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Abstract: The aim of this study was to assess the impact of production parameters on the reproducibil-
ity of kombucha fermentation over several production cycles based on backslopping. Six conditions
with varying oxygen accessibility (specific interface surface) and initial acidity (through the inoc-
ulation rate) of the cultures were carried out and compared to an original kombucha consortium
and a synthetic consortium assembled from yeasts and bacteria isolated from the original culture.
Output parameters monitored were microbial populations, biofilm weight, key physico-chemical
parameters and metabolites. Results highlighted the existence of phases in microbial dynamics as
backslopping cycles progressed. The transitions between phases occurred faster for the synthetic
consortium compared to the original kombucha. This led to microbial dynamics and fermentative
kinetics that were reproducible over several cycles but that could also deviate and shift abruptly to
different behaviors. These changes were mainly induced by an increase in the Saccharomyces cerevisiae
population, associated with an intensification of sucrose hydrolysis, sugar consumption and an
increase in ethanol content, without any significant acceleration in the rate of acidification. The study
suggests that the reproducibility of kombucha fermentations relies on high biodiversity to slow down
the modulations of microbial dynamics induced by the sustained rhythm of backslopping cycles.

Keywords: kombucha; microbial ecology; reproducibility; yeasts; acetic acid bacteria

1. Introduction

As a part of human nutrition for at least 15,000 years, fermented foods were mainly
associated with traditional processes for transformation and stabilization of foodstuffs.
Nowadays, “foods made through desired microbial growth and enzymatic conversions of
food components” have gained new interest as traditional fermented foods have transi-
tioned from households to industrial-scale productions [1–3]. Fermented beverages such as
kefir and kombucha led to changes in consumption behavior that now occur worldwide,
which calls for modifications in regulatory frameworks [4]. This movement stemmed in
recent decades from western countries and propagated worldwide thanks to globalized
markets [5,6], trending values supporting well-being and self-appropriation of nutrition [7].
Moreover, an increasing amount of scientific evidence has highlighted the effective benefits
of fermented food consumption, along with the unraveling of their mechanisms [8–11].

As a result, large-scale production of traditional fermented food develops and is char-
acterized by the use of backslopped inoculation with uncontrolled microbial compositions
(non-specifically selected through functional criteria), as opposed to the well-established
practice of single or multi-strain inoculation [2,12]. Amplified by up-scaling production,
the lack of predictability over poorly characterized microbial communities used for fer-
mentation processes impacts quality control, thus stirring the need for tailored microbial
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consortia [13–15]. Despite being seen as one of the main obstacles in the development of
traditional fermented food production, little research has been carried out on the batch-
to-batch stability of fermentation processes. Studies investigated mainly sourdough and
derived products [16–20], but also milk-based products such as Gouda cheese [21], kefir [22]
and Mabisi from Zambia [23], with monitoring or endpoint duration ranging between 7
and 32 cycles (with cycle length depending on the type of fermented food). Namely, a study
focusing on the impact of the inoculation method in kefir reported a depletion in yeasts
associated with optimized chemical composition if backslopping was applied compared
to other methods [22]. Our previous study also reported large yet reversible variations
in yeast and bacteria diversity in kombucha consortia used in production contexts over
3 years [24]. Therefore, further investigation appears critical to improve the availability of
traditionally fermented food on the market, especially regarding the effect of production
parameters. Beyond industrial relevance, fermented food microbial systems are also seen as
relevant and promising models for the study of microbial ecology and interactions [25–28].

One of them, kombucha, is a fermented, low-alcoholic sour beverage with obscure
Eastern origins obtained from the transformation of sugared tea by a consortium of yeasts
and bacteria, mainly acetic acid bacteria [29]. The most important biochemical transforma-
tion, the conversion of sucrose into organic acids, depends on a metabolic interplay between
yeast and acetic bacteria species [14,30]. Sucrose is a carbon substrate that needs to be
broken down into monosaccharides (glucose and fructose) to be consumed. This hydrolysis
step is carried out efficiently thanks to yeast invertase activity, and the monosaccharides
can be used for alcoholic fermentation with the production of ethanol and carbon diox-
ide [30,31]. Therefore, acetic acid bacteria can convert glucose and ethanol into gluconic and
acetic acid, respectively, through oxidative metabolism [32]. Additional transformations
include olfactive volatile compounds and modifications in polyphenol structure [15,33–36].
In parallel, a floating cellulosic biofilm is produced by acetic acid bacteria at the surface of
the liquid and hosts both yeasts and bacteria within itself [15,37,38].

