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ABSTRACT 
 
The spectral density of stable signals with p-adic times is already estimated under various conditions. The 

estimate is made by constructing a periodogram that is subsequently smoothed by a spectral window. It is 
clear that the convergence rate of this estimator depends on the bandwidth of the spectral window (called 

the smoothing parameter). This work gives a method to select the smoothing parameter in an optimal way, 

i.e. the estimator converges to the spectral density with the bestrate. 

 
The method is inspired by the cross-validation method, which consists in minimizing the estimate of the 

integrated square error. 
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1. INTRODUCTION 
 

This work concerns the family of alpha stable random fields, which are known by infinite vari-

ance (infinite energy). These processes are widely used models for many phenomena in several 
fields such as physics, biology, electronics and electricity, hydrology, economics, communica-

tions and radar applications... see [1 ]-[12]. The paper [13] studied the estimation of the spectral 

density of these processes when they are continuous time, and in [14]-[15] when the process is 
discrete time. The article [16] extended this work to stable random fields with p-adic time.More 

specifically, the process has the following spectral representation:  

 

𝑋(𝑡1 , 𝑡2) = ∫
Qp

2
ei<𝑡1𝜆1+𝑡2𝜆2>d𝑀(𝜆1, 𝜆2);  

 

 (𝑡1 , 𝑡2) ∈ Qp
2  where Qp

2  is the field of p-adic numbers and M is a alpha stable random measure 

with a control measure m. The paper [16] studied the case where the measure m is continuous 

with respect to the Haar measure:  
 

d𝑚(𝑥1, 𝑥2) = Φ(𝑥1, 𝑥2)𝑑ℋ(𝑥1, 𝑥2),    (𝑥1, 𝑥2) ∈ Qp
2 . The density function Φ is called the spec-

tral density of the process X. The paper [16] constructed a modified periodogram by observing 

the process on the ball Un. This periodogram was then smoothed by a spectral window in order to 

https://airccse.org/journal/sipij/vol14.html
https://doi.org/10.5121/sipij.2023.14301
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have an asymptotically unbiased consistent estimator of the spectral density. It is logical that the 
convergence rate of this estimator depends on the bandwidth of the spectral window (smoothing 

parameter). 

 

The goal of this work is to propose a method for selecting the optimal smoothing parameter, al-
lowing the best rate of convergence of the estimator. This method uses the technique of cross-

validation, which has proven itself in various fields of statistics. 

 
The choice of p-adic numbers is motivated by a great use in spatial discretization. P-adic numbers 

have provided solutions to many questions in physics, including questions related to string theory 

(related to the p-adic quantum domain) and those related to hierarchically structured fractal be-
haviors. They were also used in: turbulence theory, dynamical systems, statistical physics, biolo-

gy, see [17]-[21]. The 2-adic number which is a special case used for computer design see [22]. 

Modeling in quantum mechanics used p-adic statistics [23]-[25] based on probabilistic calcula-

tions when the number of trials is infinitely large. Bernoulli's classical probabilities have been 
studied by [26]. The paper [27] focused on the p-adic probability theory of stochastic processes. 

The article [28] develops the theory of stochastic integrals with respect to p-adic Brownian mo-

tion. Using the p-adic differentiation operator, papers [29]-[32] developed the properties of the 
trajectories of a p-adic Wiener process. 

 

The paper [34] set up the spectral theory and Fourier transforms of stationary p-adic process-

es:X(𝑡)𝑡 ∈ Qp where Qp is the field of p-adic numbers. He also proposed a spectral density esti-

mator by constructing a periodogram in the same way as for real-time stationary processes. The 

paper [35] gives an estimatorfrom discrete-time observation : X(𝜏k)k∈Z where (𝜏k)k∈Zinstantsof 

observation are taken from Qp, associated with a Poisson process.  

 
This paper is structured as follows: section 2 gives the asymptotically unbiased and consistent 

estimate (smoothing of the periodogram) and the results (propositions 2.1-2.5) presented in [34]. 

Section 3 shows that the estimator converges in probability towards the spectral density (Proposi-
tion 2.6), gives the cross-validation criterion and Theorems 3.1-3.3 show that this criterion makes 

it possible to find the optimal smoothing parameter. Section 4 is reserved to the conclusion, po-

tential applications and open research issues. 

