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ABSTRACT 

Site-specific herbicide spraying reduces herbicide use as it sprays only where weeds are detected. 

We studied the long-term impact of this weed-control measure on weed-impact indicators (crop 

yield loss, biodiversity, …). We developed a submodel to simulate the effects of site-specific 

spraying on weed floras and included this into the existing FLORSYS model. The latter simulates 

multiannual multispecies weed dynamics and crop canopies at a daily time-step from cropping 

system, weather and soil. Global sensitivity and uncertainty analyses, based on 30-year-long 

simulations of different rotations and weather series, identified the most influential inputs and 

the most sensitive outputs. The cropping system (rotation with associated sowing patterns, 

herbicide products and treatment dates) was more influential than the spraying system 

(geometrical spraying pattern, weed detection). Finally, a real-life case study was simulated to 

demonstrate the feasibility of reconciling crop production with reduced herbicide use, thanks to 

site-specific spraying. 

 

Keywords: FLORSYS, patch spraying, site-specific spraying, global sensitivity analysis, weed 

control 

 

Highlights:  

• We modelled site-specific herbicide spraying in the weed-dynamics model FLORSYS 

• We ran sensitivity analyses of weed dynamics and their impacts on crop production 

• Cropping system had more influence on weed impacts than the spraying system 

• Site-specific spraying controlled long-term weed infestation as well as full spraying 

• Benefits of site-specific spraying mainly depend on the weed patch distribution 

 

1 Introduction 

Because synthetic inputs (fertilizers, pesticides, etc.) damage the environment and human health 

(Wilson and Tisdell, 2001), their use must be reduced, which is a major challenge for farmers. 

This is particularly true for weed management as weeds are considered to be the most harmful 

crop pest (Oerke, 2006). Herbicides must now be replaced as much as possible with a 

combination of multiple, mostly preventive and partially efficient practices (Liebman et al., 1997; 

Wezel et al., 2014). Site-specific herbicide spraying allows going further by spraying only where 

weeds are detected in the field (Esau et al., 2018; Fernández-Quintanilla et al., 2017; Gerhards 

et al., 2022; Gonzalez-de-Soto et al., 2016; Johnson et al., 1995; Peña et al., 2013). 
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Most patch-spraying systems rely on weed detection procedures that locate and then treat weeds 

in fields. Many detection systems are based on optical sensors (Gerhards and Christensen, 2003; 

Gerhards and Oebel, 2006; Guerrero et al., 2017; Louargant et al., 2018). The algorithms used in 

these systems are not yet perfect, either missing some weeds or erroneously considering bare soil 

or crops as weeds. Each detection method must thus be evaluated to check whether its detection 

rates are adequate for a practical use in farmers' fields. For instance, in (Gonzalez-de-Soto et al., 

2016), authors working with a robotized patch-spraying system found that reducing herbicide 

use depended on weed abundance (the higher the density is, the less herbicide is saved) and 

distribution (the more weeds are aggregated, the more herbicide is saved). The same trends were 

identified by simulation (Villette et al., 2019). Other teams tackled the economic issue of site-

specific weed management and crop yield loss (Rider et al., 2006; Wilkerson et al., 2004). In 

their case study, the costs of site-specific management were not compensated by the additional 

return (reduced herbicide use). But the economic results varied enormously among considered 

fields. 

 

Most studies focus on the short-term impact of this spraying strategy, simply looking at weed 

reduction rates after spraying or, at the best, yield loss or gain in the sprayed crop. However, 

weeds must be managed at the multiannual scale as their seeds survive for several years in the 

soil (Lewis, 1973). Farmers are usually not so much focused on avoiding yield losses during a 

given year, but rather on limiting weed seed return to the soil and yield losses in future years 

(Macé et al., 2007). This is why weed dynamics models are essential to provide guidelines for 

practical weed management at the multiannual scale (Bagavathiannan et al., 2020; Chantre and 

González-Andújar, 2020; Holst et al., 2007). Multi-annual simulation models allow the analyses 

of long-term weed management impact in the field, especially if they permit to visualize the daily 

values of weed population dynamics (Colbach et al., 2021; Molinari et al., 2022, 2020). Only a 

few of these models though consider site-specific spraying (Audsley, 1993; Barroso et al., 2004; 

Paice et al., 1998; Wiles, 2009). Their simulations show, for instance, that for site-specific weed 

management to be beneficial, weeds must be spatially aggregated and their densities relatively 

low. However, these models focus on the impact of site-specific weed management on herbicide 

use and economic return. They disregard interactions with other management techniques and 

weather as well as impacts on other agronomic indicators such as crop production, weed 

harmfulness for production or weed contribution to biodiversity. 

 

Among the many weed dynamics models (Bagavathiannan et al., 2020; Chantre and González-

Andújar, 2020; Holst et al., 2007), FLORSYS is to date the one model that quantifies the effects 

of the entire cropping system, in interaction with weather and soil properties, on multiannual 

weed dynamics and crop canopies, as well as a series of agronomic indicators (yield, weed 

harmfulness for production, weed contribution to biodiversity) (Colbach et al., 2021). This model 

is well adapted to evaluate multiple impacts of interacting cropping techniques on weeds in the 

long-term, but it does not consider site-specific spraying.  

 

Consequently, the objective of the present paper was to: 1) develop a patch-spraying submodel 

for the FLORSYS model, 2) assess the sensitivity of the agronomic indicators predicted by the 

model to the inputs of the new spraying submodel in order to identify the patch-spraying inputs 

that must be determined as accurately as possible and/or can be modified to drive weed control, 

3) use the new FLORSYS version including the spraying submodel in order to evaluate, in the 
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long-term, the use of a site-specific spraying system at the field scale. To achieve the second 

goal, we used a combination of sensitivity and uncertainty analyses. By coupling these two 

analysis methods we can infer which are the least robust outputs to the variations of the inputs 

(uncertainty analysis), and among these inputs which are the ones that have the most influence 

on these outputs (sensibility analysis) (Saltelli et al., 2004). The combined use of these two 

analysis methods was inspired by (Varella et al., 2012). For the third goal, a real patch-spraying 

system was analyzed, and its characteristics were used in the new FLORSYS spraying submodel 

to assess its long-term impact on crop production and biodiversity. 

 

 

2 The FLORSYS model 

2.1 The current version  

2.1.1 Model inputs 

FLORSYS is a virtual field on which cropping systems can be experimented and a large range of 

crop, weed and environmental measures estimated. The structure of FLORSYS is presented in 

detail in previous papers (Colbach et al., 2021, 2017, 2014c; Gardarin et al., 2012; Mézière et al., 

2015; Munier-Jolain et al., 2013, 2014). Only a short summary is given here. Further details can 

be found in section A of the supplementary material online. 

 

The input variables of FLORSYS consist of (1) a description of the simulated field (daily weather, 

latitude and soil properties); (2) all the simulated crops and management operations in the field, 

with dates, tools and options; and (3) the initial weed seed bank which is either measured on soil 

samples or, more feasible, estimated from regional flora assessments (Colbach et al., 2016).  

In the following sections, parameters are fixed constants (e.g., base temperature of species X) 

and inputs denote user-selected variables (e.g., date of mouldboard ploughing).  

 

 

2.1.2 The annual life cycle of crops and weeds 

These inputs influence the annual life cycle, which applies to annual weeds and crops, with a 

daily time-step. Pre-emergent stages (surviving, dormant and germinating seeds, emerging 

seedlings) are driven by soil structure, temperature and water potential. After emergence, the 

crop-weed canopy is simulated in 3D with an individual representation of each crop and weed 

plant. The canopy is discretized with voxels (3D pixels) and the precision of the plant location 

and description decreases with increasing voxel size, which is an input chosen by the user (see 

section A.3 online). Post-emergent processes (e.g., photosynthesis, respiration, growth, 

etiolation) are driven by light availability and air temperature. At plant maturity, weed seeds are 

added to the soil seed bank; crop seeds are harvested to determine crop yield. In the present 

simulations, FLORSYS was parameterized for 25 annual weed species.  

 

 

2.1.3 Impact of crop management techniques 

Life-cycle processes also depend on the dates, options and tools of management techniques 

(tillage, sowing, herbicides, mechanical weeding, mowing, harvesting), in interaction with 
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weather and soil conditions on the day the operations are carried out (section A.4 online). For 

instance, weed plant survival probabilities after a management operation (tillage, herbicides, 

mechanical weeding, mowing, harvesting) are calculated deterministically depending on the 

operation, biophysical environment as well as weed morphology and stage; the actual survival of 

each plant is determined stochastically by comparing this probability to a random probability.  

Herbicides can be sprayed over the whole simulated field, or only on either the crop rows or the 

interrows (Colbach et al., 2017, details in section A.5 online). They enter plants via leaves 

("foliar" herbicides), shoot tips during emergence ("pseudo-root") or roots ("root"). Multiple 

entry modes are possible ("multi-mode"). Foliar herbicides only kill emerged weeds on the day 

of spraying, the other herbicides persist and act over several days and weeks. Killing rates depend 

on the product's dosage and efficiency on each weed species, the farmer's availability and 

equipment (spraying in adequate conditions or with outdated machinery reduces efficiency) and 

decrease with canopy density (which keeps herbicide droplets from reaching their target). 

