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Abstract  23 

In a context of economic and environmental concerns in agriculture, legumes appear to be suitable 24 

alternative crops to diversify current cropping systems and reduce their dependence on synthetic 25 

nitrogen (N) fertiliser and protein from imported soya bean. However, legume-based cropping systems 26 
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may increase N losses through nitrate leaching if the N available from legumes does not coincide with 27 

subsequent crop requirements. To help agricultural advisers manage N in these systems, we adapted 28 

the decision-support system Syst’N®, designed to assess N losses in cropping systems, to simulate 29 

three annual and one perennial legume crops: pea, faba bean, soya bean and lucerne. To this end, we 30 

adapted and simplified existing submodels of legume functioning to include them in Syst’N, to keep 31 

the latter simple. We adapted the submodels “BNF” (i.e. biological N fixation) from the STICS model 32 

and “dormancy” from the CropSyst model. We also added the ability to enter the flowering date to 33 

improve predictions (improvement in N fixation’s rRMSE from 57% to 41% and EF from 0.57 to 0.77). 34 

The equations and associated parameter set developed for the four legume crops yielded satisfying 35 

predictions of crop biomass (rMBE = 9%, EF = 0.82, rRMSE = 39%) and N content (rMBE = 5%, EF = 0.76, 36 

rRMSE = 37%). These performances support the philosophy of Syst’N® that requires minimising the 37 

number of additional parameters for users when representing new crops or processes. 38 

 39 

Keywords: nitrogen, legume crops, decision-support system, biological N fixation, model 40 

 41 

1. Introduction 42 

The agricultural revolution after 1945 led to a major intensification of French agriculture due to the 43 

increasingly intensive use of mechanisation and chemically synthesised inputs, which was enabled by 44 

technical progress. This intensification and the organisation of agriculture into sectors have fostered 45 

specialisation of production systems with a geographical separation between crop and livestock 46 

production and increasingly shorter cropping sequences (Ferrant, 2009). These changes, based on 47 

choosing crop species that maximise profit in the short term, led to the abandonment of species that 48 

provided recognised agronomic and ecosystem services such as legumes (Schott et al., 2010). 49 

Moreover, historical choices of public policies (e.g. subsidies for cereal production), research and 50 

engineering triggered the marginalisation of legumes (Magrini et al., 2016). Since the 1990s, however, 51 

growing awareness of negative externalities associated with cereal-based intensive systems (e.g. 52 
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environmental pollution, greenhouse gas emissions, loss of biodiversity) has prompted some 53 

stakeholders in the agricultural sector to seek more economical and environmentally friendly practices 54 

(Voisin et al., 2013). In this context, legumes appear to be good alternative crops to diversify current 55 

cropping systems and reduce their dependence on synthetic N fertiliser and protein from imported 56 

soya bean (Carof et al., 2019). Comparing N fixed by legumes vs. industrial sources, Crews and Peoples 57 

(2004) showed that developing legume-based cropping systems could lead to more sustainable 58 

agriculture. Indeed, legumes have the unique ability to fix N from the air (N2), thus reducing their need 59 

for N fertilisation; in Europe, legume crops are usually not fertilised (Cernay et al., 2016). Biological N 60 

fixation (BNF) by grain/forage legumes also benefits subsequent crops by leaving more N in the soil 61 

than cereals do (Herridge et al., 1995) and through mineralisation of N-rich plant residues incorporated 62 

into the soil after crop harvest, thus increasing soil N fertility (Justes et al., 2001). However, legume-63 

based cropping systems may increase N losses through nitrate leaching if the N available from legumes 64 

does not coincide with subsequent crop N requirements (Muller et al., 1993; Cellier et al., 2015; Plaza-65 

Bonilla et al., 2015; Voisin et al., 2015). Legumes differ in their N-fixation efficiency, which depends on 66 

the response of their BNF to abiotic factors (e.g. soil mineral N content, temperature, soil water 67 

content) and their physiological functioning (Guinet et al., 2018). Therefore, legume BNF and N pre-68 

crop effects must be quantified over time to improve the design of sustainable cropping systems that 69 

include legumes. Doing so requires improving quantification of benefits for subsequent crops from 70 

legume BNF and its influence on N losses, and thus environmental pollution. 71 

In this context, agricultural stakeholders need to design new cropping systems using decision-making 72 

tools that consider legumes and that can estimate their environmental impacts. Since the 1960s, many 73 

crop models have been developed to address a variety of objectives, but only a few are directly used 74 

by practitioners to simulate N dynamics in legume-based cropping systems. This arises from a lack of 75 

user-friendly interfaces, low availability of input parameters and failure to consider users’ constraints 76 

and knowledge (Prost et al., 2012). Meanwhile, users in the environmental field and agricultural 77 
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advisers use indicators or simple tools that fail to simulate N-loss dynamics and to understand 78 

weaknesses of cropping systems. 79 

As an operational tool for quantifying N losses at the multi-year scale of a cropping system, Syst’N® 80 

predicts N dynamics under the most common crops in France. Syst’N is used mainly by agricultural 81 

advisers for regions with strong environmental issues (especially nitrate emissions); thus, it must 82 

estimate N losses and help discuss and design more sustainable cropping systems. Stakeholders 83 

involved in water and agricultural management who use Syst’N need it to be applicable to a variety of 84 

cropping systems that include less common crops, especially legumes (as grain or forage). In the first 85 

version of Syst’N (2013), pea (Pisum sativum L.) was the only legume crop parameterised. 86 

Consequently, there was a real need to extend the scope of Syst’N for users and adapt it to new 87 

cropping systems with a wider variety of legume crops. 88 

Accordingly, this study developed, evaluated and validated Syst’N predictions for several common 89 

legume species: faba bean (Vicia faba L.), soya bean (Glycine max L.) and lucerne (Medicago sativa L.). 90 

Pea was parametrised again for the new equations added to predict the other legume species 91 

considered, and predictions for pea were also evaluated. This adaptation of the model is crucial 92 

because satisfactory simulation of growth and N uptake is essential to meet Syst’N’s ultimate goal, 93 

which is to estimate N emissions  to the environment. 94 

We adapted Syst’N by choosing and adapting generic equations that could simulate N dynamics for 95 

several legumes without decreasing its user-friendly aspect. The design criteria for adapting Syst’N to 96 

four legumes included: (i) the ability to simulate growth and N uptake of annual and perennial legumes, 97 