 

2. PERIODOGRAM AND SPECTRAL DENSITY ESTIMATION  
 

Consider a process X = {Xt1,𝑡2
/(𝑡1, 𝑡2) ∈ Qp

2 } where Qp
2  is the field of p-adic numbers having the 

following integral representation  
 

Xt1,𝑡2
∫

Qp
2

ei<𝑡1𝜆1+𝑡2𝜆2>d𝑀(𝜆1, 𝜆2)                                                                           (1)                  

 

∀(𝑡1, 𝑡2) ∈ Qp
2  where M is a symmetric 𝛼stable S𝛼S random measure with independent and iso-

tropic increments. There exists a control measure m that is defined by:  m(A × 𝐵) =

[M(A × 𝐵), 𝑀(A × 𝐵)]𝛼
1/𝛼

. 
 

Assume that the measure m is absolutely continuous with respect to Haar measure: d𝑚 =
Φ(x1, 𝑥2)dℍ(x1, 𝑥2) where ℍ is Haar measure. 

 

The paper [13] gave an estimator of the density Φ, called the spectral density of the process when 
the process is continuous real time. In [14]-[15] the estimator is studied when the process and the 
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random field are discrete time. The article [16] gives the estimator of the spectral density when 

the process is in p-adic time:X = {Xt1,𝑡2
/(𝑡1, 𝑡2) ∈ Qp

2 }. For that, he takes the ball Un =

{(𝑥, 𝑦) ∈ Qp;;
2 |(𝑥, 𝑦)|p ≤ pn} as the observation of the process. He considers the following peri-

odogram: For (𝜆1, 𝜆2) ∈ Qp
2  

 

𝑑n(𝜆1, 𝜆2) = 𝐴nR𝑒 ∫Un
e−i<𝑡1𝜆1+𝑡2𝜆2>𝑝−nh(t1𝑝n, 𝑡2𝑝𝑛)X(t1, 𝑡2)dℋ((𝑡1, 𝑡2))  (2) 

H(𝜆1, 𝜆2) = ∫
Zp

2
h(t1, 𝑡2)e−i<𝑡1𝜆1+𝑡2𝜆2>dℋ(t1, 𝑡2) 

 

 𝐵𝛼 = ∫Qp
2 |ℋ(𝜆1, 𝜆2)|𝛼dℋ(𝜆1, 𝜆2) < +∞ 

Hn(𝜆1, 𝜆2) = (
p2𝑛

B𝛼
)

1

𝛼

H(p−n𝜆1, p−n𝜆2)   = 𝐴nH(p−n𝜆1, p−n𝜆2) 

Therefore, An = (
p2𝑛

B𝛼
)

1

𝛼
. 

 

∫
Qp

2
|Hn(𝜆1, 𝜆2)|𝛼dℋ(𝜆1, 𝜆2) = ∫

Qp
2

p2𝑛

B𝛼

|H(p−n𝜆1p−n𝜆2)|𝛼dℋ(𝜆1, 𝜆2)

=
p2𝑛

B𝛼
p−2𝑛 ∫

Qp
2

|H(v1, 𝑣2)|𝛼dℋ(v1, 𝑣2) 

 

Since |p−n|p = 𝑝+𝑛, they obtain 

 

∫Qp
2 |Hn(𝜆1, 𝜆2)|𝛼dℋ(𝜆1, 𝜆2)=1 

 

The following propositions 2.1-2.5 are proved in [16]  

 
Proposition 2.1 Let 

 

Ψ𝑛(𝜆1, 𝜆2) =Δ ∫𝑄𝑝
2 |𝐻𝑛(𝜆1 − 𝑢1 , 𝜆2 − 𝑢2)|𝛼Φ(𝑢1, 𝑢2)𝑑ℋ(𝑢1, 𝑢2). If Φis a continuous and 

boundedfunction, then𝐵𝛼(Ψ𝑛(𝜆1, 𝜆2) − Φ(𝜆1, 𝜆2)) converges to zero as n tends to infinity.  