The aim of the study, carried out in laboratory conditions, is to assess the reproducibil-
ity of fermentation kinetics between backslopping cycles. The response of the microbial
consortia was evaluated in terms of populations and activity (i.e., their modulation) to
abiotic and biotic production parameters. Two different conditions of access to oxygen
were tested, along with fixed or non-fixed initial acidity (abiotic parameters). At the scale
of one batch, oxygen access has been confirmed as a key parameter for the acidification
rate, as it is a limiting factor in the conversion of carbon substrates into organic acids [39].
In cases of insufficient oxygen access, acidification is slowed down, leading to ethanol
accumulation and the depletion of sugar content [30,36]. In the present study, the two levels
of access to oxygen aim at simulating industrial context (lower access) and homemade
production (higher access) in relation to the Specific Interfacial Surface (SIS, defined as the
liquid surface/liquid volume ratio [40]). Moreover, two kombucha cultures (original and
synthetic) were implemented in the study (biotic parameters). The inoculum used for the
original “O” culture came from a kombucha culture obtained from the kombucha producer
Biomère (Carquefou, France). A model system was introduced and compared with the
original culture to enable a more mechanistic analysis of the phenomena. Thus, for the
synthetic “$” culture, the inoculum used came from a black tea infusion inoculated with
strains isolated from the original kombucha culture.

2. Experimental Procedures
2.1. Culture Generation

The isolation of yeasts and bacteria from Biomère’s kombucha culture (Carquefou,
France) and the culturing procedure of microorganisms were carried out based on previous
studies [24,30]. Briefly, the identification and isolation of yeasts and bacteria from the
original culture (“O”) were performed by culturing yeasts and bacteria on selective agar
media: Wallerstein Lab agar plates from Thermo Fisher Scientific (Waltham, MA, USA)
and pH 6.2 De Man Rogosa and Sharpe (MRS) agar plates from Condalab (Madrid, Spain),
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respectively. A set of colonies was isolated and used for species identification using 26S
and 16S PCR. After completion of this procedure, the selection of microorganisms from
the whole set of species to create a new and less-diverse “$” consortium could take place.
The species used were Brettanomyces bruxellensis, Hanseniaspora valbyensis, Saccharomyces
cerevisiae and Pichia occidentalis for yeasts, and Acetabocter indonesiensis and Oenococcus oeni
for bacteria. This selection was based on the highest population levels and the character-
ization of species described in the beverage by Tran et al. (2020) [30]. Briefly, cultivated
kombucha micro-organisms on different agar media allowed the growth of colonies that
were sampled and used for 26S and 16S rRNA PCR identification for yeasts and bacteria,
respectively. Following characterization of morphotypes and microscopic observations,
unambiguous associations between identities and morphotypes were established and used
to discriminate species on agar plates [24].

As carried out in our previous studies [36,39], each population was inoculated at
5 log/mL each on the very first inoculation of a 7-day preliminary fermentation cycle,
before cycle 1. Both cultures were transferred as a 125 mL volume unit into Schott® flasks
(100 mL working volume, 10 cm bottleneck diameter) from Schott Glaswerke AG (Mainz,
Germany) and into Boston bottles (125 mL, 1 cm bottleneck diameter) from Wheaton®

(Milville, NJ, USA). The vessel geometry enabled the use of two specific interfacial surfaces,
SIS2 “2” and SIS1 “1”, measuring 0.162 cm−1 and 0.01 cm−1, respectively (Table 1). The
two SIS levels were selected by using laboratory glassware with SIS close to those of
a cylindrical 1000 L tank for SIS1 (industrial production) and those of a traditional 5 L
cylindrical fermentation jar for SIS2 (made-at-home production). In addition, cultures were
inoculated with two different methods. In accordance with the Biomère process, a volume
of liquid corresponding to 12% of the final volume of a previous culture was used for
inoculation. No biofilm was used for inoculation. A second inoculation method, “*”, was
studied by inoculating a volume of liquid culture, enabling a cycle to be started with a total
acidity equivalent to 10 meq/L. This second inoculation method was only carried out on
cultures with SIS1. This resulted in a total of 6 conditions: O1, O*, O2, $1, $* and $2. For
each of the different modalities listed, three technical replicates were carried out under the
same conditions, and each replicate constituted a backslopping (or propagation) lineage
without any mixing taking place at any stage of the study, making a total of 18 lineages.

Table 1. Summary of conditions tested during the study according to factors: type of container; SIS;
inoculation method.

Culture Microbial Composition Bottle Type SIS Inoculation Code

Original

Brettanomyces bruxellensis, Hanseniaspora valbyensis, Saccharomyces
cerevisiae, Pichia occidentalis, Zygotorulaspora florentina,
Oenococcus oeni,
Monitored as non-O. oeni:
Acetobacter indonesiensis, Liquorilactobacillus mali,
Liquorilactobacillus satsumensis

Boston SIS1 12% (v/v) O1

Boston SIS1
*: volume for fixed
initial total acidity of
10 meq/L

O*

Schott® SIS2 12% (v/v) O2

Synthetic

Brettanomyces bruxellensis, Hanseniaspora valbyensis, Saccharomyces
cerevisiae, Pichia occidentalis,
Oenococcus oeni,
Monitored as non-O. oeni:
Acetobacter indonesiensis

Boston SIS1 12% (v/v) $1

Boston SIS1
*: volume for fixed
initial total acidity of
10 meq/L

$*

Schott® SIS2 12% (v/v) $2

All samples were produced as biological triplicates. SIS1 = 0.01 cm−1 and SIS2 = 0.162 cm−1.