(ii) the ability to simulate soil N dynamics and content during and after a crop cycle sufficiently well 98 

(e.g. residual N effects of legumes), (iii) avoiding the need for users to provide additional input data, 99 

(iv) limiting the number of additional parameters needed for new crops and (v) adapting equations 100 

from updated knowledge and models. We assumed that adapting Syst’N to a wide range of legumes 101 

would meet these criteria. 102 

 103 
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2. Materials and methods 104 

2.1. The crop model Syst'N 105 

Syst’N is a model-based decision-support system (DSS) developed to estimate N losses in cropping 106 

systems and promote better N management in rural areas. The French National Research Institute for 107 

Agriculture, Food and Environment (INRAE) and eight French agricultural institutes developed Syst’N 108 

together. The objective was to meet the needs of stakeholders involved in water and agricultural 109 

management for an operational tool that could predict N losses at the multi-year scale of cropping 110 

systems. Since 2005, Syst'N has been co-designed with end-users to adapt it further to their needs 111 

(Cerf et al., 2012), in an iterative process with agricultural advisers, research and development 112 

institutes, applied research institutes and environmental agencies. 113 

The Syst’N version described by Dupas et al. (2015) added a soil-crop model to simulate soil N 114 

transformations, crop growth, N uptake, water balance and N losses towards water (e.g. nitrate) and 115 

air (e.g. ammonia, N2 and nitrous oxide) on a daily time step. The input data required include the crop 116 

sequence, agricultural management practices, soil and climate. The equations in the biophysical model 117 

combine existing validated and published submodels from STICS (Brisson et al., 2003) for water and 118 

nitrate balances in soils, AZOFERT (Machet et al., 2004; 2017) for N mineralisation of soils and crop 119 

residues, AZODYN (Jeuffroy and Recous, 1999) for crop N uptake, NOE (Hénault et al., 2005) for N2 and 120 

nitrous oxide emissions and VOLT'AIR (Génermont and Cellier, 1997) for ammonia emissions. 121 

Syst’N attempts to chart a middle course between complex simulation models such as STICS (Brisson 122 

et al., 1998), which simulate many processes but require many input data, and more simple indicators 123 

commonly used by agricultural practitioners (e.g. N balance, N-use efficiency) but which have relatively 124 

little ability to explain phenomena. Therefore, the equations added to Syst’N were selected to conform 125 

to the input data that are generally available to targeted end-users, hence keeping Syst’N user-friendly. 126 

2.2. Experimental data 127 

Most of the parameters initially used to calibrate the new legumes (lucerne, faba bean and soya bean) 128 

were derived from previously published studies. The data used to calibrate and evaluate Syst’N were 129 
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collected in French field experiments, in contrasting pedoclimatic contexts and with different 130 

experimental treatments, such as various amounts of N fertilisation or irrigation applied (Table 1; see 131 

Table S1 for more details). The objective was to find data with the highest diversity in experimental 132 

treatments, including sowing date, amounts of N fertiliser and irrigation applied, as well as cutting 133 

dates for lucerne as a perennial crop. Ultimately, fertiliser applications could be tested only for pea, 134 

faba bean and lucerne. Site-year-management (SYM) units that covered a wide range of crop-135 

management practices with high measurement frequency were chosen for the calibration dataset (6, 136 

6, 9 and 17 for pea, faba bean, lucerne and soya bean, respectively), and the remaining SYM units 137 

formed the evaluation dataset (12, 3, 32 and 9 SYM, respectively). 138 

2.3. Adaptation and calibration method 139 

To begin adapting Syst’N, equations and corresponding parameters that represented plant processes 140 

(e.g. phenology, biomass accumulation, BNF) were chosen (Fig. 1). First, specific characteristics of each 141 

legume crop were identified. If the existing Syst’N equations could not simulate these characteristics 142 

or the resulting N dynamics satisfactorily, the equations were supplemented or modified based on 143 

those in existing models. Initial parameters for the crops were set based on a literature review of 144 

existing models and plant physiology articles, or directly on measurement datasets if parameter values 145 

were not found in the literature. 146 

We then graphically and statistically tested these initial equations and parameters using calibration 147 

datasets (Table 1). If predictions were unsatisfactory, some parameters were selected according to a 148 

set of criteria (e.g. sensitivity of variables of interest to the parameter, uncertainty) and tested for a 149 

range of values to improve prediction accuracy by optimising statistical indicators of accuracy.  150 

2.4. Model assessment 151 

As we were adding several legumes to Syst’N, we assessed it by considering important plant variables, 152 

such as aboveground biomass and N uptake, as well as BNF and soil mineral N content when datasets 153 

included them. Predicted target variables of Syst’N (i.e. N losses) were not evaluated because they 154 
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were not measured in experiments and because only plant-related equations and parameters were 155 

modified in this study. 156 

Model performance (with the optimised parameter set) was evaluated graphically as dynamics over 157 

the crop cycle and plots of predictions vs. observations. It was quantified by calculating mean bias error 158 

(MBE) and its relative value (rMBE); root mean square error (RMSE) and its relative value (rRMSE); and 159 

model efficiency (EF) using data collected at harvest and throughout crop growth. These indicators are 160 

commonly used to calibrate and evaluate agronomic models (Dumont et al., 2012). 161 

MBE = 
1

N
 ∑(Pi - Oi)     (1)

N

i=1

 162 

rMBE = 
MBE

O̅
 ×100     (2) 163 

 𝐑𝐌𝐒𝐄 =  √
𝟏

𝐍
∑ (𝐎𝐢 − 𝐏𝐢)²𝐍

𝐢=𝟏      (𝟑) 164 

rRMSE = 
RMSE

O̅
×100     (4) 165 

EF = 1 - 
∑ (Oi – Pi)

