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6 ABSTRACT

7 Site-specific herbicide spraying reduces herbicide use as it sprays only where weeds are detected. 

8 We studied the long-term impact of this weed-control measure on weed-impact indicators (crop 

9 yield loss, biodiversity, …). We developed a submodel to simulate the effects of site-specific 

10 spraying on weed floras and included this into the existing FLORSYS model. The latter simulates 

11 multiannual multispecies weed dynamics and crop canopies at a daily time-step from cropping 

12 system, weather and soil. Global sensitivity and uncertainty analyses, based on 30-year-long 

13 simulations of different rotations and weather series, identified the most influential inputs and 

14 the most sensitive outputs. The cropping system (rotation with associated sowing patterns, 

15 herbicide products and treatment dates) was more influential than the spraying system 

16 (geometrical spraying pattern, weed detection). Finally, a real-life case study was simulated to 

17 demonstrate the feasibility of reconciling crop production with reduced herbicide use, thanks to 

18 site-specific spraying.
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24  We modelled site-specific herbicide spraying in the weed-dynamics model FLORSYS

25  We ran sensitivity analyses of weed dynamics and their impacts on crop production

26  Cropping system had more influence on weed impacts than the spraying system

27  Site-specific spraying controlled long-term weed infestation as well as full spraying

28  Benefits of site-specific spraying mainly depend on the weed patch distribution

29
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30 1 Introduction

31 Because synthetic inputs (fertilizers, pesticides, etc.) damage the environment and human health 

32 (Wilson and Tisdell, 2001), their use must be reduced, which is a major challenge for farmers. 

33 This is particularly true for weed management as weeds are considered to be the most harmful 

34 crop pest (Oerke, 2006). Herbicides must now be replaced as much as possible with a 

35 combination of multiple, mostly preventive and partially efficient practices (Liebman et al., 1997; 

36 Wezel et al., 2014). Site-specific herbicide spraying allows going even further by spraying only 

37 where weeds are detected in the field (Esau et al., 2018; Fernández-Quintanilla et al., 2017; 

38 Gerhards et al., 2022; Gonzalez-de-Soto et al., 2016; Johnson et al., 1995; Peña et al., 2013).

39 Most patch-spraying systems rely on weed detection procedures that locate and then treat weeds 

40 in fields. Many detection systems are based on optical sensors (Gerhards and Christensen, 2003; 

41 Gerhards and Oebel, 2006; Guerrero et al., 2017; Louargant et al., 2018). The algorithms used in 

42 these systems are not yet perfect, either missing some weeds or erroneously considering bare soil 

43 or crops as weeds. Detection rates can also be influenced by the way the system is used in the 

44 field. Each detection method must thus be evaluated to check whether its detection rates are 

45 adequate for a practical use in farmers' fields. For instance, in (Gonzalez-de-Soto et al., 2016), 

46 authors working with a robotized patch-spraying system find that reducing herbicide use depends 

47 on weed abundance (the higher the density is, the less herbicide is saved) and distribution (the 

48 more weeds are aggregated, the more herbicide is save). The same trends were identified by 

49 simulation (Villette et al., 2019). Other teams tackle the economic issue of site-specific weed 

50 management and crop yield loss (Rider et al., 2006; Wilkerson et al., 2004). In their case study, 

51 the costs of site-specific management were not compensated by the additional return (reduced 

52 herbicide use). But the economic results varied enormously among considered fields.

53 Most of these studies focus on the short-term impact of this spraying strategy, simply looking at 

54 weed reduction rates after spraying or, at the best, yield loss or gain in the sprayed crop. However, 

55 weeds must be managed at the multiannual scale as their seeds survive for several years in the 
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56 soil (Lewis, 1973). Farmers are usually not so much focused on avoiding yield losses during a 

57 given year, but rather on limiting weed seed return to the soil and yield losses in future years 

58 (Macé et al., 2007). This is why weed dynamics models are essential to provide guidelines for 

59 practical weed management at the multiannual scale (Holst et al., 2007). Only a few of these 

60 models though consider site-specific spraying (Audsley, 1993; Barroso et al., 2004; Paice et al., 

61 1998; Wiles, 2009). Their simulations show, for instance, that for site-specific weed management 

62 to be beneficial, weeds must be spatially aggregated and their densities relatively low. However, 

63 these models focus on the impact of site-specific weed management on herbicide use and 

64 economic return. They disregard interactions with other management techniques and weather as 

65 well as impacts on other agronomic indicators such as crop production, weed harmfulness for 

66 production or weed contribution to biodiversity.

67 Among the many weed dynamics models (Holst et al., 2007), FLORSYS is to date the one model 

68 that quantifies the effects of the entire cropping system, in interaction with weather and soil 

69 properties, on multiannual weed dynamics and crop canopies, as well as a series of agronomic 

70 indicators (yield, weed harmfulness for production, weed contribution to biodiversity) (Colbach 

71 et al., 2021, 2014a). This model is well adapted to evaluate multiple impacts of interacting 

72 cropping techniques on weeds in the long-term, but it does not consider site-specific spraying. 

73 Consequently, the objective of the present paper was to: 1) develop a patch-spraying submodel 

74 for the FLORSYS model, 2) assess the sensitivity of the agronomic indicators predicted by the 

75 model to the inputs of the new spraying submodel in order to identify the patch-spraying inputs 

76 that must be determined as accurately as possible and/or can be modified to drive weed control, 

77 3) use the new FLORSYS version including the spraying submodel in order to evaluate, in the 

78 long-term, the use of a site-specific spraying system at the field scale. To achieve the second 

79 goal, we used a combination of sensitivity and uncertainty analyses. Sensitivity analysis is 

80 defined as "the study of how the uncertainty in the output of a model (numerical or otherwise) 

81 can be apportioned to different sources of uncertainty in the model input" (Saltelli et al., 2004). 

82 The uncertainty analysis aims to quantify the model output uncertainties that arise from the 
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83 uncertainty in inputs. By coupling these two analysis methods we can infer which are the least 

84 robust outputs to the variations of the inputs (uncertainty analysis), and among these inputs which 

85 are the ones that have the most influence on these outputs (sensibility analysis). The combine use 

86 of these two analysis methods was inspired by (Varella et al., 2012). This permitted identifying 

87 the soil inputs needed for accurate model outputs and thus avoided the cost of measuring less 

88 important inputs. For the third goal, a real patch-spraying system was analyzed, and its 

89 characteristics were used in the new FLORSYS spraying submodel to assess its long-term impact 

90 on crop production and biodiversity.

91

92 2 The FLORSYS model

93 2.1 The current version 

94 2.1.1 Model inputs

95 FLORSYS is a virtual field on which cropping systems can be experimented and a large range of 

96 crop, weed and environmental measures estimated. The structure of FLORSYS is presented in 

97 detail in previous papers (Colbach et al., 2014b, 2014c, 2017, 2021; Gardarin et al., 2012; 

98 Mézière et al., 2015; Munier-Jolain et al., 2013, 2014). Only a short summary is given here. 

99 Further details can be found in section A of the supplementary material online.

100 The input variables of FLORSYS consist of (1) a description of the simulated field (daily weather, 

101 latitude and soil properties); (2) all the simulated crops and management operations in the field, 

102 with dates, tools and options; and (3) the initial weed seed bank which is either measured on soil 

103 samples or, more feasible, estimated from regional flora assessments (Colbach et al., 2016). 

104 In the following sections, parameters are fixed constants (e.g., base temperature of species X) 

105 and inputs denote user-selected variables (e.g., date of mouldboard ploughing). 

106
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107 2.1.2 The annual life cycle of crops and weeds

108 These inputs influence the annual life cycle, which applies to annual weeds and crops, with a 

109 daily time-step. Pre-emergent stages (surviving, dormant and germinating seeds, emerging 

110 seedlings) are driven by soil structure, temperature and water potential. After emergence, the 

111 crop-weed canopy is simulated in 3D with an individual representation of each crop and weed 

112 plant. The canopy is discretized with voxels (3D pixels) and the precision of the plant location 

113 and description decreases with increasing voxel size, which is an input chosen by the user (see 

114 section A.3 online). Post-emergent processes (e.g., photosynthesis, respiration, growth, 

115 etiolation) are driven by light availability and air temperature. At plant maturity, weed seeds are 

116 added to the soil seed bank; crop seeds are harvested to determine crop yield. FLORSYS is 

117 currently parameterized for 25 annual weed species. 