Systemic herbicides circulate inside the target plant and their efficiency depends less on dosage 

than for non-systemic herbicides. 

 

 

2.1.4 Model outputs 

All weed and crop state variables are available as outputs to understand the impacts of 

management techniques. In addition, FLORSYS simulates crop yield as well as weed-borne 

agroecological services and disservices (Mézière et al., 2015) (see section A.7 online). Indicators 

of weed disservices describe weed harmfulness for crop production (e.g., yield loss due to 

weeds). Weed-service indicators reflect the contribution that weeds make to biodiversity (e.g., 

the contribution to feeding pollinators). 

 

 

 

2.1.5 Model evaluation 

FLORSYS was evaluated with independent field data, showing that crop yields, daily weed species 

densities and, particularly, densities averaged over the years were generally well predicted and 

ranked (Colbach et al., 2016; Pointurier et al., 2021). A corrective function was required to keep 

weeds from flowering during winter in southern France (e.g. below 46°N). Higher crop yield 

losses than those reported in previous field studies mostly result from the simulation plan. This 

does not adapt practices to simulated weed floras and interannual weather variability (as farmers 

or trial managers would do), in order to discriminate the effect of crop species and management 

practices on weeds from the effect of weeds on the choice of crops and practices (Colbach and 

Cordeau, 2018). 

 

 

2.2 Introducing site-specific spraying into FLORSYS 

Instead of spraying the whole simulated field (or entire crop rows or interrows), the new 

submodel allows spraying only where weed plants are detected. Site-specific spraying is limited 

to foliar herbicides, or multi-entry herbicides that also enter through leaves. 
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The new submodel first needs functions simulating weed detection. For this, the user chooses 

(1) detection zones, e.g. crop row and interrow zones, and their widths (WR in Table 2), (2) weed 

detection rates in each zone (DR-R and DR-IR), (3) the minimum plant diameter to be detected 

(SW), which can be given per species, per clade (monocotyledonous vs dicotyledoneous species), 

or irrespective of species, and (4) the false detection rate (FR), i.e. the probability that a crop 

plant is detected as a weed plant. Three other inputs describe the spraying system: (5) the width 

of the spray (WS), (6) the distance upstream from the detected weed at which the system starts 

to spray (SD-B), and (7) stops spraying downstream after the detected weed (SD-A). 

Each time a site-specific treatment is applied in a FLORSYS simulation, a loop (see Figure 1) is 

run over all weed plants to 

• Determine in which detection zone (e.g., row or interrow) the plant is located. This 

depends on the width chosen for the row detection (WR) and on the distance of the weed 

to the crop row. Crop plant location depends on the sowing pattern chosen by the user, in 

terms of sowing density, interrow width, sowing precision and orientation. Weeds are 

placed in aggregated patches whose sizes increase with the species plant size. 

• Deterministically calculate the detection rate from the weed's location (inside a detection 

zone), species and size, 

• Stochastically decide whether the plant is detected by comparing a random probability 

from [0,1] to the detection rate, 

• If a plant is detected, delimit the sprayed section depending on the plant's location and 

size as well as the spray width (WS), the sprayed distance before and after the detected 

weed (SD-B, SD-A). Sprayed sections do not overlap (i.e., no area is sprayed twice). 

 

The same loop is run over crop plants, using the false detection rate to determine additional 

sprayed sections. Once the field map of sprayed sections has been determined, another loop is 

run over all emerged weed plants to: 

• Deterministically determine whether the plant is sprayed, depending on whether it is 

located inside a sprayed section. Undetected weeds close to detected ones can thus be 

sprayed.  

• Deterministically calculate the survival probability of the sprayed plant, depending on 

weed species and stage, the sprayed herbicide product, dosage and type (systemic or not), 

the farmer's availability and equipment, as well as the canopy density, 

• Stochastically decide whether the plant survives by comparing a random probability from 

[0,1] to the survival probability. 

 

The last two steps are the same as for any herbicide applied over the whole field. Crop plants can 

be affected by site-specific herbicide treatments if they are susceptible to the sprayed active 

ingredient. If the applied herbicide also presents pseudo-root or root-penetrating properties, the 

relative sprayed field area X is calculated from the spray map. A proportion Y of unemerged 

seedlings (for which only density per m² is considered, disregarding coordinates) then dies 

because of the treatment. 
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Figure 1: Diagram of the site-specific treatment loop applied in the new FLORSYS submodel 
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3 Sensitivity and uncertainty analyses 

3.1 Principle 

We analyzed how key FLORSYS output indicators vary with variations in inputs of the patch 

spraying submodel, combining sensitivity and uncertainty analyses. 

For each considered output, we used a four-step method inspired by (Varella et al., 2012) (Table 

1): 1) use a screening analysis to select the most important factors. The next steps were only 

carried out for these important factors to minimize the number of simulation runs; 2) analyze the 

global sensitivity indices of each input to rank input factors according to their impact on outputs; 

3) compute coefficients of variation to analyze the uncertainties of the considered output 

variables to select those that react the most to changes in inputs; 4) apply thresholds to sensitivity 

indices and coefficients of variation to select the most influential inputs: when the uncertainties 

of the input variables induce low variations of the considered output indicators, the results of the 

sensitivity analysis (steps 1 and 2) should not be considered for this output. 

 

 

 

Table 1. Steps and principles for sensitivity and uncertainty analyses 

Step Simulation plan Analysis Aim 

1. Screening analysis: identify non-influential inputs (section 3.2.3.1) 

1a 

3 herbicide spectra  3 seed banks  

2 rotations  LHS of 10 scenarios 

with random quantitative inputs 

η² from ANOVA 

Identify non-

influential qualitative 

inputs 

1b 
~200 scenarios per rotation based on 

Morris sampling 

μ𝑖
∗

 and σ𝑖 sensitivity 

indices 

Identify non-

influential 

quantitative inputs 

2. Global sensitivity analysis: identify influential inputs (section 3.2.3.2) 

2a 

50000 scenarios based on Saltelli's 

sampling, using influential inputs 

identified in steps 1 and 2 

First-order and total 

sensitivity indexes Si 

and Sti 

Identify influential 

inputs 

2b 

3 spectra  3 seed banks  2 

rotations  LHS of 100 scenarios 

with randomly chosen quantitative 

inputs 

Sign of regression 

coefficients of linear 

regressions 

Identify sign relations 

between inputs and 

outputs 

3. Uncertainty analysis: identify sensitive outputs (section 3.2.3.3) 

3 Same as in step 2a 
Coefficient of 

variation CV 

Identify sensitive 

outputs 

4. Conclusion (section 3.2.3.4) 

4 

For sensitive outputs identified in 

step 3, influential inputs are 

identified based on step 2a 

CV and Sti 
Choose inputs per 

output 
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3.2 Material and methods 

In the following we denote as scenario the cropping system given as input to FLORSYS and 

simulation the FLORSYS execution of this scenario over several years with one weather series. 

 

 

3.2.1 Model inputs used in the sensitivity analysis 

We only considered inputs that influence the spraying process in FLORSYS: 13 quantitative 

variables and two qualitative ones, i.e., the spectrum of the prayed herbicide (SH) and the initial 

weed seed bank (IB) (Table 2). The quantitative inputs and the herbicide spectrum determine 

how weeds are detected and treated. The initial seed bank is an environmental constraint. 

Three different spectra were associated to the herbicide used in simulations. The applied 

herbicides only affect monocotyledons (SH = MONOCOT), only dicotyledons (SH = DICOT) or 

both (SH = DEFAULT). We considered three initial seed banks associated to three French 

regions: Aquitaine (IB = IBAQ), Burgundy (IB = IBBO) and Poitou-Charentes (IB = IBPC) 

(details in section C of the supplementary material online). 

Two different scenarios, with different complexities, were used hereafter, a maize monoculture 

from Aquitaine (South-West France) and an oilseed rape/wheat/barley rotation from Burgundy 

(Eastern France) (see details in (Colbach et al., 2017, 2014d)). Weeds were assumed to be 

distributed in patches whose size was correlated to the maximum species plant height. 

Simulations were run with soils and weather series typical of these two regions, using the 

20190828 version of FLORSYS.2. Each scenario was run over 30 years and was repeated 10 times 

with 10 different weather series consisting of 30 randomly chosen weather years recorded by 

weather stations (and provided by the INRAE Climatik platform), using the same 10 series for 

each scenario. To reduce simulation time, only a representative field sample of 6 m by 3 m was 

simulated; the complete field (often covering several ha) then consisted of the repetition of the 

basic sample. 