2N
i=1

∑ (Oi – O̅)2N
i=1

     (5) 166 

where Oi and Pi are observed and simulated values for the ith measurement, N is the number of these 167 

paired values and O̅ is the mean of observed values. 168 

MBE and rMBE indicate whether a model underestimates (negative values) or overestimates (positive 169 

value) a given variable. Nevertheless, bias is not a sufficient measurement of the quality of a model: 170 

low bias can result from small prediction errors in all situations or instead from large prediction errors 171 

that compensate each other. Hence, the RMSE was also calculated (expressed in the same unit as the 172 

given variable) to identify this latter problem by squaring the difference between simulations and 173 

observations. Doing so, however, gives more weight to larger errors, which requires caution when 174 

interpreting RMSE, because a large RMSE can result from only one or two major differences. The rRMSE 175 

is more relevant for comparing variables with different units. Finally, EF assesses the overall 176 

performance of a model by comparing it to the mean of observations. EF ranges from -∞ to 1, which 177 
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facilitates interpretation: negative EF indicates that the model predicts no better than the mean of 178 

observations, whereas EF = 1 indicates a model with perfect accuracy. EF is relevant for comparing 179 

models or for comparing the same model’s simulations of the same dataset using different sets of 180 

parameters/equations. Analysing these five statistical indicators from different groups of correlated 181 

indicators give a robust assessment of model prediction accuracy, as recommended by Yang et 182 

al.(2014). Like for Beaudoin et al. (2008) and Constantin et al. (2015a, 2015b), Syst’N predictions were 183 

considered satisfactory when EF exceeded 0.50 and rMBE was lower than 10% (Table 2). A 20% 184 

threshold was used for rRMSE, like for Thiebeau (2019a; 2019b), although a higher threshold (40%) 185 

was used to evaluate STICS predictions for lucerne (Strullu et al., 2020). 186 

 187 

3. Results 188 

3.1. Model description and parameterisation for legume crops 189 

3.1.1. Mineralisation of crop residues 190 

Syst’N already used a double exponential equation from the AZOFERT tool to simulate net N 191 

mineralisation from crop residues (Machet et al., 2017): 192 

  N = NRO × (aN − bNe−kt − cNe−lt)  (6) 193 

where N is amount of N mineralised; NRO is the initial amount of N in crop residues and aN, bN, cN, l and 194 

k are coefficients that describe the mineralisation kinetics of N. 195 

Before this study, the equation was parameterised for a variety of legume residues. The same 196 

parameterisation was used in this study. Inspired by the model TNT2 (Casal et al., 2019) for grazed or 197 

cut perennial crops (including lucerne in Syst’N), an additional N sequestration pool was added during 198 

crop development depending on grazing or cutting practices. After crop harvest or cover crop 199 

destruction, this pool of organic N mineralises.  200 

3.1.2. Biological nitrogen fixation 201 

As shown by the systematic literature review and quantitative statistical analysis of Anglade et al. 202 

(2015), legume species differ significantly in their median percentages of N derived from the 203 
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atmosphere (%Ndfa), due mainly to the species’ sensitivity to abiotic factors (e.g. soil mineral N 204 

content, soil water content, temperature) and to their phenological characteristics (e.g. phenological 205 

stages, nodule establishment rate) (Guinet et al., 2018; Pampana et al., 2018). In the first version of 206 

Syst’N, the equation used to predict BNF was based on the AFISOL-Pea model, but it was adapted only 207 

for pea. In the present study, it was necessary to consider the diversity of BNF processes among legume 208 

species. The most common method for estimating %Ndfa of legume species in mechanistic crop 209 

models is to calculate a potential or maximum BNF rate which is then decreased by the influence of 210 

environmental factors: in their review, Liu et al., (2011) identified nine simulation models (Sinclair 211 

Model, EPIC, Hurley Pasture Model, Schwinning Model, CROPGRO, SOILN, APSIM, Soussana Model and 212 

STICS) that simulated legume BNF. Each model considered one or more of the following factors: soil 213 

temperature, soil-plant water, soil-plant N, plant carbon and phenological stage. Some BNF models are 214 

calibrated and parameterised for only one legume species, whereas others can simulate a wide range 215 

of legume species with different characteristics and geographic ranges.  216 

To adapt Syst’N to a variety of legume species (grain and forage), we chose to add the BNF submodel 217 

of STICS (Brisson et al., 2009; Corre-Hellou et al., 2007), because it (i) is adapted to the French 218 

pedoclimatic context, (ii) is adapted for a wide range of legumes (e.g. field pea, soya bean, faba bean, 219 

lucerne) and (iii) considers all the environmental factors mentioned except carbon dynamics (ignored 220 

by Syst’N). The BNF equations of STICS were modified slightly to conform to the input data available in 221 

Syst’N (i.e. using air temperature instead of soil temperature for the temperature-weighting factor) 222 

and to the variables already calculated by Syst’N (beginning of nodulation associated with the 223 

beginning of BNF, nodule death associated with the final stage of seed abortion) (Fig. 2). The 224 

parameters specific to these equations, which also resulted from parameterisation of STICS, varied 225 

among species (Table 3).  226 

3.1.3. Phenology 227 

As for most crops, legume phenology is controlled mainly by air temperature and photoperiod. As a 228 

simple crop model, Syst’N calculates phenological stages using only sums of growing degree-days. 229 
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According to their photo-thermal sensitivity, legumes can be classified into three main categories: 230 

photoperiod-insensitive, day-neutral and photoperiod-sensitive (short-day or long-day) (Roberts and 231 

Summerfield, 1987). As many studies observed, sensitivity to photoperiod is even more important for 232 

legume species, because it drives their transition to the reproductive stage (i.e. flowering) (Baranger 233 

et al., 2010; Confalone, 2008; Iannucci et al., 2008; Schneider and Huyghe, 2015). Because flowering 234 

stops (e.g. root growth), modifies (e.g. remobilising N, BNF) or triggers (e.g. plant senescence) some 235 

plant processes, and thus influences N dynamics, it seemed important for Syst’N to predict flowering 236 

time accurately. However, simulating photoperiod and its effects on crop phenology would (i) be too 237 

complex for such a DSS, (ii) require new input data (e.g. latitude) and (iii) require new parameters for 238 

the photoperiod sensitivity for each crop, which seems difficult to define. Thus, we chose to add the 239 

actual flowering date as optional input data. Indeed, a survey of Syst’N users indicated that they often 240 

observe it and thus could provide it as input data. When flowering date is provided, Syst’N calculates 241 

all phenological stages from it; if not, it calculates stages from the crop parameter that represents the 242 

number of degree days from sowing to flowering. When parametrising annual legumes, we decided to 243 

distinguish soya bean of types 00 and I, as their stages differ greatly. 244 

3.1.4. Perennial legumes 245 

We modified Syst’N greatly to capture specific characteristics of perennial crops, such as several cuts 246 

and regrowth sequences. In the first version of Syst’N, an equation from TNT2 (Casal et al., 2019) that 247 

estimated the change in plant biomass and N content when cutting grassland (Nitschelm et al., 2018) 248 

was used and adapted to represent other perennial crops such as lucerne. The residual aboveground 249 

biomass that remains in the field after a cut is calculated from the cutting height. Nevertheless, plant 250 

growth differs between seedlings and crop regrowth (after harvest or dormancy), as observed by 251 