118

119 2.1.3 Impact of cultural techniques

120 Life-cycle processes also depend on the dates, options and tools of management techniques 

121 (tillage, sowing, herbicides, mechanical weeding, mowing, harvesting), in interaction with 

122 weather and soil conditions on the day the operations are carried out (section A.4 online). For 

123 instance, weed plant survival probabilities after a management operation (tillage, herbicides, 

124 mechanical weeding, mowing, harvesting) are calculated deterministically depending on the 

125 operation, biophysical environment as well as weed morphology and stage; the actual survival of 

126 each plant is determined stochastically by comparing this probability to a random probability. 

127 Herbicides can be sprayed over the whole simulated field, or only on either the crop rows or the 

128 interrows (Colbach et al., 2017, details in section A.5 online). They enter plants via leaves 

129 ("foliar" herbicides), shoot tips during emergence ("pseudo-root") or roots ("root"). Multiple 

130 entry modes are possible ("multi-mode"). Foliar herbicides only kill emerged weeds on the day 

131 of spraying, the other herbicides persist and act over several days and weeks. Killing rates depend 

132 on the product's dosage and efficiency on each weed species, the farmer's availability and 
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133 equipment (spraying in adequate conditions or with outdated machinery reduces efficiency) and 

134 decrease with canopy density (which keeps herbicide droplets from reaching their target). 

135 Systemic herbicides circulate inside the target plant and their efficiency depends less on dosage.

136

137 2.1.4 Model outputs

138 All weed and crop state variables are available as outputs to understand the impacts of cultural 

139 techniques. In addition, FLORSYS simulates crop yield as well as weed-borne agroecological 

140 services and disservices (Mézière et al., 2015) (see section A.7 online). Indicators of weed 

141 disservices describe weed harmfulness for crop production (e.g., yield loss due to weeds). Weed-

142 service indicators reflect the contribution that weeds make to biodiversity (e.g., the contribution 

143 to feeding pollinators).

144

145 2.1.5 Model evaluation

146 FLORSYS was evaluated with independent field data, showing that crop yields, daily weed species 

147 densities and, particularly, densities averaged over the years were generally well predicted and 

148 ranked (Colbach et al., 2016; Pointurier et al., 2021). A corrective function was required to keep 

149 weeds from flowering during winter in southern France (e.g. below 46°N). Higher crop yield 

150 losses than those reported in previous field studies mostly result from the simulation plan. This 

151 does not adapt practices to simulated weed floras and interannual weather variability (as farmers 

152 or trial managers would do), in order to discriminate the effect of crop species and management 

153 practices on weeds from the effect of weeds on the choice of crops and practices (Colbach and 

154 Cordeau, 2018).

155
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156 2.2 Introducing site-specific spraying into FLORSYS

157 Instead of spraying the whole simulated field (or entire crop rows or interrows), the new 

158 submodel allows spraying only where weed plants are detected. Site-specific spraying is limited 

159 to foliar herbicides, or multi-entry herbicides that also enter through leaves.

160 The new submodel first needs functions simulating weed detection. For this, the user chooses 

161 (1) detection zones, e.g. crop row and interrow zones, and their widths (WR in Table 2), (2) weed 

162 detection rates in each zone (DR-R and DR-IR), (3) the minimum plant diameter to be detected 

163 (SW), which can be given per species, per clade (monocotyledonous vs dicotyledoneous species), 

164 or irrespective of species, and (4) the false detection rate (FR), i.e. the probability that a crop 

165 plant is detected as a weed plant. Three other inputs describe the spraying system: (5) the width 

166 of the spray (WS), (6) the distance from the detected weed at which the system starts to spray 

167 (SD-B), and (7) stops spraying after the detected weed (SD-A).

168 Each time a site-specific treatment is applied in a FLORSYS simulation, a loop is run over all weed 

169 plants to

170  Determine in which detection zone (e.g., row or interrow) the plant is located. This 

171 depends on the width chosen for the row detection (WR) and on the distance of the weed 

172 to the crop row. Crop plant location depends on the sowing pattern chosen by the user, in 

173 terms of sowing density, interrow width, sowing precision and orientation. Weeds are 

174 placed in aggregated patches whose sizes increase with the species plant size.

175  Deterministically calculate the detection rate from the weed's location (inside a detection 

176 zone), species and size,

177  Stochastically decide whether the plant is detected by comparing a random probability 

178 from [0,1] to the detection rate,

179  If a plant is detected, delimit the sprayed section depending on the plant's location and 

180 size as well as the spray width (WS), the sprayed distance before and after the detected 

181 weed (SD-B, SD-A). Sprayed sections do not overlap (i.e., no area is sprayed twice).
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182 The same loop is run over crop plants, using the false detection rate to determine additional 

183 sprayed sections. Once the field map of sprayed sections has been determined, another loop is 

184 run over all emerged weed plants to:

185  Deterministically determine whether the plant is sprayed, depending on whether it is 

186 located inside a sprayed section. Undetected weeds close to detected ones can thus be 

187 sprayed. 

188  Deterministically calculate the survival probability of the sprayed plant, depending on 

189 weed species and stage, the sprayed herbicide product, dosage and type (systemic or not), 

190 the farmer's availability and equipment, as well as the canopy density,

191  Stochastically decide whether the plant survives by comparing a random probability from 

192 [0,1] to the survival probability.

193 The last two steps are the same as for any herbicide applied over the whole field. Crop plants are 

194 assumed not be affected by site-specific herbicide treatments. If the applied herbicide also 

195 presents pseudo-root or root-penetrating properties, the relative sprayed field area X is calculated 

196 from the spray map. A proportion Y of ungerminated seedlings (for which only density per m² is 

197 considered, disregarding coordinates) then dies because of the treatment.

198

199 3 Sensitivity and uncertainty analyses

200 3.1 Principle

201 We analyzed how key FLORSYS output indicators vary with variations in inputs of the patch 

202 spraying submodel, combining sensitivity and uncertainty analyses.

203 For each considered output, we used a four-step method inspired by (Varella et al., 2012) (Table 

204 1): 1) use a screening analysis to select the most important factors. The next steps were only 

205 carried out for these important factors to minimize the number of simulation runs; 2) analyze the 

206 global sensitivity indices of each input to rank input factors according to their impact on outputs; 

207 3) compute coefficients of variation to analyze the uncertainties of the considered output 
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208 variables to select those that the most react to changes in inputs; 4) apply thresholds to sensitivity 

209 indices and coefficients of variation to select the most influential inputs: when the uncertainties 

210 of the input variables induce low variations of the considered output indicators, the results of the 

211 sensitivity analysis (steps 1 and 2) should not be considered for this output.

212
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Table 1. Steps and principles for sensitivity and uncertainty analyses

Step Simulation plan Analysis Aim

1. Screening analysis: identify non-influential inputs (section 3.2.3.1)

1a 3 herbicide spectra  3 seed banks  

2 rotations  LHS of 10 scenarios 

with random quantitative inputs

η² from ANOVA Identify non-

influential qualitative 

inputs

1b ~200 scenarios per rotation based on 

Morris sampling

μ∗
𝑖  and σ𝑖 sensitivity 

indices

Identify non-

influential 

quantitative inputs

2. Global sensitivity analysis: identify influential inputs (section 3.2.3.2)

2a 50000 scenarios based on Saltelli's 

sampling, using influential inputs 

identified in steps 1 and 2

First-order and total 

sensitivity indexes Si 

and Sti

Identify influential 

inputs

2b 3 spectra  3 seed banks  2 

rotations  LHS of 100 scenarios 

with randomly chosen quantitative 

inputs

Sign of regression 

coefficients of linear 

regressions

Identify sign relations 

between inputs and 

outputs

3. Uncertainty analysis: identify sensitive outputs (section 3.2.3.3)

3 Same as in step 2a Coefficient of 

variation CV

Identify sensitive 

outputs

4. Conclusion (section 3.2.3.4)

4 For sensitive outputs identified in 

step 3, influential inputs are 

identified based on step 2a

CV and Sti Choose inputs per 

output

213
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214 3.2 Material and methods

215 In the following we denote as scenario the cropping system given as input to FLORSYS and 

216 simulation the FLORSYS execution of this scenario over several years with one weather series.