 

 

3.2.2 Analysed outputs 

The analysed performance indicators assess (1) weed-control variation due to site-specific 

spraying relatively to a fully sprayed field, i.e. crop yield from patch-sprayed simulations – crop 

yield from fully sprayed simulations, for each scenario, weather repetition and year, (2) weed 

harmfulness for production: weed-crop biomass ratio at crop flowering as a proxy of weed-

caused yield loss (Colbach and Cordeau, 2018), (3) field infestation, (4) weed contribution to 

biodiversity, i.e., wild plant species richness, and (5) herbicide use intensity, i.e., proportion of 

sprayed field area, and treatment frequency indicator (TFI). Indicators of types (2)-(5) are directly 

calculated by FLORSYS (section 2.1.4).  
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Table 2: Definition of the 13 quantitative and 2 qualitative inputs with their ranges of variation. 

The column ‘case study value’ gives the input values used in the simulations of the case study in 

Section 4 combining systemic spraying on crop rows with patch-spraying in interrows 

A. Complete list 
Label Input Range Case study value Unit 

IB Initial seed bank (qualitative) 

Aquitaine (IBAQ); 

Burgundy (IBBO); 

Poitou-Charentes (IBPC) 

IBAQ  

Spraying system 

WS Width of spray 0 – 200 35 cm 

SD-B Sprayed distance before detected weed 0 – 200 5 cm 

SD-A Sprayed distance after detected weed 0 – 200 5 cm 

Weed detection 

DR-R Detection rate of weed in crop row 0 – 100 0 % 

DR-IR Detection rate of weed in inter-row 0 – 100 See Table 2B % 

FR False detection rate 0 – 100 See Table 2B % 

WR Width used for row detection 0 – 20 18 cm 

SW Minimum size of detected weeds 0 – 4 See Table 2B cm 

Crop plant location 

SD Sowing density -20 – 20& – % 

ID 
Crop interrow  

(maize-based cropping system only) 
25 – 120 75 cm 

Herbicide characteristics 

TD Treatment date -5 – +5$ – days 

HD Herbicide dose 0 – 100$$ – % 

SH 
Spectrum of the used herbicide 

(qualitative) 

monocotyledons 

(MONOCOT); 

dicotyledons (DICOT); 

both (DEFAULT). 

DEFAULT  

HE 
Herbicide efficiency  

(in optimal conditions) 
0 – 100# – % 

$daily offset from the scheduled date in the simulated cropping systems.  
&percentage variation of the nominal value;  

$$ percentage of the recommended dose.  

# percentage of the efficiency published ACTA database (based on Mamarot and Rodriguez, 2003)  

 

B. Interrow detection rates DR-IR and false detection rate FR in the case study, depending on 

the minimum detected weed size SW. Each combination of DR-IR, FR and SW corresponds to 

a WeedSeeker configuration: Sens. 5 to 10 (see section 4.1).  

WeedSeeker  

configuration 

Minimum detected weed size 

SW1 = 0 cm SW2 = 3 cm 

DR-IR FR DR-IR FR 

Sens. 5 40 9 79 19 

Sens. 6 38 9 77 18 

Sens. 7 39 8 78 17 

Sens. 8 33 6 66 12 

Sens. 9 32 5 65 11 

Sens. 10 22 4 44 8 
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3.2.3 Simulation plan and statistical analysis 

3.2.3.1 Screening analysis (step 1 of Table 1) 

A screening analysis aims to identify non-influential model inputs with a reduced number of 

simulations (Iooss and Lemaître, 2015; Saltelli et al., 2008; Wallach et al., 2013). In the following 

we used a two-step screening approach to identify non-influential inputs defining patch spraying. 

First (step 1a of Table 1), for each combination of herbicide spectrum (3 possibilities), initial 

seed bank (3) and crop rotation (2), a Latin Hypercube Sampling (LHS) simulation plan (McKay 

et al., 1979) consisting of 10 scenarios was built by drawing the quantitative inputs of Table 2 in 

a uniform distribution inside the ranges listed. As explained in section 3.2.1, each scenario was 

simulated over 30 years and repeated with 10 weather series. For each crop rotation, simulated 

outputs were analyzed with an analysis of variance (ANOVA) as a function of herbicide spectrum 

and initial weed seed bank to differentiate qualitative inputs with negligible effects, via the eta-

squared (η²) measure of effect size. The value for eta-squared is between 0 and 1: the closer the 

value is to 1, the higher the proportion of variance that can be explained by a given variable in 

the model is. To select the qualitative factors that have the greatest impact on outputs an 

uncertainty analysis using absolute value of the coefficient of variation (see method in section 

3.2.3.3) and a threshold of 0.2 was made to highlight most influential inputs. 

 

In a second step (step 1b of Table 1), using the analysis of variance results, we applied the 

screening method proposed by Morris and improved by Campolongo et al. (Campolongo et al., 

2007; Morris, 1991). This method differentiates quantitative inputs that have negligible effects, 

inputs with large linear effects without interactions and inputs with large non-linear and/or 

interaction effects. The analysis used a simulation plan based on the Morris sampling method 

(Herman et al., 2013; Morris, 1991) which reduced the total number of simulations needed to 

210 scenarios for the maize monoculture and 195 for the oilseed rape/wheat/barley rotation. For 

each qualitative input, two sensitivity measures are computed (Campolongo et al., 2011). 

Considering the i-th input, μ𝑖
∗

 and σ𝑖 denote these measures. 𝜇𝑖
∗

 assesses the influence of the i-th 

input on the indicator values and 𝜎𝑖  is a measure of non-linear and/or interaction effects of the i-

th input. The i-th input is considered as important if either μ𝑖
∗  or 𝜎𝑖  have a large value. As 

proposed in (Turati et al., 2016), to select important factors we first considered that a factor i has 

an important effect on an indicator if 𝜇𝑖
∗

 is larger than the average of the µ∗ values, i.e. μ𝑖
∗ >

1

𝐾
∑ μ𝑘

∗𝐾
𝑘=1 , with K the number of inputs. Arbitrarily, a threshold on σ was chosen equal to 1/3 of 

the maximum value to refine the selected important factors. In order to confirm the input 

selection, a visual analysis of σ values as a function of µ∗ values was carried out. This analysis 

aimed to identify the different input groups that may have a similar importance. 

 

Screening analysis were performed using Python and the SciPy and SALib libraries (Herman and 

Usher, 2017; Oliphant, 2007). 

 

 

3.2.3.2 Global sensitivity analysis (step 2 of Table 1) 

Once the most important factors were selected with the screening analysis, a global sensitivity 

analysis was performed to estimate the global sensitivity indices of each input in order to rank 

them according to their impact on outputs (step 2a of Table 1). Among the different methods to 
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compute global sensitivity indices (Gan et al., 2014; Iooss and Lemaître, 2015; Saltelli et al., 

2008), the variance-based sensitivity analysis is appropriate for a non-linear model like FLORSYS 

(Saltelli, 2002; Saltelli et al., 2008). We chose to use the Sobol sensitivity indices estimated with 

Saltelli’s sampling method with 50000 sample points distributed in ranges given in Table 2 (Iooss 

and Lemaître, 2015; Saltelli, 2002; Saltelli et al., 2010). This method calculates a first-order 

sensitivity index (Si) which represents the main-effect contribution of input i to the variance of 

the considered indicator (without interaction with other variables) and a total effect index (STi) 

which describes the proportion of the variance of the indicator explained by input i individually 

plus effects due to the interactions with all other factors (Saltelli et al., 2008).  

 

First and total Sobol indexes were computed using Python with the SALib library (Herman and 

Usher, 2017). 

 

Finally (step 2b in Table 1), in order to estimate sign relations between considered inputs and 

outputs, for each combination of herbicide spectrum (3 possibilities), initial seed bank (3) and 

crop rotation (2), a Latin Hypercube Sampling (LHS) simulation plan (McKay et al., 1979) 

consisting of 100 scenarios was built by drawing the quantitative inputs of Table 2 in a uniform 

distribution inside the ranges listed in Table 2. Simulations results were analysed with a linear 

regression model. 

 

 

3.2.3.3 Uncertainty analysis (step 3 of Table 1) 

The uncertainty analysis aims to quantify uncertainty in model outputs (Saltelli et al., 2008). For 

this purpose, using the simulations run to estimate the global sensitivity indices (step2a of Table 

1, section 3.2.3.2), uncertainty of each output indicator Y was analyzed by computing the absolute 

value of the coefficient of variation (Varella et al., 2012): 

𝐶𝑉(𝑌) =
√𝑉(𝑌)

𝑌̅
=
σ(𝑌)

𝑌̅
 

with σ(𝑌) the standard-deviation of the variable Y, 𝑌̅ its mean and V(Y) its total variance. 