Thiébeau et al. (2011) and Lemaire et al. (1985) for lucerne, due to crop defoliation and storage of 252 

reserves in roots, which supports regrowth after cutting or after winter. To keep Syst’N relatively 253 

simple, it contains two parameter sets to simulate seedlings and crop regrowth separately instead of 254 
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using complex equations to represent reserve management by perennial crops, as in STICS versions for 255 

perennial crops (Strullu et al., 2014; 2020).  256 

Some vigorous perennial legumes, such as lucerne, become dormant during winter (Undersander et 257 

al., 1997). Dormancy is triggered mainly in autumn by two factors: photoperiod and temperature 258 

(Mauriès, 2003). As mentioned, simulating photoperiod would require new input data from users and 259 

make Syst’N more complex. An equation from CropSyst (Confalonieri and Bechini, 2013) was a good 260 

compromise to add dormancy to Syst’N in a relatively simple way (Fig. 3). This equation was adapted 261 

slightly in Syst’N to fit with its existing equations of biomass growth and N uptake. The parameters 262 

used in these equations were calculated from the optimisation measurement dataset. For simulated 263 

plant N content, this adaptation delays crop regrowth after winter and resets crop-stage variables, 264 

thus avoiding the unexpected early physiological maturity predicted without the dormancy equation 265 

(Fig. 4). 266 

3.2. Results of model evaluation 267 

The final parameters for legumes in Syst’N were set by the calibration method described (Table S2).  268 

3.2.1. Calculating phenological stages from the actual flowering date  269 

To evaluate effects of calculating phenological stages from the observed flowering date on the 270 

accuracy of Syst’N predictions, the statistical indicators were calculated for predictions based on a 271 

dataset with or without the actual flowering date. The latter dataset was smaller than the 272 

measurement dataset, as it contained only the site-year-management (SYM) units in which flowering 273 

had been observed. The accuracy of predicted total aboveground plant N (Fig. 5C and 5D) content and 274 

BNF (Fig. 5E and 5F) increased, and that of predicted aboveground biomass remained good (Fig. 5A 275 

and 5B), which indicated the relevance of calculating phenological stages from the actual flowering 276 

date (as input data), as flowering is an important stage for BNF and N uptake. The rMBE were low (-6% 277 

to 19%) and showed Syst’N’s tendency to overestimate total aboveground plant N (rMBE = 19%, Fig. 278 

5C) but underestimate BNF (rMBE = -6%, Fig. 5E). However, the relatively good EF (0.73-0.85) of 279 
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predictions of all plant variables confirmed that Syst’N predicted growth and N assimilation (uptake 280 

plus BNF) throughout the crop cycle (from juvenile to mature stages) better when stages were 281 

calculated from the actual flowering date. All rRMSE were satisfactory (< 41%). 282 

3.2.2. Accuracy of predictions over the crop cycle 283 

3.2.2.1. Aboveground biomass  284 

Predicted biomass agreed with observations throughout each legume crop’s growing season for both 285 

calibration and evaluation datasets (EF > 0.75, 9% < rMBE < 13%), considering a dataset with or without 286 

flowering date (Fig. 6A and 6B). Positive rMBE showed Syst’N’s tendency to overestimate aboveground 287 

biomass, especially for lucerne with the calibration dataset (data not shown). Prediction error was high 288 

(rRMSE of 40% for both datasets) due to senescence defoliation and the loss of biomass related to 289 

respiration during dormancy (Justes et al., 2002), which Syst’N ignores for all crops. Hence, Syst’N 290 

assumes that aboveground biomass does not change during dormancy. Nevertheless, it can be 291 

considered a time-lag in growth dynamics that does not influence Syst’N prediction, as they became 292 

more accurate after dormancy (Fig. 7). 293 

For each legume crop, all statistical indicators were good: rMBE was low (i.e. -13% < rMBE < 20%), EF 294 

was satisfactory (> 0.59) and rRMSE was rather satisfactory (< 48%) (Table 4).  295 

3.2.2.2. Plant nitrogen content 296 

3.2.2.2.1. Total aboveground nitrogen content 297 

Total aboveground N content was predicted accurately using both the calibration and evaluation 298 

datasets considering a dataset with or without flowering date for evaluation (Fig. 6C and 6D): rMBE 299 

was low (19% and 5%, respectively), EF was high (> 0.70) and rRMSE was satisfactory (< 40%). 300 

Prediction of aboveground N content was satisfactory for faba bean and pea, with good rMBE (< 16%), 301 

high EF (0.87) and low rRMSE (< 25%) (Table 4). Despite lower EF (0.61) and higher rRMSE (44%), 302 

predictions for lucerne using the evaluation dataset remained satisfactory, with a slight overestimation 303 

of the dynamics. In contrast, rMBE (23%), EF (0.48) and rRMSE (44%) for soya bean showed a tendency 304 

for Syst’N to overestimate aboveground N content (Table 4). 305 
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3.2.2.2.2. Aboveground nitrogen fixation 306 

The parameters related to BNF defined for each crop (Table 3) yielded good predictions (Fig. 6E and 307 

Fig. 6F), with a high EF (> 0.78) and low rMBE (-13% < rMBE < 6%) for pea, faba bean and soya bean 308 

(Table 4). Because observed data were not available for lucerne, we compared predictions to data from 309 

the literature (Kelner et al., 1997; Schneider and Huyghe, 2015; Wivstad et al., 1987; Xie et al., 2015). 310 