 

Proposition 2.2 Let (𝜆1, 𝜆2) ∈ 𝑄𝑝
2 the characteristic function of 𝑑𝑛(𝜆1, 𝜆2), 𝐸𝑒𝑥𝑝{𝑖𝑟𝑑𝑛(𝜆1, 𝜆2)}, 

converges to 𝑒𝑥𝑝{−𝐶𝛼|𝑟|𝛼Φ(𝜆1, 𝜆2)}. 
 

The periodogram is modified as follows:  
 

𝐼n(𝜆1, 𝜆2)𝐶q,𝛼|dn(𝜆1, 𝜆2)|q,                                                                                       (3) 

 

𝑤ℎ𝑒𝑟𝑒0<q<2  and the normalization constant is given by  𝐶(𝑞,𝛼) =
𝐷𝑞

𝐹𝑞,𝛼𝐶𝛼
𝑞/𝛼 where 𝐷𝑞 =

∫
1−𝑐𝑜𝑠(𝑢)

|𝑢|1+𝑞 𝑑𝑢 and 𝐹𝑞,𝛼 = ∫
1−exp (−|𝑢|𝛼)

|𝑢|1+𝑞 𝑑𝑢 

1

0
= ( ) cos( ) ,C d

 

   

  
 

Propositions 2.3 Let (𝜆1, 𝜆2) ∈ 𝑄𝑝
2 , then 𝐸𝐼𝑛(𝜆1, 𝜆2) = (𝛹𝑛(𝜆1, 𝜆2))

𝑞

𝛼 and 𝐼𝑛(𝜆1, 𝜆2) is an as-

ymptotically unbiased estimator of the spectral density but not consistent  
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𝐸𝐼𝑛(𝜆1, 𝜆2) − (𝛷(𝜆1, 𝜆2))
𝑞/𝛼

=o(1) and 𝑉𝑎𝑟𝐼𝑛(𝜆1, 𝜆2) − 𝑉𝛼,𝑞(𝛷(𝜆1, 𝜆2))
2

, with 𝑉𝛼,𝑞 =
𝐶𝑞,𝛼

2

𝐶2𝑞,𝛼
− 1. 

In order to have an asymptotically and consistent estimate, we smooth the periodogram that was 

modified using a spectral window. 
 

𝑓𝑛(𝜆1, 𝜆2) = ∫
Qp

2
Wn(𝜆1 − u1 , 𝜆2 − 𝑢2)In(u1, 𝑢2)dℋ(u1 , 𝑢2) 

 

where Wn(x1 , 𝑥2) = |Mn|pW(x1𝑀n, 𝑥2𝑀𝑛) such that 

 

Mn → ∞  ;
Mn

n
→ 0; |𝑀n|p → 0𝑎𝑛𝑑

|𝑀n|p

|𝑝n|p
→ ∞.        (4)     

 

 The function W is an even nonnegative function vanishing outside [−1,1]2and 

∫Qp
2 W(v1, 𝑣2)dℋ(v1; 𝑣2) = 1. 

 

Proposition 2.4 Let (𝜆1, 𝜆2) ∈ 𝑄𝑝
2 and 𝐵𝑖𝑎𝑠(𝑓𝑛(𝜆1, 𝜆2)) = 𝐸[𝑓𝑛(𝜆1, 𝜆2)] − (Φ(𝜆1, 𝜆2))

𝑝/𝛼
, then 

 𝐵𝑖𝑎𝑠(𝑓𝑛(𝜆1, 𝜆2)) = 𝑜(1). Moreover, if Φ verifies|Φ(𝑥1, 𝑥2) − Φ(𝑦1, 𝑦2)| ≤ 𝑐𝑠𝑡𝑒|(𝑥1 −

𝑦1, 𝑥2 − 𝑦2)|𝑝
−𝑘 , then, 𝐵𝑖𝑎𝑠(𝑓𝑛(𝜆1, 𝜆2)) = 𝑂 (

1

|𝑀𝑛|𝑝

−
𝑘𝑝
𝛼

). 

 

Proposition 2.5 Let (𝜆1, 𝜆2) be in 𝑄𝑝
2. Assume that 𝛷 ∈ 𝐿𝑄𝑝

2
1 . Then 𝑉𝑎𝑟(𝑓𝑛(𝜆1, 𝜆2)) =

𝑂(𝑝−𝑛𝑀𝑛
−3𝑛). 