 

 

3.2.3.4 Final Input selection (step 4 of Table 1) 

In order to select the influential inputs that must be determined accurately for the estimation of a 

given indicator, the coefficient of variation of section 3.2.3.3 was analyzed with regard to the 

total effect index of each input. Two thresholds were set to select the inputs that have the greatest 

influence on the indicator uncertainty. A first threshold was set to 10% of the total effect index 

(Makowski et al., 2006). An arbitrary value of 0.3 was taken for the threshold on the coefficient 

of variation. The weed-impact indicators with a coefficient of variation lower than this threshold 

are considered robust with regards to changes in considered inputs. Otherwise, all inputs with a 

total effect index greater than 10% were considered as influential. 
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3.3 Results 

3.3.1 Screening analysis (step 1 of Table 1) 

3.3.1.1 Selection of qualitative inputs (step 1a of Table 1) 

Irrespective of the rotation, the output indicators that were the most influenced (based on the 

analysis of the coefficient of variance available in section D.1 of the supplementary material 

online) by the qualitative inputs were weed-control variation due to site-specific spraying, weed-

crop biomass ratio at flowering, the herbicide treatment frequency indicator and field infestation. 

Weed species richness and the herbicide-sprayed area were little influenced. 

 

Among the two tested qualitative inputs, the spectrum of the used herbicide (SH) had a negligible 

influence on the considered indicators in both rotations (see  

Table 3, details in section D.1 of the supplementary material online). The impact of the initial 

weed seed bank (IB) was significant (p-value < 0.05) with a large impact on outputs (high η² in  

Table 3) for all output indicators in the diversified oilseed rape/wheat/barley rotation. In the 

maize monoculture, it only influenced weed-control variation due to site-specific spraying and 

weed species richness.  

 

In view of these results, in the following steps, we set the herbicide spectrum SH to DEFAULT 

(targeting all weeds irrespective of clade) for all outputs and rotations. The initial seed bank IB 

input was set to the Burgundy seed bank (IBBO) when analysing the species-richness and 

sprayed-area outputs for the oilseed rape/wheat/barley rotation (typical of Burgundy) whereas all 

possible IB values were considered when analysing the other outputs. For the maize-based system 

(typical of Aquitaine), we set the value of IB to IBAQ for all output indicators. 

 

Table 3: Identification of key qualitative input variables and the most influenced outputs of the FLORSYS 

patch-spraying submodel based on analyses of variance of data from simulations based on LHS sampling 

on qualitative inputs. In green, CV values greater than 0.2. ns = effect of simulation factor not significant 

at p=0.05 

Analysed output indicators values averaged 
over 30 years   

Herbicide  
spectrum SH 

Initial weed 
seed bank 
IB 

Total 
Coefficient  
of variance 
CV 

η²   η²   R² 

A. Maize monoculture 

Weed species richness 0.01 ns 0.95  0.96 0.024 

Weed-control variation due to site-specific 
spraying 

0.02 ns 0.81 ns 0.83 1.4 

Field infestation 0.04 ns 0.51 ns 0.55 0.67 

Sprayed area 0.08 ns 0.51 ns 0.58 0.066 

Herbicide Treatment Frequency Index 0.02 ns 0.53 ns 0.55 0.64 

Weed-crop biomass ratio at flowering (proxy 
for yield loss due to weeds) 

0.34 ns 0.01 ns 0.36 2.4 

B. Oilseed rape/wheat/barley rotation 

Weed species richness 0.01 ns 0.96  0.97 0.027 

Weed-control variation due to site-specific 
spraying 

0.01 ns 0.97  0.98 0.28 

Field infestation 0.03 ns 0.93  0.96 0.45 

Sprayed area 0.06 ns 0.77 ns 0.83 0.13 

Herbicide Treatment Frequency Index 0.03 ns 0.74 ns 0.87 0.32 
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Weed-crop biomass ratio at flowering (proxy 
for yield loss due to weeds) 

0.10 ns 0.81  0.92 0.89 

 

3.3.1.2 Quantitative inputs (step 1b of Table 1) 

Figure 2 shows an example of how the impact of quantitative inputs was analysed (further results 

in section D.1 online). In the case of weed-control variation due to patch-spraying, the least 

influential inputs (low values of µ∗ and σ) were related to the detection and patch-spraying 

system, i.e., on-row weed detection rate (DR-R), before-weed sprayed distance (SD-B), 

minimum detected weed size (SW), row-width (WR), and spray-width (WS). The only other non-

influential input was herbicide efficiency (HE). The most influential inputs were herbicide dose 

(HD) or related to crop-plant location, i.e., sowing density (SD) and interrow distance (ID). These 

three presented large µ∗ values and were located far below the 2*SEM line, indicating a linear 

relation with the considered output and little interaction with other inputs. The other inputs 

(interrow detection rate (DR-IR), treatment date (TD), false detection rate (FR), after-weed 

sprayed distance (SD-A)) were less influential (lower µ∗ values), their effects were non-linear 

and/or depended more on other inputs (location close to the 2*SEM line).  

The results for all indicators and cropping systems are summarized in Table 4. The most 

influential variables were the same in both systems. But, the more complex cropping system 

presented more influential inputs, more non-linear input-output relationships and/or more 

interactions among inputs. There was no input that had no influence at all on any output in any 

system. So, all the input variables were considered for both croping systems in the next step. 

 

Figure 2: Identifying influential quantitative input variables with the Morris screening method, using the 

weed-control variation due to site-specific spraying indicator in the maize-based cropping system as an 

example. Each dot represents, for an input given by its abbreviation (see Table 2 for the meaning of the 

input abbreviations), the sensitivity measures (the σ (ordinate) and µ∗ (on the x-axis) values) computed 
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with the Morris screening method. µ∗ assesses the influence of the input on the indicator values and σ is a 

measure of non-linear and/or interaction effects of the input. The horizontal dashed blue line (at 0.3 of the 

maximum σ values) and the vertical one (the average of the µ∗ values) correspond to the thresholds used 

on µ∗ and σ to select the most influential inputs. 
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Table 4: The most influential inputs of the patch-spraying submodel identified with the Morris screening 

method results (detailed results in section D.1.2 online). Inputs related to weed detection (green, details 

in Table 2), spraying system (red), herbicide characteristics (blue), crop-plant location (purple). NI: not 

important; LI: linear relation with the output; NLI: non-linear relation with the output or interaction with 

other inputs 

 Analysed output indicators values averaged over years 

Input  
Weed 

species 
richness 

Weed-
control 

variation $ 

Field 
infestation 

Weed-crop 
biomass 

ratio § 

Sprayed 
area 

Herbicide 
TFI & 

A. Maize monoculture 

DR-IR FR NLI NLI NLI NLI NLI NLI 

HD NLI NLI LI NLI NI LI 

WS NLI NI NI NLI LI LI 

SD ID NLI LI LI NLI NI NI 

SD-A TD NLI NLI NLI NLI NI NI 

SD-B WR SW HE NLI NI NI NLI NI NI 

DR-R NLI NI NI NI NI NI 

B. Oilseed rape/wheat/barley rotation 

WS DR-IR FR WR TD NLI NLI NLI NLI NLI NLI 

DR-R NLI NLI NLI NLI NLI NI 

HD NLI NLI NLI NLI NI LI 

SD-B SD-A SW SD HE NLI NLI NLI NLI NI NI 
$ due to site-specific spraying, § at flowering, proxy for yield loss due to weeds, & Treatment Frequency Index 

 

 

3.3.2 Sensitivity analysis (step 2 of Table 1) 

3.3.2.1 The most influential inputs (step 2a of Table 1) 

The Sobol sensitivity indexes were then used to rank the different inputs according to their 

influence on the analysed output indicators (Table 5). For weed-control variation due to site-

specific spraying, the two variables determining crop-plant location in the field, sowing density 

(SD) and the crop interrow distance (ID), contributed the most to the variance output in the maize 

monoculture (Table 5.A). Among the inputs of the spraying strategy, only the herbicide dose 

(HD) influenced this indicator. These impacts were all almost entirely due to first-order effects 

(i.e., first-order sensitivity was almost equal total sensitivity).  
 

Unlike for the maize-based system, the oilseed rape/wheat/barley rotation showed a high rate of 

interactions between inputs (except for the sprayed area and the herbicide treatment frequency 

index) (Table 5.B). For the two cropping systems, the sprayed area and the herbicide treatment 

frequency indexes were mainly influenced by the same inputs: width of spray (WS) and treatment 

date (TD) for the first indicator, herbicide dose (HD) and width of spray (WS) for the second. 

For the other indicators and for both cropping systems, the herbicide dose (HD) was one of the 

most influential inputs. The two cropping systems mainly differed in terms of the influence of 

the herbicide efficiency (HE), which was low in the maize-based system but among the key inputs 

for the diversified rotation. 
 

The initial weed seed bank did not change the inputs that the most influenced herbicide treatment 

frequency index in the oilseed rape/wheat/barley rotation (section D.2.2 online). This did not 

apply to the other indicators for which the screening analysis showed a potential effect of the 

initial seed bank ( 

Table 3): when changing from the Aquitaine seed bank (IBAQ) to the Burgundy one (IBBO), the 

first-order effect of the others inputs changed (section D.2.2 online). For instance, with the 

Burgundy seed bank, the sowing density (SD) had a direct influence on the weed-control 
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variation due to site-specific spraying, the field infestation and the weed-crop biomass ratio at 

flowering; this was not the case when the Aquitaine seed bank was used. 