They showed highly variable %Ndfa of 20-90%, which seemed to be explained in part by variable 311 

amounts of mineral N in the soil. These percentages were found in the predictions, with a mean %Ndfa 312 

of 70% for unfertilised plots and 50% for plots that had received mineral N fertiliser. For the other 313 

legume crops, this good accuracy was verified throughout growing season (EF=0.80, low rMBE). EF 314 

remained high and bias remained low with the evaluation dataset, indicating that Syst’N was able to 315 

reproduce the wide range of cumulative BNF at harvest (33-265 kg N.ha-1). 316 

3.2.2.3. Soil water content and soil mineral nitrogen content  317 

Syst’N predicted soil water content better during evaluation (EF = 0.44) than calibration (EF = -2.38), 318 

despite lower rMBE (-7% and 20%, respectively) and higher rRMSE (33% and 24%, respectively) (Fig. 319 

8). Despite satisfactory indicators, we observed threshold effects. Syst’N had difficulty predicting the 320 

wide range of soil water content observed (2.5-33.2%), as it was constrained by threshold values of 321 

the pedotransfer classes used to define field capacity (θFC) and wilting point (θWP) as a function of soil 322 

texture (9.1-26.4%). 323 

Soil N content was predicted less well using the calibration and evaluation datasets, with negative EF 324 

(-0.19 and -0.24, respectively) and high rRMSE (45% and 67%, respectively) (Fig. 8). The low EF (-0.76) 325 

and high rRMSE (69%) for lucerne (Table 4) could be explained mainly by temporal shifts (data not 326 

shown). First, nodule activation, which enables BNF, and moderate N uptake from the soil can occur 327 

sooner than predicted. This delay in prediction by a few days may cause Syst’N to underestimate soil 328 

N content at a given date significantly. Secondly, the simple equation used to simulate dormancy may 329 

delay N uptake during biomass regrowth and cause Syst’N to overestimate soil N content for a few 330 

weeks, which has little influence on predicted N losses. 331 
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3.2.3. Nitrogen effect of legumes on subsequent crops 332 

Dynamics of N mineralisation after a legume crop were evaluated only for lucerne because of the 333 

specific calculations in Syst’N for grazed or cut perennial crops. For the other crops, the N effect of 334 

legumes is calculated directly with the AZOFERT equation, which has already been evaluated (Machet 335 

et al., 2017). 336 

Predicted N mineralisation in the soil after lucerne was compared to measurements from Justes et al. 337 

(2001). In this experiment, mineralisation from humus and from residues returned to the soil after 338 

lucerne destruction were differentiated. Dynamics of simulated N mineralisation from lucerne residues 339 

and soil organic matter accurately reproduced observations for two years in two situations: lucerne 340 

cut just before destruction (3% error between prediction (331 kg N ha-1) and observation (340 kg N 341 

ha-1) after two years) and lucerne cut one week before destruction (8% error between prediction (368 342 

kg N ha-1) and observation (400 kg N ha-1) after two years). Thus, with less than 10% error, predictions 343 

of N mineralisation were satisfactory and confirmed Syst’N’s ability to represent long-term effects of 344 

lucerne residues. 345 

 346 

4. Discussion 347 

4.1. A generic and user-friendly crop model able to simulate a diversity of legumes 348 

This study showed that the generic equations of Syst’N can simulate a variety of legumes species: those 349 

with cool-season adaptation (pea and faba bean), warm-season adaptation (soya bean) and a perennial 350 

cycle (lucerne). The accuracy of predicted aboveground biomass and N assimilation (uptake plus BNF) 351 

was satisfactory for all 4 legume species, with rMBE less than 10% (2-9%) and EF greater than 0.50 352 

(0.74-0.81), which are consistent with the guidelines of Beaudoin et al., (2008) and Constantin et al. 353 

(2015a, 2015b). Moreover, the accuracy of these predictions are similar to those for other species 354 

parameterised in Syst’N (unpublished). 355 

Prediction of BNF was improved by adding the actual flowering date as input data. Users in the field 356 

can obtain the actual flowering date easily, which allows Syst’N to remain adapted to its purpose and 357 
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user-friendly. In addition, the flowering date can also be estimated using a simple phenology algorithm 358 

(Schoving et al., 2020) and then used as an input variable for Syst’N. 359 

4.2. Water balance prediction 360 

Syst’N’s ability to simulate soil water and mineral N contents, both of which are used to calculate N 361 

leaching, is less satisfactory than that for biological variables, as all statistical indicators except rMBE 362 

lay above satisfactory thresholds. Our predictions of soil N content were similar to those of STICS with 363 

faba bean (Falconnier et al., 2019), whose rMBE, EF and rRMSE were -10%, -1.42 and 51%, respectively, 364 

using an evaluation dataset. 365 

Syst’N predicted both low and high observed soil water contents poorly (Fig. 8) due to the pedotransfer 366 

classes it uses to estimate θFC and θWP as a function of percentages of clay, silt and sand. Indeed, large 367 

differences in soil texture can yield the same characteristic water contents, as observed for 9 site-year-368 

management (SYM) in this study (Fig. 8). For example, because silty-clay loam (30% clay, 62% silt, 8% 369 

sand) and sandy-clay loam (14% clay, 32% silt, 54% sand) are considered to be the same in Syst’N’s 370 

pedotransfer classes, both have θFC of 32.3% and θWP of 14.0%. Many studies have related soil texture 371 

to water-retention characteristics of the soil (Gupta & Larson, 1979) using pedotransfer classes or 372 

functions. Classes were used in the first version of Syst’N instead of functions based on the results of 373 

Al Majou et al., (2007), who showed that “simple” texture-based pedotransfer classes allowed water-374 

retention characteristics to be predicted as accurately as with more sophisticated pedotransfer classes 375 

or functions. However, using pedotransfer classes inevitably leads to threshold effects, which 376 

decreases the accuracy of predictions of water balance and thus nitrate leaching. Tóth et al. (2015) 377 

developed new hydraulic pedotransfer functions valid for the pedoclimatic context in France. The most 378 

accurate predictions were obtained using the clay percentage, silt percentage, bulk density, organic 379 

carbon and pH as parameters, all of which are available as input data in Syst’N. In future versions, using 380 

pedotransfer functions could improve predictions of soil water content, in particular by overcoming 381 

the threshold effect caused by pedotransfer classes. Soil water content has a strong influence on BNF 382 

and soil N content, but also on water transfer and thus on N leaching, which is one of the main outputs 383 
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of the model. In addition, the parameters θFC and θWP could be used as input data if they are available. 384 