 

From propositions 2.4 and 2.5, we show in the following proposition that (fn(λ1 , λ2))
α

q converges 

to ϕ(λ1, λ2) in probability. 
 

Proposition 2.6 Let 𝜆1, 𝜆2 p-adic numbers such that 𝜙(𝜆1, 𝜆2) > 0. Then,(𝑓𝑛(𝜆1, 𝜆2))
𝛼

𝑞converges 

in probability to 𝜙(𝜆1, 𝜆2). 

 

 Proof We show that 𝑓𝑛(𝜆1, 𝜆2) converges in mean quadratic to 𝜙(𝜆1, 𝜆2)
𝑞

𝛼. 𝐸 |𝑓𝑛(𝜆1, 𝜆2) −

𝜙(𝜆1, 𝜆2)
𝑞

𝛼|
2

= 𝐸𝑓𝑛(𝜆1, 𝜆2) − 𝜙(𝜆1, 𝜆2)
𝑞

𝛼)2 + 𝑉𝑎𝑟(𝑓𝑛(𝜆1, 𝜆2). Then, from proposition 2.3, 

𝐸 |𝑓𝑛(𝜆1, 𝜆2) − 𝜙(𝜆1, 𝜆2)
𝑞

𝛼|
2

 converges to zero. Thus,(𝑓𝑛(𝜆1, 𝜆2))
𝛼

𝑞 converges to 𝜙(𝜆1, 𝜆2) in 

probability. 

 

It is obvious that the choice of 𝑀𝑛plays an important role, since the convergence rates depend on 

this smoothing parameter. Articles [35]-[36] use the cross-validation method to optimize the 

choice of parameters when the process is real-time. The objective of this work is to give a criteri-

on for the selection of the smoothing parameters used in the estimation of the spectral density  Φ. 

Let’s note by 𝑓(𝑥1, 𝑥2) = (Φ(𝑥1, 𝑥2))
𝑞

𝛼 and ℎ =
1

𝑀𝑛
 the width of the two spectral windows. We 

are therefore looking for a criterion 𝐶𝑉(ℎ) allowing us to select ℎto minimize the mean integrat-

ed square error (MISE), where  
 

𝑀𝐼𝑆𝐸(ℎ) = ∫ ∫ 𝐸[𝑓𝑛(𝑥1, 𝑥2) − 𝑓(𝑥1, 𝑥2)]2𝜌(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2,                   (5) 



Signal & Image Processing: An International Journal (SIPIJ) Vol.14, No.2/3, June 2023 

5 

𝜌 being a weight function that is assumed to be known and zero outside of [0,2𝜋] × [0,2𝜋].  Alt-

hough MISE(h) is a suitable measure for the squared error of the estimator, it cannot choose h, 
since it itself depends on the unknown function f. We adopt the cross-validation method proposed 

in [35]. Indeed, consider the integrated square error (ISE) defined by: 
 

𝐼𝑆𝐸(ℎ) = ∫ ∫ [𝑓𝑛(𝑥1, 𝑥2) − 𝑓(𝑥1, 𝑥2)]2𝜌(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 = 𝐴 − 2𝐶 + 𝐵

wℎ𝑒𝑟𝑒𝐴 = ∫
2𝜋

0

∫
2𝜋

0

𝑓𝑛
2(𝑥1, 𝑥2)𝜌(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2

𝐶 = ∫
2𝜋

0

∫
2𝜋

0

𝑓𝑛(𝑥1, 𝑥2)𝑓(𝑥1 , 𝑥2)𝜌(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2

𝐵 = ∫
2𝜋

0

∫
2𝜋

0

𝑓2(𝑥1 , 𝑥2)𝜌(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2.

 

 

B being independent of h, the choice h minimizing ISE(h) amounts to choosing the h minimizing 

A-2C. It is clear that the term A is computable since we know f_n, whereas, in the term C, con-

tains f unknown. We use  the principle of “leave-out- 𝐼”. 