2.2. Condition-Based Culture Backslopping Lineages

The experimental design took the form of 8 consecutive fermentation cycles based
on the backslopping principle (inoculation of batch n with batch n-1). A fermentation
cycle lasted seven consecutive days, from day 1, the first day of the cycle, to day 7, the last
day of the cycle (Figure 1). For all cycles, incubation conditions were static at 26 ◦C and
aerobic, with the bottleneck only protected by gauze pads. The experimental procedure
began with a preliminary cycle to prepare the two cultures (original and synthetic), which
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were subjected to SIS1 and SIS2 on different sets of samples to inoculate the corresponding
conditions at the beginning of cycle 1. For example, the original culture incubated with
SIS1 = 0.01 cm−1 was used to inoculate O1 and O*, and the original culture incubated
with SIS2= 0.162 cm−1 was used to inoculate O2. The same was applied to the synthetic
culture. The preliminary cycle was followed by cycles 1 to 7, during which each lineage of
the 6 conditions (O1, O*, O2, $1, $*, $2) was propagated and subjected always to the same
parameters (SIS and inoculation mode). Finally, the study ended with cycle 8, where all
lineages were subjected to the same inoculation and SIS conditions, i.e., an initial acidity of
10 meq/L and SIS1 = 0.01 cm−1. Cycle 8 was used to measure the effect of the biotic factor
alone, i.e., any modulation resulting from propagation cycles (1 to 7), as an intrinsic change
in microbial dynamics independent of the abiotic factors applied (for example, the SIS or
the inoculation method).
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Figure 1. Diagram detailing the experimental design and methodology of the study. Inoculation was
performed with original culture (O) or synthetic culture ($) culture with 12% (v/v) liquid culture
or an alternative inoculation method used to set the initial total acidity of 10 meq/L for each cycle
(*). Specific Interfacial Surface (SIS) 1 or 2 was applied. Eight backslopped cycles (C) have been
performed from C1 to C8. Each cycle lasted seven consecutive days. The day-to-day analysis scheme
is detailed for C4 only and was applied for each cycle.

2.3. Analyses

Various microbiological and physico-chemical parameters were measured on day 7
of each cycle (Figure 1). Biofilm weight was measured using gravimetry directly after the
transfer of the whole biofilm (whose diameter ranged between 1 and 10 cm, depending on
the vessel) from the liquid surface to a 10 mL sterile 9 g/L NaCl dilution solution using
plies. The biofilms were then prepared for microbiological analysis. Cells were extracted by
thorough laceration of the biofilm using a sterile scalpel, and the suspension was transferred
into a 50 mL tube and vortexed at maximum intensity for 30 s. The resulting suspension
was used for plate counting.

Yeast and bacterial species present in the liquid phase and in the solid phase (biofilm)
extract were counted on selective solid agar media in order to monitor the evolution of
the different populations and species present on the seventh day. On selective WL agar
plates from Thermo Fisher Scientific (Waltham, MA, USA), yeast species were differentiated
on the basis of a correspondence between the identity and morphotype of the different
colonies [24]. This method has been successfully applied to study beer fermentations [41].
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Bacteria were cultivated on selective pH 6.2 De Man Rogosa and Sharpe (MRS) agar
plates from Condalab (Madrid, Spain) with differentiation of Oenococcus oeni from the
other species (non-O. oeni bacteria) based on characteristic colony size [42]. Incubation
occurred at 28 ◦C in an aerobic condition. The choice of solid agar media and incubation
parameters were validated for optimal growth of yeasts and bacteria based on comparative
data obtained in a previous study [24]. The choice of a culture-dependent method was
based on its higher implementation potential in an industrial context. This allows further
fermentation monitoring or in-house R&D based on this methodology using multi-species
original or synthetic cultures.

After microbiological analysis, liquid sample underwent centrifugation (3000× g
for 10 min at 4 ◦C) to obtain cell-free supernatants. The pH value was measured in the
liquid using a Five Easy device equipped with a LE498 sensor, both from Mettler Toledo
(Greifensee, Switzerland). Total acidity of kombucha cultures, expressed as meq/L, was
measured by titration on days 0, 1, 2, 3, 6 and 7 of the various fermentation cycles using 1 N
NaOH solution with the addition of a few drops of 0.2% (v/v) phenolphthalein solution in
the sample. The method was adapted from OIV (2009) [43].