Table 5: Identifying influential quantitative input variables with the Sobol sensibility analysis for the 

maize monoculture (A) and the oilseed rape/wheat/barley rotation using the intial weed seed bank from 

Burgundy (IB = IBBO; for IB = IBAQ and IB = IBAQ see section D.2.2 online) (B). Evaluation indicators 

are S1 (main-effect contribution without interaction) and ST (total contribution including interactions with 

other inputs). See Table 2 for the meaning of the input abbreviations. 

 Analysed output indicators values averaged over years 

Input 
Weed species 

richness 

Weed-control 
variation due to site-

specific spraying 

Field 
infestation 

Weed-crop 
biomass ratio 

at flowering
§ 

Sprayed area 
Herbicide 
Treatment 

Frequency Index 

S1 ST S1 ST S1 ST S1 ST S1 ST S1 ST 

A. Maize monoculture (initial weed seed bank IB = IBAQ) 

Spraying system 

WS 0.00 0.14 0.00 0.01 0.00 0.03 0.00 1.00 0.76 0.77 0.06 0.1 

SD-B 0.00 0.15 0.00 0.01 0.00 0.04 0.00 1.00 0.02 0.02 0.00 0.00 

SD-A 0.00 0.15 0.00 0.01 0.00 0.03 0.00 0.75 0.00 0.02 0.00 0.00 

Weed detection 

DR-R 0.00 0.15 0.00 0.01 0.00 0.03 0.00 0.69 0.00 0.01 0.00 0.00 

DR-IR 0.00 0.14 0.00 0.01 0.00 0.04 0.00 0.90 0.03 0.05 0.00 0.00 

FR 0.00 0.14 0.00 0.01 0.01 0.03 0.03 0.69 0.04 0.05 0.00 0.01 

WR 0.00 0.16 0.01 0.01 0.00 0.03 0.03 0.70 0.00 0.01 0.00 0.00 

SW 0.00 0.17 0.00 0.01 0.00 0.04 0.02 0.72 0.00 0.01 0.00 0.00 

Crop plant location 

SD 0.05 0.28 0.63 0.65 0.10 0.13 0.03 0.92 0.00 0.01 0.00 0.00 

ID 0.14 0.35 0.23 0.24 0.24 0.25 0.00 0.91 0.00 0.03 0.00 0.00 

Herbicide characteristics 

TD 0.13 0.30 0.02 0.03 0.07 0.10 0.00 0.88 0.06 0.08 0.01 0.01 

HD 0.31 0.50 0.11 0.14 0.57 0.65 0.10 1.00 0.00 0.02 0.89 0.92 

HE 0.00 0.14 0.00 0.01 0.00 0.03 0.01 0.93 0.00 0.00 0.00 0.00 

B. Oilseed rape/wheat/barley rotation (initial weed seed bank IB = IBBO) 

Spraying system 

WS 0.00 0.52 0.00 0.60 0.02 0.80 0.04 0.72 0.70 0.68 0.06 0.05 

SD-B 0.00 0.50 0.00 0.66 0.00 0.87 0.00 0.69 0.00 0.04 0.00 0.00 

SD-A 0.01 0.55 0.03 0.63 0.05 0.80 0.00 0.69 0.02 0.04 0.00 0.00 

Weed detection 

DR-R 0.01 0.54 0.00 0.62 0.00 0.82 0.00 0.68 0.00 0.04 0.00 0.00 

DR-IR 0.07 0.53 0.00 0.62 0.00 0.77 0.00 0.72 0.03 0.05 0.00 0.00 

FR 0.00 0.50 0.00 0.68 0.00 0.91 0.03 0.68 0.02 0.05 0.00 0.00 

WR 0.00 0.54 0.00 0.59 0.00 0.81 0.00 0.68 0.00 0.03 0.00 0.00 

SW 0.01 0.58 0.00 0.62 0.05 0.77 0.04 0.68 0.08 0.13 0.00 0.01 

Crop plant location 

SD 0.07 0.55 0.08 0.65 0.07 0.83 0.08 0.78 0.02 0.03 0.00 0.00 

Herbicide characteristics 

TD 0.00 0.54 0.00 0.61 0.00 0.76 0.04 0.69 0.19 0.25 0.00 0.01 

HD 0.16 0.65 0.09 0.64 0.09 0.76 0.09 0.73 0.00 0.03 0.97 0.98 

HE 0.38 0.93 0.31 0.89 0.23 0.99 0.18 0.85 0.01 0.03 0.00 0.00 
§  

proxy for yield loss due to weeds 

 

3.3.2.2 Which input choices improve weed control and reduce sprayed herbicide amounts? 

(step 2b of Table 1) 

Finally, linear regressions were done with all inputs in order to estimate the direction of the 

relationship between inputs and outputs, i.e., whether an increase in the input led to an increase 

or a decrease in the output (Erreur ! Référence non valide pour un signet.). Regardless of the 

rotation, increasing the spraying width (WS) and the sprayed areas before and after the detected 

weed (SD-B and SD-A) increased the sprayed field area and the herbicide treatment frequency 

index (TFI), but had no influence on the other output indicators. Notably, there was no decrease 
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in the weed/crop biomass ratio (i.e., the proxy for crop yield loss due to weeds) or in the weed-

control variation due to patch spraying. Similarly, increasing the detection rates, particularly in 

the interrow (DR-IR), and decreasing the minimum size to detected a weed (SW) increased 

sprayed area and TFI without improving weed control. Only the weed species richness 

deteriorated in the maize monoculture. 

 

Crop-plant location, on the other hand, was crucial for all outputs: the more crop plants there 

were (high SD) and the closer they were located (small ID), the better weeds were controlled in 

general (lower field infestation and weed/crop biomass ratio) and relatively to whole-field 

spraying (larger weed-control variation). This came with a cost in terms of lower weed species 

richness and larger amounts of sprayed herbicide (larger sprayed area, TFI), particularly for 

smaller interrows (low ID). 

 

Table 6: Identifying relationships between input variables and indicators with linear regressions for the 

maize monoculture (A) and the Oilseed rape/wheat/barley rotation (B). See Table 2 for the meaning of 

the input abbreviations. ns = effect of simulation factor not significant at p=0.05. Only inputs significantly 

correlated to at least one output are shown; effect of seed bank inputs and spectrum of the used herbicide 

can be found in section D.2.3 online. Input-output combinations with positive (resp. negative) correlation 
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are shown in green (resp. red). Input-output combinations that were identified as crucial in section 3.3.2.3 

(i.e., sensitive outputs, influential inputs) are shown in bold. 

Input 

Analysed output indicators values averaged over years 

Weed species 

richness 

(number of 

species) 

Weed-control 

variation 
$
 

(t dry 

matter/ha) 

Field 

infestation 

(t dry 

matter/ha) 

Weed-crop 

biomass 

ratio 
§
 (t/t) 

Sprayed 

area 

(%) 

Herbicide 

TFI 
&

 

A. Maize monoculture 

R2 0.62 0.79 0.57 0.16 0.53 0.94 

Spraying-system inputs 

WS (cm) ns ns ns ns 0.154 0.0008 

SD-B (cm) ns ns ns ns 0.0216 0.0001 

SD-A (cm) ns ns ns ns 0.0194 0.0001 

Weed-detection inputs 

DR-R (%) ns ns ns ns 3.17 ns 

DR-IR (%) -0.0674 ns ns ns 5.97 0.0304 

FR (%) ns ns ns ns 7.33 0.0338 

Crop-location inputs 

SD (%) -1.04 2.81 -0.289 -19.6 ns ns 

ID (cm) 0.0045 -0.0057 0.0016 0.0806 -0.0529 -0.0002 

Herbicide characteristics 

TD (days) 0.0284 -0.0105 0.0057 0.265 0.637 0.0034 

HD (%) -0.623 0.332 -0.208 -21.5 -2.40 0.855 

HE (%) ns ns Ns -4.03 ns ns 

B. Oilseed rape/wheat/barley rotation 

R2 0.88 0.92 0.84 0.54 0.37 0.96 

Spraying-system inputs 

WS (cm) ns ns ns ns 0.134 0.0004 

SD-B (cm) ns ns ns ns 0.0260 7.61E-05 

SD-A (cm) ns ns ns ns 0.0232 ns 

Weed-detection inputs 

DR-IR (%) ns ns ns ns 5.48 ns 

SW (cm) ns ns ns ns -5.11 -0.0142 

Crop-location inputs 

SD (%) -0.0938 0.809 -0.200 -22.1 ns ns 

Herbicide characteristics 

TD (days) -0.0018 0.0048 ns ns 1.05 0.0028 

HD (%) -0.151 0.268 -0.115 -11.5 ns 1.07 

HE (%) -0.291 0.535 -0.155 -8.07 ns ns 
$ due to site-specific spraying, § at flowering, proxy for yield loss due to weeds, & Treatment Frequency Index 