217

218 3.2.1 Model inputs used in the sensitivity analysis

219 We only considered inputs that influence the spraying process in FLORSYS: 13 quantitative 

220 variables and two qualitative ones, i.e., the spectrum of the prayed herbicide (SH) and the initial 

221 weed seed bank (IB) (Table 2). The quantitative inputs and the herbicide spectrum determine 

222 how weeds are detected and treated. The initial seed bank is an environmental constraint.

223 Three different spectra were associated to the herbicide used in simulations. The applied 

224 herbicides only affect monocotyledons (SH = MONOCOT), only dicotyledons (SH = DICOT) or 

225 both (SH = DEFAULT). We considered three initial seed banks associated to three French 

226 regions: Aquitaine (IB = IBAQ), Burgundy (IB = IBBO) and Poitou-Charentes (IB = IBPC) 

227 (details in section C of the supplementary material online).

228 Two different scenarios, with different complexities, were used hereafter, a maize monoculture 

229 from Aquitaine (South-West France) and an oilseed rape/wheat/barley rotation from Burgundy 

230 (Eastern France) (see details in (Colbach et al., 2014d, 2017)). Weeds were assumed to be 

231 distributed in patches whose size was correlated to the maximum species plant height. 

232 Simulations were run with soils and weather series typical of these two regions, using the 

233 20190828 version of FLORSYS.2. Each scenario was run over 30 years and was repeated 10 times 

234 with 10 different weather series consisting of 30 randomly chosen weather years recorded by 

235 weather stations (and provided by the INRAE Climatik platform), using the same 10 series for 

236 each scenario. To reduce simulation time, only a representative field sample of 6 m by 3 m was 

237 simulated; the complete field (often covering several ha) then consisted of the repetition of the 

238 basic sample.

239
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240 Table 2: Definition of the 13 quantitative and 2 qualitative inputs with their ranges of variation. 

241 The column ‘case study value’ gives the input values used in the simulations of the case study in 

242 Section 4 combining systemic spraying on crop rows with patch-spraying in interrows

243 A. Complete list

Label Input Range Case study value Unit

IB Initial seed bank (qualitative)

Aquitaine (IBAQ);

Burgundy (IBBO);

Poitou-Charentes (IBPC)

IBAQ

Spraying system

WS Width of spray 0 – 200 35 cm

SD-B Sprayed distance before detected weed 0 – 200 5 cm

SD-A Sprayed distance after detected weed 0 – 200 5 cm

Weed detection

DR-R Detection rate of weed in crop row 0 – 100 0 %

DR-IR Detection rate of weed in inter-row 0 – 100 See Table 2B %

FR False detection rate 0 – 100 See Table 2B %

WR Width used for row detection 0 – 20 18 cm

SW Minimum size of detected weeds 0 – 4 See Table 2B cm

Crop plant location

SD Sowing density -20 – 20& – %

ID
Crop interrow 

(maize-based cropping system only)
25 – 120 75 cm

Herbicide characteristics

TD Treatment date -5 – +5$ – days

HD Herbicide dose 0 – 100$$ – %

SH
Spectrum of the used herbicide 

(qualitative)

monocotyledons 

(MONOCOT);

dicotyledons (DICOT);

DEFAULT
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both (DEFAULT).

HE
Herbicide efficiency 

(in optimal conditions)
0 – 100# – %

244 $daily offset from the scheduled date in the simulated cropping systems. 

245 &percentage variation of the nominal value; 

246 $$ percentage of the recommended dose. 

247 # percentage of the efficiency published ACTA database (based on Mamarot and Rodriguez, 2003) 

248 B. Interrow detection rates DR-IR and false detection rate FR in the case study, depending on 

249 the minimum detected weed size SW. Each combination of DR-IR, FR and SW corresponds to 

250 a WeedSeeker configuration: Sens. 5 to 10 (see section 4.1). 

Minimum detected weed size

SW1 = 0 cm SW2 = 3 cmWeedSeeker 

configuration DR-IR FR DR-IR FR

Sens. 5 40 9 79 19

Sens. 6 38 9 77 18

Sens. 7 39 8 78 17

Sens. 8 33 6 66 12

Sens. 9 32 5 65 11

Sens. 10 22 4 44 8

251

252

253 3.2.2 Analysed outputs

254 The analysed performance indicators assess (1) weed-control variation due to site-specific 

255 spraying relatively to a fully sprayed field, i.e. crop yield from patch-sprayed simulations – crop 

256 yield from fully sprayed simulations, for each scenario, weather repetition and year, (2) weed 

257 harmfulness for production: weed-crop biomass ratio at crop flowering as a proxy of weed-

258 caused yield loss (Colbach and Cordeau, 2018), (3) field infestation; (4) weed contribution to 

259 biodiversity: wild plant species richness; and (5) herbicide use intensity: proportion of sprayed 
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260 field area, and treatment frequency indicator (TFI). Indicators of types (2)-(5) are directly 

261 calculated by FLORSYS (section 2.1.4). 

262

263 3.2.3 Simulation plan and statistical analysis

264 3.2.3.1 Screening analysis

265 A screening analysis aims to identify non-influential model inputs with a reduced number of 

266 simulations (Iooss and Lemaître, 2015; Saltelli et al., 2008; Wallach et al., 2013). In the following 

267 we used a two-step screening approach to identify non-influential inputs defining patch spraying. 

268 First, for each combination of herbicide spectrum (3 possibilities), initial seed bank (3) and crop 

269 rotation (2), a Latin Hypercube Sampling (LHS) simulation plan (McKay et al., 1979) consisting 

270 of 10 scenarios was built by drawing the quantitative inputs of Table 2 in a uniform distribution 

271 inside the ranges listed. As explained in section 3.2.1, each scenario was simulated over 30 years 

272 and repeated with 10 weather series. For each crop rotation, simulated outputs were analyzed 

273 with an analysis of variance (ANOVA) as a function of herbicide spectrum and initial weed seed 

274 bank to differentiate qualitative inputs, which have negligible effects, via the eta-squared (η²) 

275 measure of effect size. The value for eta-squared is between 0 and 1: the closer the value is to 1, 

276 the higher the proportion of variance that can be explained by a given variable in the model is. 

277 To select the qualitative factors that have the greatest impact on outputs an uncertainty analysis 

278 using absolute value of the coefficient of variation (see Section 3.2.3.3) and a threshold of 0.2 

279 was made to highlight most influential inputs.

280 In a second step, using the analysis of variance results, we applied the screening method proposed 

281 by Morris and improved by Campolongo et al. (Campolongo et al., 2007; Morris, 1991). This 

282 method permits to differentiate quantitative inputs that have negligible effects, inputs with large 

283 linear effects without interactions and inputs with large non-linear and/or interaction effects. The 

284 analysis was based on a simulation plan based on the Morris sampling method which reduces the 

285 total number of simulations needed to 210 scenarios for the maize monoculture and 195 for the 
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286 oilseed rape/wheat/barley rotation (Herman et al., 2013; Morris, 1991). For each qualitative 

287 input, two sensitivity measures are computed (Campolongo et al., 2011). Considering the i-th 

288 input, μ∗
𝑖  and σ𝑖 denote these measures. 𝜇∗

𝑖  assesses the influence of the i-th input on the indicator 

289 values and 𝜎𝑖 is a measure of non-linear and/or interaction effects of the i-th input. The i-th input 

290 is considered as important if either μ∗
𝑖  or 𝜎𝑖 have a large value. As proposed in (Turati et al., 

291 2016), to select important factors we first considered that a factor i has an important effect on an 

292 indicator if 𝜇∗
𝑖  is larger than the average of the µ∗ values, i.e. μ∗

𝑖 > 1
𝐾

∑𝐾
𝑘=1 μ∗

𝑘, with K the number 

293 of inputs. Arbitrarily, a threshold on σ was chosen equal to 1/3 of the maximum value to refine 

294 the selected important factors. In order to confirm the input selection, a visual analysis of σ values 

295 as a function of µ∗ values was carried out. This analysis aimed to identify the different input 

296 groups that may have similar importance.