Metabolite concentrations were analyzed using high-performance liquid chromatog-
raphy (HPLC) 260 Infinity II Agilent HPLC (Santa Clara, CA, USA), equipped with a
1260 Quat Pump G7111B and a 1260 G7129A injection module with oven. Acetic and
gluconic acid detection occurred at 214 nm thanks to a 1260 DAD WR G7115A module.
Sugars (sucrose, glucose, fructose) and ethanol were detected by refractometry using a
1620 RID G7162A module. The separation of the aforementioned metabolites from the 20
µL injection samples was performed with an Aminex® HPX-87H 300 mm/7.8 mm column
from Biorad (Hercules, CA, USA) at 30 ◦C for 35 min in isocratic mode at 0.45 mL/min
flow. Mobile phase was 0.065 mmol/L sulfuric acid (H2SO4). Chromatograms were treated
using the OpenLab software (3.4.0 version) from Agilent (Santa Clara, CA, USA).

An acidification coefficient was calculated to reflect the rate of acidification kinetics
for each cycle and condition. To do this, a linear regression line was calculated for each
replicate from the total acidity values collected on days 2, 3, 6 and 7 over the linearity zone
(between days 0 and 2, there is a lag phase [40]). We obtained an equation of the type
y = ax + b (where y is total acidity in meq/L and x is time in days) and a coefficient of
determination R2 reflecting the quality of the modeling, with a minimum critical threshold
set at 0.90. The acidification coefficient is assimilated to the directing coefficient a, the unit
of which is expressed in meq/L/day.

2.4. Data Treatment

Linear regression and standard deviation calculations were performed using Excel
2021 software from Microsoft (2310 version). Non-parametric Kruskal–Wallis tests were
performed to assess the presence of a significant difference between the values (biological
replicates, n = 3, α = 5%). If the null hypotheses were rejected, a Dunn post hoc test with
Benjamini–Hochberg correction was performed [44]. Principle Component Analysis (PCA)
was also performed in association with ascending hierarchical classification analysis. All
analyses were performed using R software (4.2.2 version) [45] and the following packages:
factoextra (1.0.7) [46], FactoMineR (2.7) [47] and FSA (0.9.4) [48].

3. Results and Discussion

Preliminarily, the microbial composition of the original “O” culture based on isolation
and identification of grown colonies was established as described in Table 1. E-values
associated with the reliability of species identification were all lower than 0.001 and were
associated with pairwise identities superior to 89.3% of sequences ranging between 495
and 607 base pairs, with query coverage all equal to 100%. Thus, compared to the “$”
synthetic culture, the “O” culture possessed at least one additional yeast species (Zygotoru-
laspora florentina) and two additional lactic acid bacteria species (Liquorilactobacillus mali
and Liquorilactobacillus satsumensis), based on a culture-dependent method.
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The first step was to assess in cycle 8 whether the consortia had indeed undergone
modulation after the previous seven cycles (Tables 2 and 3). Parameters showing significant
differences were sucrose, fructose, total sugars, ethanol concentrations, S. cerevisiae and H.
valbyensis populations in the liquid phase and the P. occidentalis population in the biofilm.
Two significant differences point to the effect of culture type or production parameters.
Firstly, the ethanol content was significantly higher in the $2 condition compared with
O2. This shows that application of a higher SIS on cycles 1 to 7 induced lower ethanol
accumulation for the original culture (0.3 g/L versus 0.5 g/L), whereas both cultures
were subjected to the same lower SIS. Secondly, there was a significant difference between
conditions O2 and $1. Condition O2 had significantly higher concentrations of total sugars
(32.7 g/L versus 22.4 g/L), sucrose (17.0 g/L versus 0.8 g/L), a significantly lower ethanol
concentration (2.5 g/L versus 5.0 g/L) and a significantly lower S. cerevisiae population
than $1 (5.4 log(CFU)/mL versus 5.9 log(CFU)/mL). These results link the S. cerevisiae
population level to a higher intensity of sucrose hydrolysis and ethanol accumulation.
Although the analysis of cycle 8 allows for the assessment of modulation, it offers only
a partial window into the biological phenomena that may have taken place during the
different cycles.

In order to visualize the evolution of the numerous analytical parameters for all
conditions, a Principal Component Analysis (PCA) was performed on all the data collected
(Figure 2). On the sample plot, the distribution of samples is based on dimensions 1 and 2,
with an eigenvalue of 63.64%, indicating a high level of data explanation (Figure 2A). The
ellipses, corresponding to the ascending hierarchical classification, separate the conditions
into three clusters: a cluster including the six conditions at cycle 8; a cluster including all
conditions from the original “O” culture except O1 and O* at cycle 7, and also including
conditions from the synthetic cultures $1, $* and $2 at cycle 1 only; and finally a cluster
containing all the other conditions, including all the conditions resulting from synthetic
cultures between cycles 2 and 7.
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(B) a vector plot. The ellipses correspond to the results of the ascending hierarchical classification
analysis. BB = Brettanomyces bruxellensis, HV = Hanseniaspora valbyensis, SC = Saccharomyces cerevisiae,
PO = Pichia occidentalis, OO = Oenococcus oeni, nOO = non-Oenococcus oeni. If the sample code is
preceded by “b_”, it refers to the microbial count in the biofilm, otherwise to the liquid phase.