 

3. CONSTRUCTION OF THE CROSS-VALIDATION ESTIMATOR  
 

Let 𝑗, 𝑗′ ∈ {0,1, … , 𝑛 − 1} such that 
2𝜋𝑗

𝑛
∈ 𝑈𝑛 and 

2𝜋𝑗′

𝑛
∈ 𝑈𝑛 . The construction of “leave-out- 𝐼" 

consists of finding an estimator 𝑓𝑛
𝑗,𝑗′(𝜔𝑗 , 𝜔𝑗′) that replace f(𝑤𝑗 , 𝑤𝑗′) in the expression of 𝐶 and 

such that 𝐼𝑛(𝜔𝑗 , 𝜔𝑗′) and 𝑓𝑛
𝑗,𝑗′(𝜔𝑗 , 𝜔𝑗′) are asymptotically independent. Thus, we can estimate 𝐶 

by: 
1

𝑛
2 ∑𝑗∈𝐴𝑛

∑𝑗′∈𝐴𝑛
𝑓𝑛

𝑗,𝑗′

(𝑤𝑗, 𝑤𝑗′)𝐼𝑛(𝑤𝑗, 𝑤𝑗′)𝜌(𝑤𝑗 , 𝑤𝑗′) where 𝑤𝑗 =
2𝜋𝑗

𝑛
, 𝑤𝑗′ =

2𝜋𝑗′

𝑛
, n̅ = [

𝑛−1

2
] 

and 𝐴𝑛 = {𝑗 ∈ {0,1, … , 𝑛 − 1}𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡
2𝜋𝑗

𝑛
∈ 𝑈𝑛} 

 

 𝑓𝑛
𝑗,𝑗′

(𝑥1, 𝑥2) = ∫𝑈𝑛
2 𝐼𝑛

𝑗,𝑗′(𝑢1 , 𝑢2)𝑊𝑛(𝑥1 − 𝑢1, 𝑥2 − 𝑢2)𝑑𝑢1𝑑𝑢2, 𝑤ℎ𝑒𝑟𝑒 

𝐼𝑛
𝑗,𝑗′

(𝑢1, 𝑢2) = 𝐼𝑛(𝑢1 , 𝑢2)i𝑓  (𝑢1, 𝑢2) ∉ 𝐵𝑗,𝑗′

𝐼𝑛
𝑗,𝑗′

(𝑢1, 𝑢2) = 𝜃1(𝑢1, 𝑢2)𝐼𝑛(𝑤𝑗−1, 𝑤𝑗′−1) +

𝜃2(𝑢1, 𝑢2)𝐼𝑛(𝑤𝑗+1, 𝑤𝑗′−1) +

𝜃3(𝑢1, 𝑢2)𝐼𝑛(𝑤𝑗−1, 𝑤𝑗′+1) +

𝜃4(𝑢1, 𝑢2)𝐼𝑛(𝑤𝑗+1, 𝑤𝑗′+1)                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐵𝑗,𝑗′ = ]𝑤𝑗−1, 𝑤𝑗+1[ × ]𝑤𝑗′−1, 𝑤𝑗′+1[. The construction of 𝐼𝑛
𝑗,𝑗′

(𝑢1 , 𝑢2) where (𝑢1 , 𝑢2) ∈ 𝐴𝑗,𝑗′  is 

done as if 𝐼𝑛  was bi-linear. In this case, 

 

𝜃1(𝑢1 , 𝑢2) = 𝛼𝛽 ; 𝜃2(𝑢1, 𝑢2) = (1 − 𝛼)𝛽 ; 𝜃3(𝑢1 , 𝑢2) = 𝛼(1 − 𝛽) and 

𝜃4(𝑢1 , 𝑢2) = (1 − 𝛼)(1 − 𝛽) where 𝛼 =
𝑢1−𝑤𝑗+1

𝑤𝑗−1−𝑤𝑗+1
 and 𝛽 =

𝑢2−𝑤
𝑗′+1

𝑤𝑗′−1−𝑤𝑗′+1

. 

 

The following proposition shows that 𝑓𝑛
𝑗,𝑗′

 is an estimator asymptotically unbiased of the func-

tion 𝑓. 