297 Screening analysis were performed using Python and the SciPy and SALib libraries (Herman and 

298 Usher, 2017; Oliphant, 2007).

299

300 3.2.3.2 Global sensitivity analysis

301 Once the most important factors were selected thanks to the screening analysis, a global 

302 sensitivity analysis was performed to estimate the global sensitivity indices of each input in order 

303 to rank them according to their impact on outputs.

304 Among the different methods to compute global sensitivity indices (Gan et al., 2014; Iooss and 

305 Lemaître, 2015; Saltelli et al., 2008), the variance-based sensitivity analysis is appropriate for a 

306 non-linear model like FLORSYS (Saltelli, 2002; Saltelli et al., 2008). We choose to use the Sobol 

307 sensitivity indices estimated with Saltelli’s sampling method with 50000 sample points 

308 distributed in ranges given in Table 2 (Iooss and Lemaître, 2015; Saltelli, 2002; Saltelli et al., 

309 2010). This method calculates a first-order sensitivity index (Si) which represents the main-effect 

310 contribution of input i to the variance of the considered indicator (without interaction with other 

311 variables) and a total effect index (STi) which describes the proportion of the variance of the 
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312 indicator explained by input i individually plus effects due to the interactions with all other factors 

313 (Saltelli et al., 2008). 

314 First and total Sobol indexes were computed using Python with the SALib library (Herman and 

315 Usher, 2017).

316

317 Finally, in order to estimate sign relations between considered inputs and outputs, for each 

318 combination of herbicide spectrum (3 possibilities), initial seed bank (3) and crop rotation (2), a 

319 Latin Hypercube Sampling (LHS) simulation plan (McKay et al., 1979) consisting of 100 

320 scenarios was built by drawing the quantitative inputs of Table 2 in a uniform distribution inside 

321 the ranges listed in Table 2. Simulations results was analysed with a linear regression model.

322

323 3.2.3.3 Uncertainty analysis

324 The uncertainty analysis aims to quantify uncertainty in model outputs (Saltelli et al., 2008). For 

325 this purpose, using the simulations used to estimate the global sensitivity indices (section 

326 3.2.3.2), uncertainty analysis of each output indicator Y was achieved by computing the absolute 

327 value of the coefficient of variation (Varella et al., 2012):

328 𝐶𝑉(𝑌) =
𝑉(𝑌)
𝑌 =

σ(𝑌)
𝑌

329 with σ(𝑌) the standard deviation of the variable Y, 𝑌 its mean and V(Y) its total variance.

330

331 3.2.3.4 Final Input selection

332 In order to select the influential inputs that must be determined accurately for the estimation of a 

333 given indicator, the coefficient of variation of section 3.2.3.3 was analyzed with regard to the 

334 total effect index of each input. Two thresholds were set to select the inputs that have the greatest 

335 influence on the indicator uncertainty. A first threshold was set to 10% for the total effect index 

336 (Makowski et al., 2006). An arbitrary value of 0.3 was taken for the threshold on the coefficient 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4435920

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



18

337 of variation. The weed-impact indicators with a coefficient of variation less than this threshold 

338 are considered robust with regards to changes in considered inputs. Otherwise, all inputs with a 

339 total effect index greater than 10% were considered as influential.

340

341 3.3 Results

342 3.3.1 Screening analysis

343 3.3.1.1 Selection of qualitative inputs

344 Irrespective of the rotation, the output indicators that were the most influenced (based on the 

345 analysis of the coefficient of variance available in section D.1 of the supplementary material 

346 online) by the qualitative inputs were weed-control variation due to site-specific spraying, weed-

347 crop biomass ratio at flowering, the herbicide treatment frequency indicator and field infestation. 

348 Weed species richness and the herbicide-sprayed area were little influenced.

349 Among the two tested qualitative inputs, the spectrum of the used herbicide (SH) had a negligible 

350 influence on the considered indicators in both rotations (see Table 3, details in section D.1 of the 

351 supplementary material online). The impact of the initial weed seed bank (IB) was significant (p-

352 value < 0.05) with a large impact on outputs (high η² in Table 3) for all output indicators in the 

353 diversified oilseed rape/wheat/barley rotation. In the maize monoculture, it only influenced 

354 weed-control variation due to site-specific spraying and weed species richness. 

355 In view of these results, in the following steps, we set the herbicide spectrum SH to DEFAULT 

356 (targeting all weeds irrespective of clade) for all outputs and rotations. The initial seed bank IB 

357 input was set to the Burgundy seed bank (IBBO) when analysing the species-richness and 

358 sprayed-area outputs for the oilseed rape/wheat/barley rotation (typical of Burgundy) whereas all 

359 possible IB values were considered when analysing the other outputs. For the maize-based system 

360 (typical of Aquitaine), we set the value of IB to IBAQ for all output indicators.

361
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Table 3: Identification of key qualitative input variables and the most influenced outputs of the FLORSYS 

patch-spraying submodel based on analyses of variance of data from simulations based on LHS sampling 

on qualitative inputs. In green, CV values greater than 0.2. ns = effect of simulation factor not significant 

at p=0.05

Herbicide 

spectrum 

SH

Initial 

weed seed 

bank IB

TotalAnalysed output indicators values 

averaged over 30 years  

η²  η²  R²

Coefficient 

of 

variance 

CV

A. Maize monoculture

Weed species richness 0.01 ns 0.95 0.96 0.024

Weed-control variation due to site-

specific spraying
0.02 ns 0.81 ns 0.83 1.4

Field infestation 0.04 ns 0.51 ns 0.55 0.67

Sprayed area 0.08 ns 0.51 ns 0.58 0.066

Herbicide Treatment Frequency Index 0.02 ns 0.53 ns 0.55 0.64

Weed-crop biomass ratio at flowering 

(proxy for yield loss due to weeds)
0.34 ns 0.01 ns 0.36 2.4

B. Oilseed rape/wheat/barley rotation

Weed species richness 0.01 ns 0.96 0.97 0.027

Weed-control variation due to site-specific 

spraying
0.01 ns 0.97 0.98 0.28

Field infestation 0.03 ns 0.93 0.96 0.45

Sprayed area 0.06 ns 0.77 ns 0.83 0.13

Herbicide Treatment Frequency Index 0.03 ns 0.74 ns 0.87 0.32

Weed-crop biomass ratio at flowering 

(proxy for yield loss due to weeds)
0.10 ns 0.81 0.92 0.89

362
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363 3.3.1.2 Quantitative inputs

364 Figure 1 shows an example of how the impact of quantitative inputs was analysed (further results 

365 in section D.1 online). In the case of weed-control variation due to patch-spraying, the least 

366 influential inputs (low values of µ∗ and σ) were related to the detection and patch-spraying 

367 system, i.e., on-row weed detection rate (DR-R), before-weed sprayed distance (SD-B), 

368 minimum detected weed size (SW), row-width (WR), and spray-width (WS). The only other non-

369 influential input was herbicide efficiency (HE). The most influential inputs were herbicide dose 

370 (HD) or related to crop-plant location, i.e., sowing density (SD) and interrow distance (ID). These 

371 three presented large µ∗ values and were located far below the 2*SEM line, indicating a linear 

372 relation with the considered output and little interaction with other inputs. The other inputs 

373 (interrow detection rate (DR-IR), treatment date (TD), false detection rate (FR), after-weed 

374 sprayed distance (SD-A)) were less influential (lower µ∗ values), their effects were non-linear 

375 and/or depended more on other inputs (location close to the 2*SEM line). 