These observations show that at cycle 1, the fermentative behavior of the six conditions
was comparable, but subsequently diverged. Indeed, from cycle 2 onwards, conditions
including the synthetic “$” culture changed their behavior (switching from one cluster to
another), leading to a lasting divergence from cultures including the original “O” culture
up to and including cycle 6. In cycle 7, conditions O1 and O* adopted a similar behavior to
conditions including the synthetic culture, and in cycle 8, all conditions converged to form
a new cluster, indicating a new fermentative behavior. Importantly, cycle 8 stood out most
strongly from the other cycles.
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Table 2. Average values of the parameters analyzed in the liquid phase for each of the 6 conditions studied in Cycle 8, together with the p-value returned by the
Kruskal–Wallis test (n = 3, α = 0.05). Common letters indicate absence of significant difference according to Dunn’s test with Benjamini-Hochberg adjustment.

Condition Sucrose
(g/L)

Glucose
(g/L)

Fructose
(g/L)

Total
Sugars
(g/L)

Ethanol
(g/L)

Gluconate
(g/L)

Acetate
(g/L)

Acidification
Rate
(meq/L/day)

B. bruxellensis
(log(CFU)/mL)

H. valbyensis
(log(CFU)/mL)

S. cerevisiae
(log(CFU)/mL)

P. occidentalis
(log(CFU)/mL)

O. oeni
(log(CFU)/mL)

Non-O. oeni
(log(CFU)/mL)

O1 5.7 ab 8.6 11.0 ab 25.3 ab 4.2 ab 1.4 0.2 8.1 6.8 6.4 a 5.8 a 4.0 5.1 5.7

O* 8.4 ab 8.5 10.6 ab 27.5 ab 3.8 ab 3.3 0.2 8.6 6.7 6.3 a 5.6 ab 4.0 5.6 5.6

O2 17.0 b 6.8 8.9 b 32.7 b 2.5 b 2.4 0.2 8.9 6.8 6.6 a 5.4 b 4.0 5.3 5.7

$1 0.8 a 8.9 12.7 a 22.4 a 5.0 a 2.4 0.3 18.9 6.7 5.3 a 5.9 a 4.0 5.2 5.4

$* 1.7 a 8.5 12.9 a 23.2 a 4.5 ab 4.4 0.3 12.7 6.7 4.9 a 5.7 ab 4.0 5.1 5.5

$2 5.8 ab 8.4 11.9 ab 26.1 ab 4.8 a 3.8 0.3 9.3 6.6 5.3 a 5.7 b 4.0 5.4 5.5

p-value 0.01002 0.1904 0.01072 0.01471 0.008749 0.17 0.514 0.1465 0.4569 0.0149 0.01779 Not
calculable 0.2489 0.4012

Table 3. Average values of the parameters analyzed in the biofilm for each of the 6 conditions studied in Cycle 8, together with the p-value returned by the
Kruskal–Wallis test (n = 3, α = 0.05). Common letters indicate absence of significant difference according to Dunn’s test with Benjamini-Hochberg adjustment.

Condition Biofilm Weight
(mg)

B. bruxellensis
(log(CFU)/g Fresh
Biofilm)

H. valbyensis
(log(CFU)/g Fresh
Biofilm)

S. cerevisiae
(log(CFU)/g Fresh
Biofilm)

P. occidentalis
(log(CFU)/g Fresh
Biofilm)

O. oeni
(log(CFU)/g Fresh
Biofilm)

Non-O. oeni Bacteria
(log(CFU)/g Fresh
Biofilm)