 

3.3.2.3 Which input choices improve weed control and reduce sprayed herbicide amounts? 

(step 2b of Table 1) 

Finally, linear regressions were done with all inputs in order to estimate the direction of the 

relationship between inputs and outputs, i.e., whether an increase in the input led to an increase 

or a decrease in the output (§  proxy for yield loss due to weeds 

 

3.3.2.4 Which input choices improve weed control and reduce sprayed herbicide amounts? 

(step 2b of Table 1) 

Finally, linear regressions were done with all inputs in order to estimate the direction of the 

relationship between inputs and outputs, i.e., whether an increase in the input led to an increase 

or a decrease in the output (Erreur ! Référence non valide pour un signet.). Regardless of the 

rotation, increasing the spraying width (WS) and the sprayed areas before and after the detected 

weed (SD-B and SD-A) increased the sprayed field area and the herbicide treatment frequency 

index (TFI), but had no influence on the other output indicators. Notably, there was no decrease 
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in the weed/crop biomass ratio (i.e., the proxy for crop yield loss due to weeds) or in the weed-

control variation due to patch spraying. Similarly, increasing the detection rates, particularly in 

the interrow (DR-IR), and decreasing the minimum size to detected a weed (SW) increased 

sprayed area and TFI without improving weed control. Only the weed species richness 

deteriorated in the maize monoculture. 

 

Crop-plant location, on the other hand, was crucial for all outputs: the more crop plants there 

were (high SD) and the closer they were located (small ID), the better weeds were controlled in 

general (lower field infestation and weed/crop biomass ratio) and relatively to whole-field 

spraying (larger weed-control variation). This came with a cost in terms of lower weed species 

richness and larger amounts of sprayed herbicide (larger sprayed area, TFI), particularly for 

smaller interrows (low ID). 

 

Table 6). Regardless of the rotation, increasing the spraying width (WS) and the sprayed areas 

before and after the detected weed (SD-B and SD-A) increased the sprayed field area and the 

herbicide treatment frequency index (TFI), but had no influence on the other output indicators. 

Notably, there was no decrease in the weed/crop biomass ratio (i.e., the proxy for crop yield loss 

due to weeds) or in the weed-control variation due to patch spraying. Similarly, increasing the 

detection rates, particularly in the interrow (DR-IR), and decreasing the minimum size to detected 

a weed (SW) increased sprayed area and TFI without improving weed control. Only the weed 

species richness deteriorated in the maize monoculture. 

 

 

3.3.3 Uncertainty analysis and input selection (steps 3 and 4 of Table 1) 

In order to select the influential inputs that must be determined accurately for the estimation of a 

given indicator, the coefficient of variation was analyzed with regard to the total effect index of 

each input. 

 

For the maize-based system (Figure 3), the uncertainty in the considered inputs had little 

influence on simulated species richness and sprayed area. Indeed, even if some inputs (like HD 

or WS) influenced indicator values (i.e., their ST values exceeded 0.5), the indicator variations 

remained low (i.e., the associated coefficients of variation were lower than 0.3). The herbicide 

dose (HD) and the width of spray (WS) were the only inputs that needed to be accurately 

determined to estimate the herbicide treatment frequency indicator, i.e., they were the only inputs 

whose ST value exceeded 10%. For weed-crop biomass ratio at flowering (i.e., a proxy for crop 

yield loss due to weeds), the coefficient of variation was over 0.3 and all input ST indexes 

exceeded 10% (Figure 3). Therefore, all inputs had to be accurately defined.   

 

For the oilseed rape/wheat/barley rotation (section D.3.2 online), conclusions were similar for 

species richness and sprayed area. However, this more complex cropping system needed more 

inputs to accurately simulate some indicators such as the weed-control variation due to site-

specific spraying.  
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3.4 Conclusion 

The sensitivity analysis showed that cropping system, sowing density, herbicide dose, herbicide 

efficiency were the most influential inputs for all indicators. Furthermore, the herbicide site-

specific spraying system inputs (weed detection and geometry of the spray pattern) influenced 

the sprayed area and the herbicide treatment frequency indicator. In the most complex cropping 

system, interactions among inputs were significant for all indicators, especially for weed-crop 

biomass ratio (the proxy for yield loss due to weeds), which was thus more complex to analyze. 

The sensitivity and uncertainty analyses did not highlight any input that single-handedly 

influenced the studied weed-impact indicators. Moreover, the uncertainty analysis showed that 

it was unnecessary to precisely know the herbicide site-specific spraying system inputs (weed 

detection and geometry of the spray pattern) to predict the sprayed area and the herbicide 

treatment frequency. This last indicator mainly depended on herbicide dose.  

 

Moreover, the uncertainty analysis showed that the considered inputs had little impact on wild 

plant species richness and sprayed area. Conversely, all inputs were needed to estimate the weed-

control variation due to site-specific spraying and the weed-crop biomass ratio. 

 

The initial seed bank had an influence on the input uncertainties of the field infestation: for the 

complex cropping system, when the Burgundy and Poitou-Charentes initial seed banks were 

used,  all inputs had little influence, while all were necessary to estimate the indicator when the 

Aquitaine initial seed bank was used. 

 

 

 

Figure 3: Identifying the important inputs to be determined accurately with an uncertainty analysis, using 

the maize-based cropping system as an example (see section D.3 online for the oilseed rape/wheat/barley 

rotation). For each indicator (species richness: SR, weed-control variation due to site-specific spraying: 

L, field infestation: F, weed-crop biomass ratio at flowering: W, sprayed field area: S, herbicide treatment 

frequency indicator: I), absolute value of coefficient of variation (unitless) is on the horizontal axis and 

the corresponding input total effects index (ST) are on the vertical axis (unitless). For each indicator, 
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inputs are represented with their labels (see Table 1 for meanings). The significative inputs were 

highlighted in §  proxy for yield loss due to weeds 

 

3.4.1.1 Which input choices improve weed control and reduce sprayed herbicide amounts? 

(step 2b of Table 1) 

Finally, linear regressions were done with all inputs in order to estimate the direction of the 

relationship between inputs and outputs, i.e., whether an increase in the input led to an increase 

or a decrease in the output (Erreur ! Référence non valide pour un signet.). Regardless of the 

rotation, increasing the spraying width (WS) and the sprayed areas before and after the detected 

weed (SD-B and SD-A) increased the sprayed field area and the herbicide treatment frequency 

index (TFI), but had no influence on the other output indicators. Notably, there was no decrease 

in the weed/crop biomass ratio (i.e., the proxy for crop yield loss due to weeds) or in the weed-

control variation due to patch spraying. Similarly, increasing the detection rates, particularly in 

the interrow (DR-IR), and decreasing the minimum size to detected a weed (SW) increased 

sprayed area and TFI without improving weed control. Only the weed species richness 

deteriorated in the maize monoculture. 

 

Crop-plant location, on the other hand, was crucial for all outputs: the more crop plants there 

were (high SD) and the closer they were located (small ID), the better weeds were controlled in 

general (lower field infestation and weed/crop biomass ratio) and relatively to whole-field 

spraying (larger weed-control variation). This came with a cost in terms of lower weed species 

richness and larger amounts of sprayed herbicide (larger sprayed area, TFI), particularly for 

smaller interrows (low ID). 

 

Table 6 
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4 Case study of an herbicide site-specific spraying system 

The interest of the new patch-spraying submodel of FLORSYS was illustrated here with an 

autonomous mobile platform, which has been presented and evaluated in (Maillot et al., 2016) 

and is summarized here in section 4.1. 

 

4.1 Patch-spraying platform presentation and in situ evaluation 

4.1.1 A mobile platform based on WeedSeeker 

The studied mobile platform aims to detect and treat the vegetation in the inter-row: spraying is 

triggered only where a plant is detected. The spray system is based on a WeedSeeker system 

(Trimble) including an optical sensor and a spray nozzle positioned at 30 cm from the soil 

surface. At this height, with a nozzle with a 65° angle, the width of spray is about 35 cm. The 

optical sensor distinguishes green plants from the soil using their spectral properties. It uses its 

own light emission and measures the spectral reflection in the red and the near infrared to 

calculate a vegetation index.  

 

4.1.2 Field experiments for calibration and evaluation 

Field experiments were carried out on a 120 m2 plot at L’Institut Agro Dijon (47°18'30.0"N 

5°03'53.2"E). The plot was composed of a deep clay-limestone soil. Maize was sown in mid-

June with a row spacing of 0.75 m. Mechanical weeding was carried out after emergence, at the 

3-4 leaf stage. The experiments were carried out at the 4-6 leaf stage, with 24 passages of the 

patch-spraying platform in three different inter-rows of 12 m in length. The working speed was 

1–2 km/h. 
 