376 The results for all indicators and cropping systems are summarized in Table 4. The most 

377 influential variables were the same in both systems. But, the more complex cropping system 

378 presented more influential inputs, more non-linear input-output relationships and/or more 

379 interactions among inputs. There was no input that had no influence at all on any output in any 

380 system. So, all the input variables were considered for both croping systems in the next step.
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381

Figure 1: Identifying influential quantitative input variables with the Morris screening method, using the 

weed-control variation due to site-specific spraying indicator in the maize-based cropping system as an 

example. Each dot represents, for an input given by its abbreviation (see Table 2 for the meaning of the 

input abbreviations), the sensitivity measures (the σ (ordinate) and µ∗ (on the x-axis) values) computed 

with the Morris screening method. µ∗ assesses the influence of the input on the indicator values and σ is a 

measure of non-linear and/or interaction effects of the input. The horizontal dashed blue line (at 0.3 of the 

maximum σ values) and the vertical one (the average of the µ∗ values) correspond to the thresholds used 

on µ∗ and σ to select the most influential inputs: if a (µ∗, σ)-dot is below these two lines, the associated 

input is considered as having no influence on the output (and thus as of no interest for the sensitivity 

analysis). Dots near or above the dotted red line (twice the estimated Standard Error of the Mean) show 

inputs with a non-linear relationship with the output or with interactions with other inputs.
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Table 4: The most influential inputs of the patch-spraying submodel identified with the Morris screening method results (detailed results in section D.1.2 online). Inputs 

related to weed detection (green, details in Table 2), spraying system (red), herbicide characteristics (blue), crop-plant location (purple). NI: not important; LI: linear 

relation with the output; NLI: non-linear relation with the output or interaction with other inputs

Analysed output indicators values averaged over years

Input 
Weed species 

richness

Weed-control 

variation $

Field 

infestation

Weed-crop 

biomass ratio §

Sprayed 

area

Herbicide 

TFI &

A. Maize monoculture

DR-IR FR NLI NLI NLI NLI NLI NLI

HD NLI NLI LI NLI NI LI

WS NLI NI NI NLI LI LI

SD ID NLI LI LI NLI NI NI

SD-A TD NLI NLI NLI NLI NI NI

SD-B WR SW HE NLI NI NI NLI NI NI

DR-R NLI NI NI NI NI NI

B. Oilseed rape/wheat/barley rotation

WS DR-IR FR WR TD NLI NLI NLI NLI NLI NLI
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DR-R NLI NLI NLI NLI NLI NI

HD NLI NLI NLI NLI NI LI

SD-B SD-A SW SD HE NLI NLI NLI NLI NI NI

382 $ due to site-specific spraying, § at flowering, proxy for yield loss due to weeds, & Treatment Frequency Index

383
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384

385 3.3.2 Sensitivity analysis

386 3.3.2.1 The most influential inputs

387 The Sobol sensitivity indexes were then used to rank the different inputs according to their 

388 influence on the analysed output indicators (Table 5). For weed-control variation due to site-

389 specific spraying, the two variables determining crop-plant location in the field, sowing density 

390 (SD) and the crop interrow distance (ID), contributed the most to the variance output in the maize 

391 monoculture (Table 5.A). Among the inputs of the spraying strategy, only the herbicide dose 

392 (HD) influenced this indicator. These impacts were all almost entirely due to first-order effects 

393 (i.e., first-order sensitivity was almost equal total sensitivity). 

394 Unlike for the maize-based system, the oilseed rape/wheat/barley rotation showed a high rate of 

395 interactions between inputs (except for the sprayed area and the herbicide treatment frequency 

396 index) (Table 5.B). For the two cropping systems, the sprayed area and the herbicide treatment 

397 frequency indexes were mainly influenced by the same inputs: width of spray (WS) and treatment 

398 date (TD) for the first indicator and herbicide dose (HD) and width of spray (WS) for the second.

399 For the other indicators and for both cropping systems, the herbicide dose (HD) was one of the 

400 most influential inputs. The two cropping systems mainly differed in terms of the influence of 

401 the herbicide efficiency (HE), which was low in the maize-based system but among the key inputs 

402 for the diversified rotation.

403 The initial weed seed bank did not change the inputs that the most influenced herbicide treatment 

404 frequency index in the oilseed rape/wheat/barley rotation (section D.2.2 online). This did not 

405 apply to the other indicators for which the screening analysis showed a potential effect of the 

406 initial seed bank (Table 3): when changing from the Aquitaine seed bank (IBAQ) to the Burgundy 

407 one (IBBO), the first-order effect of the others inputs changed (section D.2.2 online). For 

408 instance, with the Burgundy seed bank, the sowing density (SD) had a direct influence on the 
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409 weed-control variation due to site-specific spraying, the field infestation and the weed-crop 

410 biomass ratio at flowering; this was not the case when the Aquitaine seed bank was used.

411

412 3.3.2.2 Which input choices improve weed control and reduce sprayed herbicide amounts?

413 Finally, linear regressions were done with all inputs in order to estimate the direction of the 

414 relationship between inputs and outputs, i.e., whether an increase in the input led to an increase 

415 or a decrease in the output (Table 6). Regardless of the rotation, increasing the spraying width 

416 (WS) and the sprayed areas before and after the detected weed (SD-B and SD-A) increased the 

417 sprayed field area and the herbicide treatment frequency index (TFI), but had no influence on the 

418 other output indicators. Notably, there was no decrease in the weed/crop biomass ratio (i.e., the 

419 proxy for crop yield loss due to weeds) or in the weed-control variation due to patch spraying. 

420 Similarly, increasing the detection rates, particularly in the interrow (DR-IR), and decreasing the 

421 minimum size to detected a weed (SW) increased sprayed area and TFI without improving weed 

422 control. Only the weed species richness deteriorated in the maize monoculture.

423 Crop-plant location, on the other hand, was crucial for all outputs: the more crop plants there 

424 were (high SD) and the closer they were located (small ID), the better weeds were controlled in 

425 general (lower field infestation and weed/crop biomass ratio) and relatively to whole-field 

426 spraying (larger weed-control variation). This came with a cost in terms of lower weed species 

427 richness and larger amounts of sprayed herbicide (larger sprayed area, TFI), particularly for 

428 smaller interrows (low ID).

429 Unsurprisingly, increased herbicide doses (HD) improved weed control, deteriorated weed 

430 species richness and increased TFI, though the sprayed area was reduced (in maize monoculture 

431 only). Increased herbicide efficiency had the same effects on weeds, though less visible in the 

432 maize rotation and without the cost in terms of TFI. The effect of treatment date depended on the 

433 rotation. In the winter-crop rotation (oilseed rape/wheat/barley), delayed spraying (large TD) had 
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434 the same effect as increased dosage or efficiency. In the spring-crop maize monoculture, the 

435 effect was opposite, except that herbicide usage (TFI) did not decrease.
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Table 5: Identifying influential quantitative input variables with the Sobol sensibility analysis for the 

maize monoculture (A) and the oilseed rape/wheat/barley rotation using the intial weed seed bank from 

Burgundy (IB = IBBO; for IB = IBAQ and IB = IBAQ see section D.2.2 online) (B). Evaluation indicators 

are S1 (main-effect contribution without interaction) and ST (total contribution including interactions with 

other inputs). See Table 2 for the meaning of the input abbreviations.