O1 1.9 7.2 5.7 6.0 2.5 a 7.0 8.1

O* 31.4 6.4 5.2 5.0 3.5 a 5.8 7.3

O2 41.2 6.3 5.2 4.7 3.1 a 5.4 6.9

$1 94.0 5.3 4.3 4.7 2.8 a 5.3 7.7

$* 29.3 6.0 4.6 4.8 2.7 a 5.5 7.1

$2 23.0 6.3 5.2 5.5 2.6 a 5.6 7.0

p-value 0.1109 0.101 0.06201 0.06567 0.03653 0.2255 0.5052
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The content of the changes in fermentative behavior is explained by the plot vector,
which projects the analytical parameters as vectors, translating their correlation according to
dimensions 1 and 2 (Figure 2B). Analysis of the contribution of analytical parameters shows
that, for a score of over 70%, dimension 1 is described positively by total sugars, sucrose
and biofilm microbial populations (excluding S. cerevisiae) and negatively by the content
of monosaccharides (glucose and fructose), ethanol and the S. cerevisiae population in the
liquid phase. Dimension 1 therefore reflects sucrose hydrolysis and alcoholic fermentation,
establishing a clear correlation with the S. cerevisiae population. No parameter has a score of
over 70% to describe dimension 2. It should be noted, however, that the study of correlations
between parameters makes it possible to associate the production of monosaccharides
from sucrose hydrolysis with the acidification caused by the production of acetic and
gluconic acids. We thus find the acidification process known for kombucha [30]. It can
be noted that the vectors corresponding to the microbial populations in the biofilm are
all highly correlated. This can be explained by the extraction stage of the biofilm cells,
which had a direct impact on the counts: the more efficient the extraction, the higher
the population counts. So, the analysis highlights this bias. The fact that populations
in the biofilm decreased over the cycles was due to the decrease in biofilm weight. This
can be explained by visual observations: the increase in carbon dioxide emissions in the
liquid phase hindered the optimal establishment of the biofilm (notably the presence of
gas pockets).

Thus, the change in behavior of the conditions studied can be described as a transi-
tion from low yeast activity to higher activity via intermediate activity, characterized by
the intensification of sucrose hydrolysis and alcoholic fermentation. This intensification
was correlated with an increase in the S. cerevisiae population in the liquid phase only.
However, this intensification of yeast activity was not accompanied by an intensification
of acidification.

Interpreting variations of the key parameters highlighted above enables us to investi-
gate the existence of causal relationships. In Figure 3, we observe an overall decrease in
total sugar and sucrose content over the cycles and an increase in monosaccharide content
as a result of sucrose hydrolysis. The divergence in behavior between cycles 2 and 6 be-
tween conditions derived from different cultures was clearly visible, particularly regarding
sucrose and fructose contents (Figure 3A,D). There was also a general intensification of
hydrolysis between cycles 7 and 8. Figure 4 shows changes in the ethanol production
and acidification kinetics. There was little variation in ethanol concentration between
cycles 1 and 7. However, $1 ethanol levels were significantly higher than those of $2 in
cycles 3 (2.3 g/L versus 1.1 g/L), 4 (3.2 g/L versus 2.2 g/L) and 8 (5.0 g/L versus 4.2 g/L),
suggesting the role of SIS in providing the oxygen required for ethanol oxidation by acetic
acid bacteria (Figure 4A). In addition, ethanol content increased between cycles 7 and 8,
except for the O2 condition. Acidification kinetics showed little variation for conditions
derived from the original “O” culture and for $*, probably due to the inoculation process,
whereas they were chaotic for conditions $1 and $2 derived from the synthetic “$” culture
(Figure 4B).

Figure 5 shows the population variations of S. cerevisiae and H. valbyensis in the liquid
phase, which exhibited significant differences at cycle 8. It can be seen that the S. cerevisiae
population was below or equal to the detection limit of 4 log(CFU)/mL for conditions from
the original “O” culture between cycles 1 and 3 for O1 and O2, and between cycles 1 and 5
for O*. The $1 population of S. cerevisiae was significantly higher than O* from cycle 2 to
cycle 4 (Figure 5A). From cycle 7 onwards, the S. cerevisiae population generally increased
for all conditions. For H. valbyensis, a population drop of up to 2 log was observed between
cycles 2 and 5 for conditions $1 and $*, compared with cycle 1 (Figure 5B). It reached the
detection threshold in cycle 5 for $1 and cycle 6 for $*. Populations for the other conditions
remained between 5.5 and 7 log/mL between cycles 1 and 7. This observation suggests
that the maintenance of the H. valbyensis population was dependent on access to oxygen
for conditions derived from the synthetic “$” culture only. This observation is supported
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by the decrease in population between cycles 7 and 8 for condition $2 due to the change
from SIS2 to SIS1 (higher and lower access to oxygen, respectively).
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Extending the observation to all the parameters described, we can highlight the ex-
istence of several concomitant significant differences (Table A1). The increase in the S.
cerevisiae population was associated with a decrease in sucrose content and an increase in
fructose content (between O* and $1 for cycles 2 and 3). A set of concomitant significant dif-
ferences can also be identified, associating lower sucrose and higher ethanol concentrations
with a lower H. valbyensis population (O2 versus $1 for cycles 5 and 7).