The positioning of the WeedSeeker on the platform was such that the detection zone (length 20 

cm x width 2 cm at 30 cm height) of its optical sensor was centered on the middle of the inter-

row. Calibration and configuration of the optical sensor were performed using the WeedSeeker 

control panel on bare ground. Ten sensor-configuration values (chosen via the control panel) 

were tested, ranging from Sens. 1 (lowest sensitivity) to Sens. 10 (highest) (Table 2.B). 

Weeds detected and treated by the WeedSeeker were geolocated using an GPS RTK signal. These 

weed positions were compared to a weed map constructed the same day using the Excess Green 

Vegetation Index (ExG) (Meyer and Neto, 2008) computed using multispectral sensor images. 

 

4.1.3 Accuracy of the weed detection system 

The configurations Sens. 1 to Sens. 4 led to too many false positives (i.e., > 20%), identifying 

bare soil or plant residues as living vegetation, and were not considered hence. The in-field 

measured accuracy of the other configurations of the weed-detection system are shown in Table 

7. The sensor sensitivity corresponds to the number of plants correctly detected and therefore 

treated. Sensor specificity indicates the ability of the system to avoid false positives, and thus to 

save pesticides and to reduce environmental impacts. The overall precision of the system was 

computed by the ratio of the sum of the true positives and the true negatives by the sum of the 

positive and negative real cases. 
 

In our experiments, configuration Sens. 7 of the WeedSeeker led to a good compromise between 

the average sensor sensitivity and the average sensor specificity (Table 7). This configuration 

had already been noted for its ability to detect plants in the field (Rees et al., 2013; Sui et al., 

2008). Our results are similar to those obtained in (Andújar et al., 2011). The overall accuracy 
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obtained during these tests is comparable to studies using human perception (Andújar et al., 

2010). 
 

These field trials showed that for each WeedSeeker configuration, the spraying system ignored 

some weeds (22% for the Sens.7 configuration) which were therefore not treated. Potentially, 

these weeds compete with the crops for resources, thus reducing the yield, and replenish the soil 

seed bank, thus increasing the risk of reducing yields in subsequent years. To evaluate these risks, 

simulations were carried out in the next step. 

 

Table 7: Sensor sensibility (true positive rate) and specificity (true negative rate) analysis of the weed 

detection system measured in field measurements. The overall precision gives an estimate of the 

propensity of the system to correctly detect true positives and negatives (Maillot et al., 2016) 

WeedSeeker 

configuration 

Average sensor 

sensitivity* (%) 

Average sensor 

specificity** (%) 

Overall precision*** 

(%) 

Sens. 5 79 81 81 

Sens. 6 77 82 82 

Sens. 7 78 83 82 

Sens. 8 66 88 87 

Sens. 9 65 89 84 

Sens. 10 44 92 84 
* % of detected weeds (true positive detections) 

** 100% - % of crops or bare soil identified as weeds (true negative detections) 

*** Overall precision is the ratio of correct detections (true positive and true negative) by the total of detections 

 

 

4.2 Virtual experiments with FLORSYS  

Virtual experiments were carried out with FLORSYS to assess how well herbicide site-specific 

spraying systems applied to the interrow combined with a continuous row spraying manage 

weeds compared to a full spraying over several years. Simulations were run with the seedbank, 

pedoclimate and maize-based cropping system from Aquitaine (see section 3.2.1). 

 

Six spraying scenarios were tested (Table 2), corresponding to six WeedSeeker configurations 

(Sens. 5 to Sens. 10) with different weed detection (DR-IR) and false detection (FR) rates in the 

interrow measured in the experiment of section 4.1.2. Two values were given for the DR-IR and 

FR inputs to take into account the size weed dependent efficiency of the WeedSeeker thanks to 

the minimum size of detected weeds input (SW) (Rees et al., 2013). As site-specific spraying was 

limited to the interrow and the crop row was continuously sprayed, the detection rate of weeds 

in crop rows (DR−R) was set to 0. A seventh spraying scenario simulated a full spraying treatment 

and was used as a reference to calculate weed-control variation due to the site-specific spraying 

scenarios compared to a full treatment.  

 

The treatment date (TD) and all other cropping-system components remained unchanged, 

including those that interact with patch spraying, i.e. sowing density (SD), herbicide dose (HD), 

herbicide efficiency (HE), crop interrow (ID), spectrum of the used herbicide (SH, which was set 

to the DEFAULT spectrum targeting both monocotyledons and dicotyledons), and initial seed 

bank IB, which was set to IBAQ (see Table 2).  
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Each scenario was simulated over 30 years and was repeated 10 times with 10 different weather 

series consisting of 30 randomly chosen weathers years from the Aquitaine region. The simulated 

weed-impact indicators were averaged over the 30 simulated years and analyzed with ANOVA 

as a function of spraying scenario and weather repetition. Indicator means were compared using 

t-tests (for one-to-one comparison), or One-way ANOVA tests (for multiple comparison). Trade-

offs among indicators were analysed using Pearson correlations. All statistical analyses were 

performed using Python and the statistical functions of the SciPy library (Oliphant, 2007). 

 

 

4.3 Results 

Analyses of variances of output indicators averaged over the simulated 30 years showed that the 

spraying strategies (i.e., the 6 scenarios of Table 7 and the full spraying scenario) did not 

influence any of the weed-impact indicators, i.e., the weed-crop biomass ratio at crop flowering 

(as a proxy for yield loss due to weeds), weed-control variation due to site-specific spraying (i.e., 

the yield in patch-sprayed vs full-field sprayed fields), field infestation by weeds, or weed species 

richness (details in section E online). Only the indicators related to herbicide use intensity were 

influenced, i.e., the sprayed field area and the herbicide treatment frequency index (TFI) varied 

with the spraying strategies.  

 

The comparison of the six site-specific spraying strategies of Table 7 showed that the TFI and 

the sprayed area were not influenced by the WeedSeeker configuration (p-value: 0.2 for sprayed 

area and 0.18 for TFI). These two indicators were highly correlated (Pearson correlation 

coefficient = 0.99) as the cropping system was a monoculture with the same herbicide strategy 

each year. In conclusion, the two indicators related to herbicide use intensity were impacted by 

switching from a full spraying strategy to a site-specific strategy but not by the configuration of 

the site-specific strategy. 

 

In average over all years, weather repetitions and site-specific spraying strategies, the averaged 

sprayed field area dropped from 100% for the whole-field treatment to 66% (details in section E 

online). The continuous treatment of the crop rows accounted for about 26% of the sprayed field 

area. Similarly, the herbicide TFI was reduced by 34% when switching from whole-field to site-

specific spraying, without any significant difference depending on the WeedSeeker 

configurations (Figure 4.A). 

 

This reduction affected neither crop yield (Figure 4.B) nor yield loss due to weeds (analysed via 

the weed-crop biomass ratio at crop flowering) (details in section E online). However, weed-

impact indicator values, such as yield loss due to weeds, varied more strongly among years in 

the case of site-specific spraying (Figure 5), and thus also the yield and the farmer's income. 

Peaks of weed infestation were nevertheless controlled and the overall infestation remained 

stable in the long term. Note that those peaks of weed infestation were also possible for a full 

spraying strategy (years 5 and 21) and that it took several years (e.g. years 6 to 9) for the 

infestation to settle again at a low level (years 10 to 20). 
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(A) 

 

(B) 

Figure 4: Effect of site-specific herbicide spraying scenarios compared to a whole-field spraying strategy 

for different weed-detection sensitivities in a maize monoculture in Aquitaine for herbicide treatment 

frequency index TFI (A) and crop yield (B). On the x-label, WS Sens.x stands for the configuration Sens.x 

of the WeedSeeker: the lower the sensitivity value, the more sensitive the spray system is to weed color 

variations. The purple dots represent the averages of the TFI or yield variations obtained, for each 

simulation (scenario  year  weather repetition). Letters show means that are not different at p=0.05 from 

One-way ANOVA tests. 
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Figure 5: Weed-crop biomass ratio at crop flowering (proxy for yield loss due to weeds) over 30 years in 

a maize-based cropping system in Aquitaine depending on the type of spraying strategy (dashed blue = 

full, orange = site-specific spraying system based on the WeedSeeker system with the Sens. 9 

configuration). The vertical segments represent the 68% confidence interval, resulting from the 10 

weather repetitions. 

 

5 Discussion 

5.1 A more realistic model of weed-crop dynamics and site-specific spraying 

systems… 

The present study combined (1) a complex multiannual multispecies model acting as a virtual 

experimental field to allow large-scale virtual experiments ranging through thousands of virtual 

site-specific herbicide-spraying systems and crop-sowing patterns in contrasting real-life 

rotations, weed floras, soils and weather conditions, and (2) actual field measurements to 

characterize a site-specific herbicide-spraying platform. The complex experimental plan was 

analysed with a series of statistical methods to identify which weed impacts are the most sensitive 

to patch spraying, which are the most influential patch-spraying characteristics, how they interact 

with crop rotation and management, and whether site-specific spraying allows sufficient weed 

control in the long-term to ensure crop production while reducing herbicide use. 