Nevertheless, we have noted that the end-users of Syst’N do not often know the values of these 385 

parameters. 386 

4.3. Specifying a large number of plant parameters 387 

Using the actual flowering date to calculate phenological stages and the new BNF equation required 388 

adding 2 and 16 new plant parameters, respectively, specific to legume species. Thus, 77 agro-389 

physiological parameters for each species must now be defined to simulate a new legume crop in 390 

Syst’N. Although some of these parameters require good knowledge of the agro-physiological 391 

behaviour of the crop, particularly for N processes (e.g. parameters of N-dilution curves), many of them 392 

can be approximated easily using knowledge of other crops already parameterised in Syst’N. 393 

Moreover, despite the large number of plant parameters, Syst’N is easier to adapt than most other 394 

models, such as STICS, which requires specifying over 200 crop- and cultivar-specific parameters; 395 

however, it was developed by researchers to investigate a wider diversity of cropping systems and 396 

consider many more processes (Brisson et al., 2009). 397 

4.4. Strong simplification of biological processes for perennial legumes 398 

Predictions highlight high overestimation of aboveground biomass and N content immediately after 399 

dormancy due to the lack of equations to simulate senescence and mobilisation of reserves in Syst’N. 400 

However, this trend is relatively brief: along with rapid biomass regrowth in the spring, reserves stored 401 

in roots during autumn and winter are remobilised to shoots (Justes et al., 2002). The accuracy of 402 

predicted aboveground biomass and N content increased after a few weeks and became satisfactory 403 

during the cuts in spring. This simplification in Syst’N delays N uptake from the soil in the spring but 404 

has little influence on soil N content during winter, a key variable used to predict nitrate leaching. As 405 

shown by Strullu et al. (2014) for Miscanthus × giganteus, total aboveground N content decreases only 406 

slightly in winter despite a strong decrease in aboveground biomass. Rapid remobilisation of N 407 

temporarily stored in perennial organs has also been observed for other legumes, such as white clover 408 

(Trifolium repens L.) (Robin et al., 1999), which supports this hypothesis. In the future, the simple 409 
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equation that maintains aboveground biomass and N content constant during winter could be applied 410 

to other perennial crops in Syst'N. 411 

As mentioned, Syst’N has two parameter sets to simulate seedlings and crop regrowth separately, 412 

instead of using a complex model to represent reserve management by perennial crops, as in STICS 413 

versions for perennial crops. These STICS versions, initially developed for Miscanthus reserves (Strullu 414 

et al., 2014) and then for lucerne (Strullu et al., 2020), consider the N fluxes between perennial organs 415 

(e.g. the taproot) and non-perennial organs (i.e. leaves, stems and roots) as a function of abiotic stress, 416 

photoperiod and phenological stages using a single set of parameters, but they required defining more 417 

compartments in the model and are thus complex. STICS version for lucerne resulted in EF values of 418 

0.70 for aboveground biomass and 0.60 for N content, while Syst’N using less complex equations gave 419 

similar EF (0.60 for both biomass and N content). However STICS predictions were slightly more 420 

accurate (rRMSE of 31% vs 36% for Syst’N). So, despite being less accurate, the predictions of Syst’N 421 

were reasonable for perennial crops given it uses simpler equations than STICS.. 422 

Comparing Syst’N’s lucerne predictions to those of CropSyst highlights the difficulty in applying a model 423 

to contrasting environments using a single set of crop parameters. Using CropSyst, Confalonieri and 424 

Bechini (2013) obtained an rRMSE of 3-6% for predictions of total aboveground biomass after 425 

calibrating crop parameters that partly considered local conditions, especially for dormancy and 426 

development temperature. We used a submodel of CropSyst for dormancy in Syst’N, but due to the 427 

small amount of measurement data over the period, Syst’N’s parameters were not calibrated to local 428 

conditions of the datasets, which may explain the lower rRMSE for Syst’N. Moreover, lucerne 429 

parameters were calibrated based on a variety grown in northern France, and the influence of 430 

decreasing photoperiod varies among lucerne varieties. Syst’N represents the effect of photoperiod 431 

on crops indirectly using two fixed calendar dates that can stop growth during a period with a short 432 

photoperiod. Unfortunately, this study could not test the ability of Syst’N and this parameter set to 433 

simulate southern varieties of lucerne, which may start growing earlier in the spring.  434 

 435 
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5. Conclusion 436 

Legumes can play a key role by providing N to cropping systems and thus enhancing the N self-437 

sufficiency of farms (Cellier et al., 2016; Vertès et al., 2010; 2015). Therefore, farmers and their advisers 438 

increasingly attempt to insert legume species into their crop sequences; besides the effects on their 439 

crop production that they can observe, they need results for and knowledge about N fluxes that they 440 

cannot assess themselves, such as N supply to subsequent crops and emissions to the environment. 441 

Adapting Syst’N to several legumes with different crop cycles and BNF capacities but keeping it 442 

relatively simple was both a challenge and an expected development, given its utility to non-researcher 443 

users. 444 

We chose and combined equations from research crop models such as STICS and CropSyst to maintain 445 

the simplicity of Syst’N for end users. Although some BNF equations required many parameters, users 446 

need to supply only one additional parameter (flowering date) if they want to predict BNF. Based on 447 

the literature, experiments and optimisation, we developed a set of parameters that provided 448 

satisfactory predictions of legume aboveground biomass and N content. In contrast, Syst’N predicted 449 

soil N content less well, mainly due to temporal shifts. Nevertheless, they remain relevant and are an 450 

important prerequisite for simulating N emissions that are of particular interest to users. The next step 451 

will be to improve predictions of soil N and water content, to evaluate the accuracy of  Syst’N 452 

predictions of N emissions (i.e. nitrate leaching, nitrous oxide emissions) and to do so at the scale of a 453 

cropping sequence that includes legumes. 454 
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croissance du blé à l’aide de modèles écophysiologiques: Synthèse bibliographique des 527 

méthodes, potentialités et limitations. Biotechnologie, Agronomie, Société et Environnement 528 