Analysed output indicators values averaged over years

Weed 

species 

richness

Weed-

control 

variation 

due to site-

specific 

spraying

Field 

infestation

Weed-crop 

biomass 

ratio at 

flowering 

(proxy for 

yield loss 

due to 

weeds)

Sprayed 

area

Herbicide 

Treatment 

Frequency 

Index

Input

S1 ST S1 ST S1 ST S1 ST S1 ST S1 ST

A. Maize monoculture (initial weed seed bank IB = IBAQ)

Spraying system

WS 0.00 0.14 0.00 0.01 0.00 0.03 0.00 1.00 0.76 0.77 0.06 0.1

SD-B 0.00 0.15 0.00 0.01 0.00 0.04 0.00 1.00 0.02 0.02 0.00 0.00

SD-A 0.00 0.15 0.00 0.01 0.00 0.03 0.00 0.75 0.00 0.02 0.00 0.00

Weed detection

DR-R 0.00 0.15 0.00 0.01 0.00 0.03 0.00 0.69 0.00 0.01 0.00 0.00

DR-IR 0.00 0.14 0.00 0.01 0.00 0.04 0.00 0.90 0.03 0.05 0.00 0.00

FR 0.00 0.14 0.00 0.01 0.01 0.03 0.03 0.69 0.04 0.05 0.00 0.01

WR 0.00 0.16 0.01 0.01 0.00 0.03 0.03 0.70 0.00 0.01 0.00 0.00

SW 0.00 0.17 0.00 0.01 0.00 0.04 0.02 0.72 0.00 0.01 0.00 0.00

Crop plant location
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SD 0.05 0.28 0.63 0.65 0.10 0.13 0.03 0.92 0.00 0.01 0.00 0.00

ID 0.14 0.35 0.23 0.24 0.24 0.25 0.00 0.91 0.00 0.03 0.00 0.00

Herbicide characteristics

TD 0.13 0.30 0.02 0.03 0.07 0.10 0.00 0.88 0.06 0.08 0.01 0.01

HD 0.31 0.50 0.11 0.14 0.57 0.65 0.10 1.00 0.00 0.02 0.89 0.92

HE 0.00 0.14 0.00 0.01 0.00 0.03 0.01 0.93 0.00 0.00 0.00 0.00

B. Oilseed rape/wheat/barley rotation (initial weed seed bank IB = IBBO)

Spraying system

WS 0.00 0.52 0.00 0.60 0.02 0.80 0.04 0.72 0.70 0.68 0.06 0.05

SD-B 0.00 0.50 0.00 0.66 0.00 0.87 0.00 0.69 0.00 0.04 0.00 0.00

SD-A 0.01 0.55 0.03 0.63 0.05 0.80 0.00 0.69 0.02 0.04 0.00 0.00

Weed detection

DR-R 0.01 0.54 0.00 0.62 0.00 0.82 0.00 0.68 0.00 0.04 0.00 0.00

DR-IR 0.07 0.53 0.00 0.62 0.00 0.77 0.00 0.72 0.03 0.05 0.00 0.00

FR 0.00 0.50 0.00 0.68 0.00 0.91 0.03 0.68 0.02 0.05 0.00 0.00

WR 0.00 0.54 0.00 0.59 0.00 0.81 0.00 0.68 0.00 0.03 0.00 0.00

SW 0.01 0.58 0.00 0.62 0.05 0.77 0.04 0.68 0.08 0.13 0.00 0.01

Crop plant location

SD 0.07 0.55 0.08 0.65 0.07 0.83 0.08 0.78 0.02 0.03 0.00 0.00

Herbicide characteristics

TD 0.00 0.54 0.00 0.61 0.00 0.76 0.04 0.69 0.19 0.25 0.00 0.01

HD 0.16 0.65 0.09 0.64 0.09 0.76 0.09 0.73 0.00 0.03 0.97 0.98

HE 0.38 0.93 0.31 0.89 0.23 0.99 0.18 0.85 0.01 0.03 0.00 0.00

Table 6: Identifying relationships between input variables and indicators with linear regressions for the 

maize monoculture (A) and the Oilseed rape/wheat/barley rotation (B). See Table 2 for the meaning of 

the input abbreviations. ns = effect of simulation factor not significant at p=0.05. Only inputs significantly 
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correlated to at least one output are shown; effet of seed bank inputs and spectrum of the used herbicide 

can be found in section D.2.3 online. Input-output combinations with positive (resp. negative) correlation 

are shown in green (resp. red). Input-output combinations that were identified as crucial in section 3.3.3 

(i.e., sensitive outputs, influential inputs) are shown in bold.

Analysed output indicators values averaged over years

Input
Weed species 

richness

(number of 

species)

Weed-control 

variation $

(t dry 

matter/ha)

Field 

infestation

(t dry 

matter/ha)

Weed-crop 

biomass ratio 

§ (t/t)

Sprayed 

area

(%)

Herbicide TFI 

&

A. Maize monoculture

R2 0.62 0.79 0.57 0.16 0.53 0.94

Spraying-system inputs

WS (cm) ns ns ns ns 0.154 0.0008

SD-B (cm) ns ns ns ns 0.0216 0.0001

SD-A (cm) ns ns ns ns 0.0194 0.0001

Weed-detection inputs

DR-R (%) ns ns ns ns 3.17 ns

DR-IR (%) -0.0674 ns ns ns 5.97 0.0304

FR (%) ns ns ns ns 7.33 0.0338

Crop-location inputs

SD (%) -1.04 2.81 -0.289 -19.6 ns ns

ID (cm) 0.0045 -0.0057 0.0016 0.0806 -0.0529 -0.0002

Herbicide characteristics

TD (days) 0.0284 -0.0105 0.0057 0.265 0.637 0.0034

HD (%) -0.623 0.332 -0.208 -21.5 -2.40 0.855

HE (%) ns ns Ns -4.03 ns ns

B. Oilseed rape/wheat/barley rotation

R2 0.88 0.92 0.84 0.54 0.37 0.96

Spraying-system inputs

WS (cm) ns ns ns ns 0.134 0.0004
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SD-B (cm) ns ns ns ns 0.0260 7.61E-05

SD-A (cm) ns ns ns ns 0.0232 ns

Weed-detection inputs

DR-IR (%) ns ns ns ns 5.48 ns

SW (cm) ns ns ns ns -5.11 -0.0142

Crop-location inputs

SD (%) -0.0938 0.809 -0.200 -22.1 ns ns

Herbicide characteristics

TD (days) -0.0018 0.0048 ns ns 1.05 0.0028

HD (%) -0.151 0.268 -0.115 -11.5 ns 1.07

HE (%) -0.291 0.535 -0.155 -8.07 ns ns

436 $ due to site-specific spraying, § at flowering, proxy for yield loss due to weeds, & Treatment Frequency Index

437

438 3.3.3 Uncertainty analysis and input selection

439 In order to select the influential inputs that must be determined accurately for the estimation of a 

440 given indicator, the coefficient of variation was analyzed with regard to the total effect index of 

441 each input.

442 For the maize-based system (Figure 2), the uncertainty in the considered inputs had little 

443 influence on simulated species richness and sprayed area. Indeed, even if some inputs (like HD 

444 or WS) influenced indicator values (i.e., their ST values exceeded 0.5), the indicator variations 

445 remained low (i.e., the associated coefficients of variation were lower than 0.3). The herbicide 

446 dose (HD) and the width of spray (WS) were the only inputs that needed to be accurately 

447 determined to estimate the herbicide treatment frequency indicator, i.e., they were the only inputs 

448 whose ST value exceeded 10%. For weed-crop biomass ratio at flowering (i.e., a proxy for crop 

449 yield loss due to weeds), the coefficient of variation was over 0.3 and all input ST indexes 

450 exceeded 10% (Figure 2) and therefore, all inputs had to be accurately defined.  

451 For the oilseed rape/wheat/barley rotation (section D.3.2 online), conclusions were similar for 

452 species richness and sprayed area. However, this more complex cropping system needed more 
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453 inputs to accurately simulate some indicators. For instance, for the weed-control variation due to 

454 site-specific spraying indicator, all inputs had to be precisely set. 

455

456 3.4 Conclusion

457 The sensitivity analysis showed that cropping system, sowing density, herbicide dose, herbicide 

458 efficiency were the most influential inputs for all indicators. Furthermore, the herbicide site-

459 specific spraying system inputs (weed detection and geometry of the spray pattern) influenced 

460 the sprayed area and the herbicide treatment frequency indicator. In the most complex cropping 

461 system, interactions among inputs were significant for all indicators, especially for weed-crop 

462 biomass ratio (the proxy for yield loss due to weeds), which was thus more complex to analyze.