 

To date, site-specific spraying has usually been evaluated in the short term in actual fields (see 

introduction). Even among the teams that work in silico, few look beyond the amount of herbicide 

savings, applying different thresholds for triggering spraying to maps of weed patches established 

from manual countings, drones and other unmanned vehicles and combining them with yield-

loss functions (Ali et al., 2015; Andújar et al., 2013). Those that use simulation models to 

evaluate site-specific spraying focus on the short term only, working with weed emergence 

models (Nikolić et al., 2021) and/or very basic weed-dynamics models, with one crop or one 

weed only (Dicke et al., 2007). The tested spraying system was usually simplistic, disregarding 

technical details such spraying width and distances to the detected vegetation, or neglecting the 

difference in detection rates on and between crop rows (in contrast to what we did here). 
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Despite its complexity, FLORSYS presents a major short-coming for evaluating site-specific 

spraying. In the simulations, weed plants are distributed in patches whose size depends on the 

species plant height, regardless of tillage and harvest operations, even though these are known to 

displace weed seeds inside fields (Barroso et al., 2006). Very few models simulate weed-seed 

dispersal and plant distribution mechanistically, and with enough details to evaluate site-specific 

spraying (González-Díaz et al., 2015; Paice et al., 1998). But these models only consider one 

weed in one crop type. And while they can be very precise in terms of plant location (e.g., 5 cm 

in Paice et al., 1998), the simulated field is simply split into cells in which the weed life-cycle 

submodel runs simultaneously and independently. The 3D-interactions between neighbouring 

individual plants and the effect on morphological plasticity are disregarded, even though this 

scale is now deemed necessary to realistically model weed dynamics (Renton, 2013). Moreover, 

the resolution (“grain”) of these cell-based models is often too imprecise for testing actual 

modern spraying equipment (e.g., ~1 m² in González-Díaz et al., 2015). 

 

Even though FLORSYS considers many more technical details to describe site-specific spraying 

than its predecessors, it only accepts a spray nozzle with a uniform spraying pattern. Although 

the spraying system studied in section 4 may be equipped with such a nozzle, the actual pattern 

may differ and lead to weed-control failure because the spray deposit under a single nozzle is not 

constant and weeds may be exposed to a sublethal application rate. Studies like (Villette et al., 

2019) could help to refine the analysis. 

 

5.2 ….to produce more realistic conclusions 

The high degree of realism of the crop-weed interactions and the site-specific spraying submodels 

in FLORSYS made it possible to produce novel conclusions. Table 8 summarizes the main impacts 

on crop production and herbicide use of inputs related to patch-spraying, the reasons for these 

effects and how far these results are consistent with literature.  

 

Table 8 stresses again that weed-impact indicators were not influenced by a single individual 

spraying input, but that the degree of weed control resulted from several interacting inputs. Using 

a complex mechanistic model allowed explaining not only the main input effects listed in Table 

8 but also their interactions. For example, the impact of the weed-detection rate or the minimum 

detectible weed size on, e.g., sprayed field area decreases with the spraying width: the larger the 

latter is, the more undetected weeds are treated together with a detected weed. These results 

confirm previous findings that the sprayed area depends on the spraying strategy (spraying 

durations and target size) and weed distribution (Wiles, 2009). But otherwise, inputs specific to 

site-specific spraying (i.e., spraying-system and weed-detection inputs) had negligible first-order 

effects, particularly compared to differences among cropping systems. This is consistent with 

literature (Timmermann et al., 2003; Wiles, 2009) reporting that the impact of the production 

situation greatly exceeds that of the characteristics site-specific spraying. 

 

Unsurprisingly, the weight of the interactions was the most important for the weed-crop biomass 

ratio at crop flowering (i.e., the proxy for yield loss due to weeds). This indicator is the result of 

processes not only related to weeds, but also to crop-weed interactions, all of which strongly 

interact with weather and cropping system. A more complex method should be used to consider 

stochasticity and identify correlations between input variables (Gauchi et al., 2017; Sudret, 2008; 

Sudret and Caniou, 2013). 
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The number of the relevant inputs and the weight of the interactions were larger in the complex 

cropping system, notably when looking at field infestation and the weed-control variation due to 

site-specific spraying. The rotation consisted of different crop species sown in different seasons, 

resulting in more diverse weed floras which, moreover, varied over the years. As a result, both 

the weed-detection and the herbicide-efficiency rates varied over time. The different crops were 

also sown with different interrows, influencing the proportion of patch-sprayed field area. These 

results are consistent with (Audsley, 1993; Christensen et al., 2009; Rider et al., 2006; Wiles, 

2009) who concluded that, to increase the effectiveness of site-specific management, spraying 

systems need information about weed species composition and density. The latter vary between 

fields and over time, hence the relevance of multiannual multispecies models such as FLORSYS 

to predict them. 

 

Table 8: Results and discussion summary considering inputs impact on crop production and herbicide use 

Increase in … 
Impact on crop 

production 

Impact on 
herbicide 

use Reason 
Similar findings in 

literature 

Spraying width & 
length 

None  Sprays more area 
(Timmermann et al., 
2003; Villette et al., 
2019; Wiles, 2009) 

True and false 
detection rate 
(particularly interrow) 

None None 
Controlled impact of weed infestation 
and long-term overall infestation 
remained stable in the long term 

Sowing density  None 
Fewer resources for weeds 
(depend on weed competitiveness) 

(Audsley, 1993; Rider 
et al., 2006) 

Interrow width  (spring crop) None Fewer crop rows 

Treatment date 
None (spring 

crop), 
 (winter crop) 

None 
More emerged weeds to detect, but 
more difficult to destroy in spring 
crops 

Herbicide dosage   

More product sprayed → more weeds 
killed 
Low herbicide use rate can lead to 
non-target site-based resistance 

(Audsley, 1993; 
Manalil et al., 2011; 
Neve and Powles, 
2005) 

Herbicide efficiency  None More weeds killed 

 

 

5.3 Implications for weed management in the field 

The maize-based case study confirmed the main conclusions of the sensitivity and uncertainty 

analyses: except for the sprayed field area and the herbicide amount (via the treatment frequency 

index TFI), modifications in the spraying strategies (spraying pattern, weed detection) had no 

effect on weed-impact indicators. Most importantly, average crop production was as good in the 

site-specific spraying than in fully sprayed scenarios. 

 

The analysis of indicator values during the 30 simulated years explains why the accuracy of the 

detection system had no effect. The sprayed area increased with the field infestation. In other 

words, when the weed infestation increased too much, the spray system adapted by spraying 

more herbicide, regardless of its sensitivity (Villette et al., 2019; Wiles, 2009). This avoided any 

drop in crop production at the cost of spraying the whole field in some years or weather 

repetitions. But, on average herbicide used decreased by 34% compared the full spraying 

strategy, very similar to the 35% reported by (Wiles, 2009) or the 40% in average in (Medlin and 

Shaw, 2000). 
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Thus, site-specific spraying can reduce herbicide use while allowing a robust long-term 

management of weeds. However, as highlighted in previous works (Barroso et al., 2004; 

Timmermann et al., 2003; Wiles, 2009), income of this strategy depends on the weed patch 

distribution. Site-specific weed management will certainly be the most beneficial when 

preventive weed management options reduce weed infestation to residual patches rather than a 

continuous dense weed canopy. Moreover, an economic study remains to be done to check that 

the investment in the site-specific spraying system is cancelled out by the reduction in herbicide 

costs. 

 

6 Conclusion 

The present study used a novel approach combining (1) a complex multispecies multiannual 

model (FLORSYS) producing detailed realistic predictions of crop-weed canopies, (2) a new 

submodel to simulate the detection and site-specific treatment of weeds, and (3) field 

measurements to characterize a site-specific herbicide-spraying platform. A global sensitivity 

analysis combined with an uncertainty analysis were used to identify the most influential inputs 

and the most sensitive output indicators of crop production, weed harmfulness and benefits as 

well as herbicide use intensity. The general conclusions were consistent with literature, i.e., 

cropping system (rotation with associated sowing patterns, herbicide products and treatment 

dates) was much more influential than the characteristics of the spraying system in terms of 

geometrical spraying pattern and weed detection. Thanks to the realism of the FLORSYS model 

and the complexity of the simulation plan, we were able to go much further in exploring different 

cropping systems and weed floras and understanding interactions. Finally, a real-life case study 

demonstrated the feasibility of reconciling crop production with reduced herbicide use resulting 

from site-specific spraying, at a multiannual scale. This is a major step forward compared to 

previous studies focusing on short-term (annual) herbicide savings, disregarding risk for future 

crops due to weed-seed production of missed or surviving weeds. The next steps will be to 

explore more cropping systems to identify in which situations and with which weeds floras site-

specific spraying will be the most beneficial. 
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