16, 376–386. 529 

Dupas, R., Parnaudeau, V., Reau, R., Jeuffroy, M.-H., Durand, P., Gascuel-Odoux, C., 2015. Integrating 530 

local knowledge and biophysical modeling to assess nitrate losses from cropping systems in 531 

drinking water protection areas. Environmental Modelling & Software 69, 101–110. 532 

https://doi.org/10.1016/j.envsoft.2015.03.009 533 

Falconnier, G.N., Journet, E.-P., Bedoussac, L., Vermue, A., Chlébowski, F., Beaudoin, N., Justes, E., 534 

2019. Calibration and evaluation of the STICS soil-crop model for faba bean to explain 535 

variability in yield and N2 fixation. European Journal of Agronomy 104, 63–77. 536 

https://doi.org/10.1016/j.eja.2019.01.001 537 



22 
 
 

Ferrant, S., 2009. Modélisation agro-hydrologique des transferts de nitrates à l’échelle des bassins 538 
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Table 1. Experimental data used to parameterise Syst’N 

Species Dataset 
Total site-year-management units with available measurements References 

Total 
Leaf area 

index 
Aboveground 

biomass 
Aboveground N 

content 
N fixed 

Soil N 
content 

 

Lucerne 
(Medicago 
sativa L.) 

Calibration 9 9 9 9  3 Thiébeau et al., 2011 

Evaluation 32 13 30 30  22 
Justes et al., 2002, 2001; Lemaire et al., 1985; 
Thiébeau et al., 2011, 2004 

Pea (Pisum 
sativum L.) 

Calibration 6 4 6 6 6 6 Guinet et al., 2018 

Evaluation 12 
8 12 9  12 

Voisin et al., 2002; Corre-Hellou et al., 2009; Launay 
et al., 2009; Naudin, 2009; Pelzer et al., 2016 

Faba bean 
(Vicia faba L.) 

Calibration 6 4 6 6 6 6 Guinet et al., 2018 

Evaluation 3  3 3   Schneider et al., 2019; Schneider et al., 2021  

Soya bean 
(Glycine max L.) 

Calibration 17 12 16 16 16 4 Guinet et al., 2018 

Evaluation 9 0 9 9 0 0 Schoving et al., 2022  

 
Corre-Hellou, G., Faure, M., Launay, M., Brisson, N., Crozat, Y., 2009. Adaptation of the STICS intercrop model to simulate crop growth and N accumulation 
in pea-barley intercrops. Field Crops Research 113, 72-81. 
Launay, M., Brisson, N., Satger, S., Hauggaard-Nielsen, H., Corre-Hellou, G., Kasynova, E., Ruske, R., Jensen, E.S., Gooding, M.J., 2009. Exploring options for 
managing strategies for pea-barley intercropping using a modeling approach. European Journal of Agronomy 31, 85-98. 
Naudin, C., 2009. Nutrition azotée des associations Pois-Blé d'hiver (Pisum sativum L.–Triticum aestivum L.): Analyse, modélisation et propositions de 
stratégies de gestion. 
Pelzer, E., Bazot, M., Guichard, L., Jeuffroy, M.H., 2016. Crop Management Affects the Performance of a Winter Pea-Wheat Intercrop. Agronomy Journal 
108, 1089-1100. 
Voisin, A.S., Salon, C., Munier-Jolain, N.G., Ney, B., 2002. Quantitative effects of soil nitrate, growth potential and phenology on symbiotic nitrogen fixation 
of pea (Pisum sativum L.). Plant and Soil 243, 31-42. 
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Table 2. Indicators used to assess model accuracy. MBE=relative mean bias error, rMBE=relative mean bias 
error, RMSE=root mean square error, rRMSE=relative root mean square error, EF=model efficiency. 

Indicator Range of values Ideal value Satisfactory range 

EF [-∞ ; 1] 1 > 0.5 

MBE [-∞ ; +∞] 0  

rMBE [-∞ ; +∞] 0 |rMBE| < 10% 

RMSE [0 ; +∞] 0  

rRMSE [0 ; +∞] 0 < 20% 
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Table 3. Parameters of the biological nitrogen fixation submodel added to Syst’N 

Parameter name (unit) Description 

Crop 

Lucerne Faba bean Pea Soya bean 

Initial Regrowth Winter Spring Winter Spring Type I Type 00 

CONC_N_NOD_SEUIL 
(kg N.ha-1.mm-1 water) 

Maximum soil nitrogen concentration threshold for nodule establishment 1.6 1.6 4.5 4.5 2.0 2.0 2.14 2.5 

VIT_NOD 
(nodules.degree-day-1) 

Nodule establishment rate 0.0037 0.0015 0.0068 0.0068 1.0 1.0 0.003 0.003 

FIX_MAX_VEG 
(kg N.t DM-1) 

Maximum nitrogen fixation capacity per t of dry matter produced before the grain-filling stage 
(DRG) 

- - 32 40 28 30 - - 

FIX_MAX_GR 
(kg N.t DM-1) 

Maximum nitrogen fixation capacity per t of dry matter produced after the grain-filling stage 
(DRG) 

- - 17 17 9.5 9.5 - - 

FIX_MAX_CONST 
(kg N.day-1) 

Constant capacity for maximum nitrogen fixation by the crop 6.0 6.0 - - - - 6.0 6.0 

TEMP_NOD_MIN 
(°C) 

Minimum cardinal temperature for nodule activity 0 0 0 0 0 0 0 0 

TEMP_NOD_OPT_B 
(°C) 

Low optimal cardinal temperature for nodule activity 15 15 12 12 10 10 20 20 

TEMP_NOD_OPT_H 
(°C) 

High optimal cardinal temperature for nodule activity 25 25 25 25 25 25 36 36 

TEMP_NOD_MAX 
(°C) 

Maximum cardinal temperature for nodule activity 35 35 40 40 35 35 50 50 

N_RAC_100 
(kg N.ha-1.cm-1 soil) 

Nitrogen concentration threshold for full activity of nodules 0.12 0.12 1.6604 1.6604 0.3612 0.3612 1.6604 1.6604 

N_RAC_0 
(kg N.ha-1.cm-1 soil) 

Nitrogen concentration threshold that inhibits nodule activity 0.82 0.82 9.4759 9.4759 1.2058 1.2058 4.4804 4.4804 

PROF_NOD_MAX 
(cm) 

Maximum nodulation depth 40 40 30 30 30 30 40 40 

ECARTTEMP_FIN_NOD 
(degree days) 

Degree-day difference between the phenological reference stage and end of nodulation 
(FIN_NOD) 