463 The sensitivity and uncertainty analyses did not highlight a single input that mainly influenced 

464 the studied weed-impact indicators. Moreover, the uncertainty analysis showed that it was not 

465 necessary to exactly know the value of the herbicide site-specific spraying system inputs (weed 

466 detection and geometry of the spray pattern) to predict the sprayed area and the herbicide 

467 treatment frequency. This last indicator mainly depended on herbicide dose. 

468 Moreover, the uncertainty analysis showed that the considered inputs had little impact on wild 

469 plant species richness and sprayed area. Conversely, all inputs were needed to estimate the weed-

470 control variation due to site-specific spraying and the weed-crop biomass ratio.

471 The initial seed bank had an influence on the input uncertainties of the field infestation indicator: 

472 for the complex cropping system where all inputs had little influence on the indicator, when the 

473 Burgundy and Poitou-Charentes initial seed banks were used, all were necessary to estimate the 

474 indicator when the Aquitaine initial seed bank was used.

475

476
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477

Figure 2: Identifying the important inputs to be determined accurately with an uncertainty analysis, using 

the maize-based cropping system as an example (see section D.3 online for the oilseed rape/wheat/barley 

rotation). For each indicator (species richness: SR, weed-control variation due to site-specific spraying: 

L, field infestation: F, weed-crop biomass ratio at flowering: W, sprayed field area: S, herbicide treatment 

frequency indicator: I), absolute value of coefficient of variation (unitless) is on the horizontal axis and 

the corresponding input total effects index (ST) are on the vertical axis (unitless). For each indicator, 

inputs are represented with their labels (see Table 1 for meanings). Any input whose |CV| value exceeded 

0.3 (vertical dashed line) and whose ST exceeded 10% (horizontal dashed line) needed to determine 

accurately to ensure satisfactory indicator predictions. These combinations were highlighted in Table 6

478

479 4 Case study of an herbicide site-specific spraying system

480 The interest of the new patch-spraying submodel of FLORSYS was illustrated here with an 

481 autonomous mobile platform, which has been presented and evaluated in (Maillot et al., 2016) 

482 and summarized here in section 4.1.

483
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484 4.1 Patch-spraying platform presentation and in situ evaluation

485 4.1.1 A mobile platform based on WeedSeeker

486 The studied mobile platform aims to detect and treat the vegetation in the inter-row: spraying is 

487 triggered only where a plant is detected. The spray system is based on a WeedSeeker system 

488 (Trimble) including an optical sensor and a spray nozzle positioned at 30 cm from the soil 

489 surface. At this height, with a nozzle of 65°, the width of spray is about 35 cm. The optical sensor 

490 distinguishes green plants from the soil using their spectral properties. It uses its own light 

491 emission and measures the spectral reflection in the red and the near infrared to calculate a 

492 vegetation index. 

493

494 4.1.2 Field experiments for calibration and evaluation

495 Field experiments were carried out on a 120 m2 plot at L’Institut Agro Dijon (47°18'30.0"N 

496 5°03'53.2"E). The plot was composed of a deep clay-limestone soil. Maize was sown in mid-

497 June with a row spacing of 0.75 m. Mechanical weeding was carried out after emergence, at the 

498 3-4 leaf stage. The experiments were carried out at the 4-6 leaf stage, with 24 passages in three 

499 different inter-rows of 12 m in length. The working speed was 1–2 km/h.

500 The positioning of the WeedSeeker was such that the detection zone (length 20 cm x width 2 cm 

501 at 30 cm height) of its optical sensor was centered on the middle of the inter-row. Calibration 

502 and configuration of the optical sensor were performed using the WeedSeeker control panel on 

503 bare ground. Ten sensor-configuration values (chosen via the control panel) were tested, ranging 

504 from Sens. 1 (lowest sensitivity) to Sens. 10 (highest).

505 Weeds detected and treated by the WeedSeeker were geolocated using an GPS RTK signal. These 

506 weed positions were compared to a weed map constructed the same day using the Excess Green 

507 Vegetation Index (ExG) (Meyer and Neto, 2008) computed using multispectral sensor images.

508
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509 4.1.3 Accuracy of the weed detection system

510 The configurations Sens. 1 to Sens. 4 led to too many false positives (i.e., > 20%), identifying 

511 bare soil or plant residues as living vegetation, and were not considered hence. The in-field 

512 measured accuracy of the other configurations of the weed-detection system are shown in Table 

513 7. The sensor sensitivity corresponds to the number of plants correctly detected and therefore 

514 treated. Sensor specificity indicates the ability of the system to avoid false positives, and thus to 

515 save pesticides and to reduce environmental impacts. The overall precision of the system was 

516 computed by the ratio of the sum of the true positives and the true negatives by the sum of the 

517 positive and negative real cases.

518 In our experiments, configuration Sens. 7 of the WeedSeeker led to a good compromise between 

519 the average sensor sensitivity and the average sensor specificity (Table 7). This configuration 

520 had already been noted for its ability to detect plants in the field (Rees et al., 2013; Sui et al., 

521 2008). Our results are similar to those obtained in (Andújar et al., 2011). The overall accuracy 

522 obtained during these tests is comparable to studies using human perception (Andújar et al., 

523 2010).

524 These field trials showed that for each WeedSeeker configuration, the spraying system ignored 

525 some weeds (22% for the Sens.7 configuration) which were therefore not treated. Potentially, 

526 these weeds compete with the crops for resources, thus reducing the yield, and replenish the soil 

527 seed bank, thus increasing the risk of reducing yields in subsequent years. To evaluate these risks, 

528 simulations were carried out in the next step.
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Table 7: Sensor sensibility (true positive rate) and specificity (true negative rate) analysis of the weed 

detection system measured in field measurements. The overall precision gives an estimate of the 

propensity of the system to correctly detect true positives and negatives (Maillot et al., 2016)

WeedSeeker 

configuration

Average sensor 

sensitivity* (%)

Average sensor 

specificity** (%)

Overall precision*** 

(%)

Sens. 5 79 81 81

Sens. 6 77 82 82

Sens. 7 78 83 82

Sens. 8 66 88 87

Sens. 9 65 89 84

Sens. 10 44 92 84

529 * % of detected weeds (true positive detections)

530 ** 100% - % of crops or bare soil identified as weeds (true negative detections)

531 *** Overall precision is the ratio of correct detections (true positive and true negative) by the total of detections

532

533 4.2 Virtual experiments with FLORSYS 

534 Virtual experiments were carried out with FLORSYS to assess how well herbicide site-specific 

535 spraying systems applied to the interrow combined with a continuous row spraying manage 

536 weeds compared to a full spraying over several years. Simulations were run with the seedbank, 

537 pedoclimate and maize-based cropping system from Aquitaine (see section 3.2.1).

538 Six spraying scenarios were tested (Table 2), corresponding to six WeedSeeker configurations 

539 (Sens. 5 to Sens. 10) with different weed detection (DR-IR) and false detection (FR) rates in the 

540 interrow measured in the experiment of section 4.1.2. Two values were given for the DR-IR and 

541 FR inputs to take into account the size weed dependent efficiency of the WeedSeeker thanks to 

542 the minimum size of detected weeds input (SW) (Rees et al., 2013). As site-specific spraying was 

543 limited to the interrow and the crop row was continuously sprayed, the detection rate of weed in 

544 crop row input (DR−R) was set to 0. A seventh spraying scenario simulated a full spraying 
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545 treatment and was used as a reference to calculate weed-control variation due to the site-specific 

546 spraying scenarios compared to a full treatment. 

547 The treatment date (TD) and all other cropping-system components remained unchanged, 

548 including those that interact with patch spraying, i.e. sowing density (SD), herbicide dose (HD), 

549 herbicide efficiency (HE), crop interrow (ID), spectrum of the used herbicide (SH, which was set 

550 to the DEFAULT spectrum targeting both monocotyledons and dicotyledons), and initial seed 

551 bank IB, which was set to IBAQ (see Table 2). 

