with YOLOv8 being superior to YOLOv10 (132 and 204 epochs, respectively). In conclusion,
both YOLOv8 and YOLOv10 are suitable for predicting “biting” and “chewing” activities
in beef cattle with an accuracy of around 98% using our database. In future research, these
activities could be evaluated from different points of view. The automated detection of
these feeding activities on farms may improve decision-making for cattle producers in
terms of nutritional strategies, early detection of abnormal health status, or management
routines adapted to animal behavior.
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