-100 0 550 550 1200 1316 700 530 

ECARTTEMP_FSLA 
(degree days) 

Degree-day difference between the phenological reference stage and final stage of seed abortion 
(FSLA) 

300 300 800 1000 1200 1316 1000 750 

ECARTTEMP_DRG 
(degree days) 

Degree-day difference between the phenological reference stage and beginning of grain-filling 
(DRG) 

0 0 250 250 200 150 400 400 

SOMTEMP_DEBUT_FIX 
(degree days) 

Sum of degree days from sowing to the beginning of fixation 250 0 340 310 235 235 320 320 

 

 

 



32 
 
 

Table 4. Statistical indicators of predictions of aboveground biomass, aboveground nitrogen (N) content and biological N fixation (BNF) for each legume crop with the 
evaluation dataset. EF=model efficiency, MBE=relative mean bias error, rMBE=relative mean bias error, RMSE=root mean square error, rRMSE=relative root mean square 
error.  

Indicator Prediction Faba 
bean 

Pea Soya bean Lucerne 

EF Biomass 0.82 0.90 0.71 0.59  
N content 0.87 0.87 0.48 0.61  
BNF 0.78 0.78 0.83 NA 

 Soil water content -28.71 0.44 -3.72 No data 

 Soil N content -0.2 0.49 -2.97 -0.76 

MBE Biomass 0.70 0.24 -0.65 0.43  
N content 16.21 0.08 31.52 5.63  
BNF -9.24 -0.25 4.03 NA 

 Soil water content 5.55 -0.75 5.21 No data 

 Soil N content -9.09 -5.93 -0.49 4.1 

rMBE Biomass 20% 5% -13% 19%  
N content 16% 0% 23% 7%  
BNF -13% 0% 6% NA 

 Soil water content 22% -4% 22% No data 

 Soil N content -14% -11% -1% 6% 

RMSE Biomass 0.94 1.28 1.59 1.08  
N content 20.45 32.99 59.83 36.19  
BNF 20.64 32.54 26.55 NA 

 Soil water content 7.21 6.35 6.33 No data 

 Soil N content 26.35 26.53 16.19 43.79 

rRMSE Biomass 27% 27% 33% 48%  
N content 20% 25% 44% 44%  
BNF 30% 45% 38% NA 

 Soil water content 29% 32% 27% No data 

 Soil N content 42% 50% 41% 69% 
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Table 4. Statistical indicators of predictions of aboveground biomass, aboveground nitrogen (N) content and 1 
biological N fixation (BNF) for each legume crop with the evaluation dataset. EF=model efficiency, MBE=relative 2 
mean bias error, rMBE=relative mean bias error, RMSE=root mean square error, rRMSE=relative root mean 3 
square error.  4 

Indicator Prediction Faba 
bean 

Pea Soya bean Lucerne 

EF Biomass 0.82 0.90 0.71 0.59  
N content 0.87 0.87 0.48 0.61  
BNF 0.78 0.78 0.83 NA 

 Soil water content -28.71 0.44 -3.72 No data 

 Soil N content -0.2 0.49 -2.97 -0.76 

MBE Biomass 0.70 0.24 -0.65 0.43  
N content 16.21 0.08 31.52 5.63  
BNF -9.24 -0.25 4.03 NA 

 Soil water content 5.55 -0.75 5.21 No data 

 Soil N content -9.09 -5.93 -0.49 4.1 

rMBE Biomass 20% 5% -13% 19%  
N content 16% 0% 23% 7%  
BNF -13% 0% 6% NA 

 Soil water content 22% -4% 22% No data 

 Soil N content -14% -11% -1% 6% 

RMSE Biomass 0.94 1.28 1.59 1.08  
N content 20.45 32.99 59.83 36.19  
BNF 20.64 32.54 26.55 NA 

 Soil water content 7.21 6.35 6.33 No data 

 Soil N content 26.35 26.53 16.19 43.79 

rRMSE Biomass 27% 27% 33% 48%  
N content 20% 25% 44% 44%  
BNF 30% 45% 38% NA 

 Soil water content 29% 32% 27% No data 

 Soil N content 42% 50% 41% 69% 
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8 
Figure 1. Flowchart for adding a new crop to the Syst'N model  9 

 10 

 11 

Figure 2. Description of the biological nitrogen fixation (BNF) submodel added to Syst'N (adapted from the 12 
STICS model). See Table 3 for definitions of variables not defined in the figure. Numbers in black boxes indicate 13 
the order of the calculation steps. 14 

 15 
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 16 

Figure 3. Description of the dormancy submodel added to Syst'N (adapted from that in the CropSyst model).  17 

 18 

 19 

Figure 4. Syst’N predictions of lucerne aboveground N content before and after adding equations to simulate 20 
dormancy 21 
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 22 

 23 

Figure 5. Comparison of aboveground dry matter (AGDM), aboveground plant nitrogen content 24 

(AGPN) and biological N fixation observed vs. that predicted by Syst’N with the calibration dataset, 25 

with or without calculating phenological stages from the actual flowering date. rMBE=relative mean 26 

bias error, EF=model efficiency, rRMSE=relative root mean square error. The black line is the 1:1 line. 27 

White symbols correspond to the end of the growing season. Black symbols correspond to earlier 28 

stages. 29 
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 30 

Figure 6. Comparison of aboveground dry matter (AGDM), aboveground plant nitrogen content (AGPN) and 31 
biological N fixation observed vs. that predicted by Syst’N with the calibration and evaluation datasets. 32 
rMBE=relative mean bias error, EF=model efficiency, rRMSE=relative root mean square error. The black line is 33 
the 1:1 line. White symbols correspond to the end of the growing season. Black symbols correspond to earlier 34 
stages. 35 
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 37 

Figure 7. Example of observed and predicted aboveground dry matter before and after dormancy using the 38 
evaluation dataset (site: Châlons-en-Champagne). Error bars indicate standard deviations. 39 
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 40 

Figure 8. Comparison of soil water content and soil nitrogen content observed and that predicted by Syst’N 41 
using calibration and evaluation datasets. rMBE=relative mean bias error, EF=model efficiency, rRMSE=relative 42 
root mean square error. The black line is the 1:1 line. White symbols correspond to the end of growing season. 43 
Black symbols correspond to earlier stages. 44 
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