To sum up, the application of the different conditions over seven cycles did not result
in modulation of microbial populations and activity according to these conditions at cycle 8.
Yet, behaviors evolved along the cycles, although they were similar in cycle 1 and converged
in cycles 7 and 8. As opposed to abiotic parameters, the impact of the culture type (biotic
parameter) was visible in the speed of the microbial modulation over the cycles. It was
faster for conditions resulting from the synthetic “$” culture, but the rate of acidification
varied unpredictably (Figure 4). A recent study reported similar opposition between the
original consortium and the synthetic consortium associated, respectively, with a more
stable and more unpredictable endpoint pH value per cycle in Mabisi fermentation [23].
According to the literature, synthetic microbial communities appear to be associated with
chaotic behavior, i.e., an extreme sensitivity to initial environmental parameters [49,50]. In
contrast, a microbial community such as the original “O” culture with higher biodiversity is
associated with greater stability of microbial communities and their functionalities [51–54].
On a lower scale, it was also observed that less ethanol was produced in the O2 condition
than in the $2 condition at cycle 8, as a result of modulation depending on the culture
type. Regarding the inoculation procedure, it is important to note that the inoculation
ratio in terms of microbial populations cannot be controlled and could be the source of
batch-to-batch disparities. However, a recent study compared sweet tea cultures with
different inoculation ratios between yeasts and acetic acid bacteria with five species of
each kingdom [14]. The results showed that population equilibrium was achieved at all
inoculation ratios tested. Microbial activities were affected, mainly yeast activities (sucrose
hydrolysis and ethanol production). Acetic acid production kinetics, on the other hand,
were equivalent. This phenomenon was present, though less marked, when a pairing of
one species of yeast and one species of acetic bacteria was used. According to Huang et al.
(2022), it seems, therefore, that the inoculation rate between yeasts and bacteria is not a
determining factor if the cultures have a certain level of microbial diversity [14].



Foods 2024, 13, 1181 11 of 16

In the present study, production parameters had no marked effect in terms of modula-
tion. However, this was the case for other matrices and with different parameters, such as
temperature or pH [18–20]. Standardization of initial total acidity showed no effect com-
pared to inoculation with a fixed volume percentage of 12% (v/v). The observed limitation
of the SIS effect can be explained by the fact that sucrose hydrolysis can act as the limiting
reaction in the fermentation process. In other words, it is the rate of production of monosac-
charides, the precursors of organic acids, that dictates the rate of acidification, not the SIS.
Conditions including the original culture illustrated this well, particularly in cycles 1 to 3,
when monosaccharide levels were at the detection limit (0.1 g/L; Figure 3). This reflected a
strong tension on the use of organic acid precursors (acetic and gluconic acids), making
the role of SIS in acidification kinetics imperceptible under these conditions. The effect of
SIS would be perceptible if the precursors were to accumulate further, as was the case for
conditions resulting from the synthetic “$” culture from cycle 2 onwards and under the
activity of superior S. cerevisiae populations (Figures 3 and 4A). From another perspective,
acetic acid bacteria have to deal with the limitation of available oxygen or carbon substrates,
either of which is limiting depending on SIS conditions and other microbial activities.

The effects of SIS mainly affected ethanol content in conditions derived from the
synthetic “$” culture, with slightly lower concentrations in conditions subjected to a higher
SIS and access to oxygen. Lower ethanol concentrations were associated with higher
H. valbyensis populations and vice versa. Indeed, ethanol accumulation appeared detri-
mental to H. valbyensis, causing its population to decline. Moreover, a decrease in the
H. valbyensis population during phase 2 of kombucha production has been reported in
our previous studies [30,39]. According to [55], this species is sensitive to ethanol based
on cultivation in media enriched with ethanol. The production of ethanol was due to
the increase in S. cerevisiae population and fermentative activity. The consequences for
the product were lower sugar levels and ethanol accumulation without any significant
acceleration of acidification. In addition to the regulatory problems associated with ethanol
content, this has heavy consequences for the product’s sugar/acid balance, a key sensory
parameter [29]. However, it should be noted that the maximum ethanol levels observed
(close to 5 g/L) remained below the regulatory threshold of 12 g/L in the European Union
legislation [56]. This phenomenon corroborates the observations made in an industrial
production context, and a similar phenomenon has been reported during the monitoring of
sourdough backslopping cycles [57]. It is noteworthy that several one-batch investigations
of kombucha fermentation report the S. cerevisiae population as minor, in contrast to its
typical dominance in alcoholic beverage fermentations [24,30,37,39,58]. Therefore, this
species appears to be less adapted to sugared tea compared to Brettanomyces bruxellensis,
for example [24,30,37,39,59].

With the current data, it is difficult to explain why the S. cerevisiae population in-
creased with each cycle. One hypothesis would be that the frequency of cycles induced
the establishment of environmental conditions that benefited the progressive implantation
of this species, in line with its fitness. This backslopping process would be opposed, for
example, to the use of a mother culture that is much more acidic and less favorable to the
growth of S. cerevisiae. We could also mention the accumulation of beneficial metabolites or
nutrients, such as assimilable nitrogen content, or a selection bias due to the inoculation
method. To date, there is little scientific evidence linking invertase activity to fermentative
activity beyond catabolic repression by glucose [31]. Indeed, expression of the SUC2 gene
encoding an intracellular invertase and a periplasmic invertase is dependent on the SNF1
protein complex regulating energy homeostasis at the cellular level [60]. In addition, the
URE2/GLN3 system has been described as regulating invertase and asparaginase activity
in S. cerevisiae depending on available nitrogen [61]. Further investigations are needed to
assess those hypotheses, including assimilable nitrogen analysis or even metabolomics.
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4. Conclusions