 

Theorem 3.1 For all(𝑥1, 𝑥2) ∈ 𝑄𝑝
2 

𝐸 [𝑓𝑛
𝑗,𝑗′

(𝑥1, 𝑥2) − 𝑓𝑛(𝑥1, 𝑥2)] = 𝑂 (
1

𝑛2
). 
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 From this result, we establish our criterion, noted 𝐶𝑉 "cross validation" defined by: 

𝐶𝑉(ℎ) =     𝐶𝑉1(ℎ) + ∫
𝑈𝑛

2
𝑓2(𝑢1, 𝑢2)𝜌(𝑢1, 𝑢2)𝑑𝑢1𝑑𝑢2

wℎ𝑒𝑟𝑒  𝐶𝑉1(ℎ) = ∫
𝑈𝑛

2
𝑓𝑛

2(𝑢1 , 𝑢2)𝜌(𝑢1, 𝑢2)𝑑𝑢1𝑑𝑢2 −

2

𝑛2
∑

𝑗∈𝐴𝑛

∑

𝑗′∈𝐴𝑛

𝑓𝑛
𝑗,𝑗′

(𝑤𝑗 , 𝑤𝑗′)𝐼𝑛(𝑤𝑗 , 𝑤𝑗′)𝜌(𝑤𝑗 , 𝑤𝑗′)

 

 

The widths of spectral windows will be chosen at the points ℎ̂ minimizing the criterion 𝐶𝑉(ℎ):  

 

ℎ̂1 = argmin
ℎ

𝐶𝑉(ℎ) = argmin
ℎ

𝐶𝑉1(ℎ)                  (6) 

 

To facilitate writing without losing generality, we consider: 

𝜌(𝑢1 , 𝑢2) =
1

2𝜋
 on 𝑈𝑛

2 and zero outside. 

 
We will show results similar to those given in [37]. This is to show that on average, the criterion 

CV(h_) and ISE(h) are asymptotically close and that the variance of CV(h) is asymptotically ze-

ro. Thus, the parameters h  ̂ minimizing the criterion CV(h) also minimize the integral squared 
error (ISE) when n is large enough. These results are stated in the following theorem. 

 

Theorem 3.2 We have 

|𝐸{𝐶𝑉(ℎ) − 𝐼𝑆𝐸(ℎ)}| = 𝑂 (
1

𝑛2
) .

v𝑎𝑟{𝐶𝑉(ℎ)} = 𝑂 (
1

𝑛2ℎ2
)

 

Thus, since  

𝐸{[𝐶𝑉(ℎ) − 𝑀𝐼𝑆𝐸(ℎ)]2} =

v𝑎𝑟{𝐶𝑉(ℎ)} + [𝐸{𝐶𝑉(ℎ) − 𝑀𝐼𝑆𝐸(ℎ)}]2 =     𝑂 (
1

𝑛2ℎ2
) .

 

 

The widths of the spectral windows ℎ̂1 and ℎ̂2 obtained by cross validation, defined in (6), are 

asymptotically optimal, i.e. the integrated square error at ℎ̂ converges in probability to the small 

integrated square error. 

 

Theorem 3.3The width of the spectral windows ℎ̂ obtained by cross validation are asymptotically 
optimal:  

𝐼𝑆𝐸(ℎ̂)

𝐼𝑆𝐸(ℎ̂̂)
⟶ 1       𝑖𝑛  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑤ℎ𝑒𝑟𝑒  

ℎ̂ = argmin
ℎ

𝐶𝑉(ℎ)     𝑎𝑛𝑑     (ℎ̂̂) = argmin
ℎ

𝐼𝑆𝐸(ℎ). 

 
 To show this result, we use the similar technique used in [38]. 

 

4. CONCLUSION 
 
The method proposed in this work consists in giving the smoothing parameter optimizing the 

estimate of the spectral density for an alpha-stable process in p-adic time. To achieve this, we 

used the cross-validation technique, which is well suited to this kind of situation. This work can 
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be used in various fields of application to model phenomena whose variance is large enough such 
as: 

 

- Drones take Dynamic Images. These images are often disturbed by climatic conditions. They 

can have a large variance and be modeled by a alpha stable random field. 
 

  - The presence of certain microorganisms in agricultural soil varies significantly can be consid-

ered as an alphastable random field. 
 

This work will be extended to a more general case where the measure is mixed. 
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