This study highlighted the existence of phases in microbial activity as propagation
cycles progressed. The transitions between phases occurred faster for the synthetic consor-
tium, composed of a few species isolated from the original kombucha consortium. This
led to fermentation kinetics that were reproducible over several cycles but that could also
deviate and shift abruptly to different behaviors. These changes were mainly induced
by an increase in the S. cerevisiae population, associated with an intensification of sucrose
hydrolysis, sugar consumption and an increase in ethanol content, without any significant
acceleration in the rate of acidification. This corroborates on-site observations and calls
for a revision of the inoculation methods, using mother cultures, for example. These ob-
servations also underline the difficulty of controlling reproducibility, particularly when
production parameters vary, given that the response of consortia in terms of fermentation
kinetics is not necessarily immediate.

On an applicative level, this study suggests that backslopping as an inoculation
method induces undesirable changes in behavior in kombucha cultures, as observed in the
production context. It points to subtle changes in the balance of yeast populations, whose
activity is key to fermentation kinetics. In addition, it also highlights a link between the
speed of response to changes in production conditions, and hence reproducibility, and the
biodiversity of the kombucha culture. A decrease in the species number of a kombucha
culture was highlighted over several years in a previous study, following the absence
of thermal regulation on the production site [24]. Taken together, this suggests that the
reproducibility of kombucha fermentations relies on high biodiversity to slow down the
modulations of microbial dynamics induced by the sustained rhythm of backslopping
cycles. Otherwise, producers are exposed to drifts in microbial activity that can lead to
higher ethanol production in phase 1, thus increasing the risk of exceeding the regulatory
threshold during the second fermentation phase.

As a promising study model for microbial ecology, kombucha consortia could be
implemented in further research. Similar experimental procedures based on backslopping
including metagenomics, could be used to gain further insight into the microbial dynamics.
In addition, those experiments could test other production parameters such as fermentation
temperature, water quality or initial assimilable nitrogen and simulate adverse events such
as exogenous microbial invasion.
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Appendix A

Table A1. Kruskal–Wallis test results (n = 3, α = 0.05) associated with the p-value and the results of post hoc
pairwise Dunn test for each key parameter. Common letters indicate the absence of significant differences.

Sucrose Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
O1 a ab b abc ab abc ab ab
O* a b ab c b bc ab ab
O2 a ab ab bc ab c b b
$1 a a a a a a a a

$* a ab ab ab a ab a a

$2 a ab ab abc ab abc ab ab
p-value 0.016 0.011 0.010 0.006 0.010 0.007 0.017 0.010
Fructose
O1 ab b ab abc ab ab a a
O* b b b c b b ab a
O2 ab b b bc ab b b b
$1 ab a a a a a ab a

$* ab ab ab ab ab ab ab a

$2 a ab ab abc a ab ab b
p-value 0.008 0.005 0.007 0.006 0.012 0.010 0.036 0.011

Ethanol
O1 a a ab abc a a ab ab
O* a a ab abc a a ab ab
O2 a a b bc a a b b
$1 a a a a a a a a

$* a a ab ab a a ab ab
$2 a a b c a a ab a

0.054 0.036 0.008 0.008 0.027 0.069 0.019 0.009
Total sugars
O1 c a b a ab ab a ab
O* ac a ab a b ab a ab
O2 b a ab a ab b a b
$1 abc a a a a a a a

$* ab a ab a ab ab a a

$2 abc a ab a ab ab a ab
p-value 0.007 0.014 0.010 0.097 0.011 0.010 0.074 0.015

S. cerevisae
O1 a ab b ab a a ab a
O* a b b b a a ab ab
O2 a ab ab ab a a b b
$1 a a a a a a ab a

$* a ab ab ab a a a ab
$2 a ab ab ab a a ab b
p-value 0.192 0.008 0.007 0.018 0.032 0.049 0.029 0.018
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Table A1. Cont.

Sucrose Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
H. valbyensis
O1 b b b ab ab ab abc a
O* ab ab ab ab ab ab abc a
O2 ab b b b a b c a

$1 a ab ab a b a ab a

$* ab a a a ab a a a

$2 ab ab ab ab ab ab bc a

p-value 0.012 0.010 0.013 0.007 0.008 0.012 0.007 0.015

Acidification Rate 1 2 3 4 5 6 7 8
O1 a a b a a ab a a
O* a a ab a a b a a
O2 a a ab a a ab a a

$1 a a ab a a a a a

$* a a ab a a ab a a

$2 a a a a a ab a a

p-value 0.032 0.016 0.008 0.011 0.070 0.021 0.038 0.147
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