552 Each scenario was simulated over 30 years and was repeated 10 times with 10 different weather 

553 series consisting of 30 randomly chosen weathers years from the Aquitaine region. The simulated 

554 weed-impact indicators were averaged over the 30 simulated years and analyzed with ANOVA 

555 as a function of spraying scenario and weather repetition. Indicator means were compared using 

556 t-tests (for one-to-one comparison), or One-way ANOVA tests (for multiple comparison). 

557 Synergies and antagonisms between indicators were analysed using Pearson correlation. All 

558 statistical analyses were performed using Python and the statistical functions of the SciPy library 

559 (Oliphant, 2007).

560

561 4.3 Results

562 Analyses of variances of output indicators averaged over the simulated 30 years showed that the 

563 spraying strategies (i.e., the 6 scenarios of Table 7 and the full spraying scenario) did not 

564 influence any of the weed-impact indicators, i.e., the weed-crop biomass ratio at crop flowering 

565 (as a proxy for yield loss due to weeds), weed-control variation due to site-specific spraying, i.e., 

566 the yield in patch-sprayed vs full-field sprayed fields, field infestation by weeds, or weed species 

567 richness (details in section E online). Only the indicators related to herbicide use intensity were 

568 influenced, i.e., the sprayed field area and the herbicide treatment frequency index (TFI) varied 

569 with the spraying strategies. 
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570 The comparison of the six site-specific spraying strategies of Table 7 showed that the TFI and 

571 the sprayed area were not influenced by the WeedSeeker configuration (p-value: 0.2 for sprayed 

572 area and 0.18 for TFI). These two indicators were highly correlated (Pearson correlation 

573 coefficient = 0.99) as the cropping system was a monoculture with the same herbicide strategy 

574 each year. In conclusion, the two indicators related to herbicide use intensity were impacted by 

575 switching from a full spraying strategy to a site-specific strategy but not by the configuration of 

576 the site-specific strategy.

577

578 In average over all years, weather repetitions and site-specific spraying strategies, the averaged 

579 sprayed field area dropped from 100% for the whole-field treatment to 66% (details in section E 

580 online). The continuous treatment of the crop rows accounted for about 26% of the sprayed field 

581 area. Similarly, the herbicide TFI was reduced by 34% when switching from whole-field to site-

582 specific spraying, without any significant difference depending on the WeedSeeker 

583 configurations (Figure 3.A).

584 This reduction affected neither crop yield (Figure 3.B) nor yield loss due to weeds (analysed via 

585 the weed-crop biomass ratio at crop flowering) (details in section E online). However, weed-

586 impact indicator values, such as yield loss due to weeds, varied more strongly between years in 

587 the case of site-specific spraying (Figure 4), and thus also the yield and the farmer's income. 

588 Peaks of weed infestation were nevertheless controlled and the overall infestation remained 

589 stable in the long term. It should also be highlighted that those peaks of weed infestation were 

590 also possible for a full spraying strategy (years 5 and 21) and that it took several years (e.g. years 

591 6 to 9) for the infestation to stabilize again at a low level (years 10 to 20).

592
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(A)

(B)

Figure 3: Effect of site-specific herbicide spraying scenarios compared to a whole-field spraying strategy 

for different weed-detection sensitivities in a maize monoculture in Aquitaine for herbicide treatment 

frequency index TFI (A) and crop yield (B). On the x-label, WS Sens.x stands for the configuration Sens.x 

of the WeedSeeker: the lower the sensitivity value, the more sensitive the spray system is to weed color 

variations. The purple dots represent the averages of the TFI or yield variations obtained, for each 

simulation (scenario  year  weather repetition). Letters show means that are not different at p=0.05 from 

One-way ANOVA tests.
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593

Figure 4: Annual evolution of the weed-crop biomass ratio at crop flowering (proxy for yield loss due to 

weeds) in a maize-based cropping system in Aquitaine depending on the type of spraying strategy (dashed 

blue = full, orange = site-specific spraying system based on the WeedSeeker system with the Sens. 9 

configuration ). The vertical segments represent the 68% confidence interval, resulting from the 10 

weather repetitions.

594
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595 5 Discussion

596

597 5.1 A more realistic model of weed-crop dynamics and site-specific spraying systems…

598 The present study combined (1) a complex multiannual multispecies model acting as a virtual 

599 experimental field to allow large-scale virtual experiments ranging through thousands of virtual 

600 site-specific herbicide-spraying systems and crop-sowing patterns in contrasting real-life 

601 rotations, weed floras, soils and weather conditions, and (2) actual field measurements to 

602 characterize a site-specific herbicide-spraying platform. The complex experimental plan was 

603 analysed with a series of statistical methods to identify which weed impacts are the most sensitive 

604 to patch spraying, which are the most influential patch-spraying characteristics, how they interact 

605 with crop rotation and management, and whether site-specific spraying allows sufficient weed 

606 control in the long-term to ensure crop production while reducing herbicide use.

607 To date, site-specific spraying is usually evaluated in the short term in actual fields (see 

608 introduction). Even among the teams that work in silico, few look beyond the amount of herbicide 

609 savings, applying different thresholds for triggering spraying to maps of weed patches established 

610 from manual countings, drones and other unmanned vehicles and combining them with yield-

611 loss functions (Ali et al., 2015; Andújar et al., 2013). Those that use simulation models to 

612 evaluate site-specific spraying focus on the short term only, working with weed emergence 

613 models (Nikolić et al., 2021) and/or very basic weed-dynamics models, with one crop or one 

614 weed only (Dicke et al., 2007). The tested spraying system was usually simplistic, i.e. 

615 disregarding technical details such spraying width and distances to the detected vegetation, or 

616 the distinction of detection zones relatively to crop rows, as we did here.

617 Despite its complexity, FLORSYS presents a major short-coming for evaluating site-specific 

618 spraying. In the simulations, weed plants are distributed in patches whose size depends on the 

619 species plant height, regardless of tillage and harvest operations, even though these are known to 

620 displace weed seeds inside fields (Barroso et al., 2006). Very few models simulate weed-seed 
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621 dispersal and plant distribution mechanistically, and with enough details to evaluate site-specific 

622 spraying (González-Díaz et al., 2015; Paice et al., 1998). But these models only consider one 

623 weed in one crop type. And while they can be very precise in terms of plant location (e.g., 5 cm 

624 in Paice et al., 1998), the simulated field is simply split into cells in which the weed life-cycle 

625 submodel runs simultaneously and independently. The 3D-interactions between neighbouring 

626 individual plants and the effect on morphological plasticity are disregarded, even though this 

627 scale is now deemed necessary to realistically model weed dynamics (Renton, 2013). Moreover, 

628 the resolution (“grain”) of these cell-based models is often too imprecise for testing actual 

629 modern spraying equipment (e.g., ~1 m² in González-Díaz et al., 2015).

630 Even though FLORSYS considers many more technical details to describe site-specific spraying 

631 than its predecessors, it only accepts a spray nozzle with a uniform spraying pattern. Although 

632 the spraying system studied in section 4 may be equipped with such a nozzle, the actual pattern 

633 may differ and lead to a weed-control failure because the spray deposit under a single nozzle is 

634 not constant and weeds may be exposed to a sublethal application rate. Studies like (Villette et 

635 al., 2019) could help to refine the analysis.

636

637 5.2 ….to produce more realistic conclusions

638 The high degree of realism of the crop-weed interactions and the site-specific spraying submodels 

639 in FLORSYS made it possible to produce novel conclusions. The sensitivity and uncertainty 

640 analyses showed that the studied weed-impact indicators were not influenced by a single 

641 individual spraying input, but the degree of weed control resulted from the interaction of several 

642 inputs. Table 8 summarizes the discussion hereafter in focusing on inputs impact on crop 

643 production and herbicide use.

644 Using a complex mechanistic model allowed explaining these interactions. For example, the 

645 impact of the weed-detection rate or the minimum detectible weed size decreases with the 

646 spraying width: the larger the latter is, the more undetected weeds are treated together with a 
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647 detected weed. The dominant effect of spraying width was most visible when looking at the 

648 sprayed field area. These results confirm previous findings that the sprayed area depends on the 

649 spraying strategy (spraying durations and target size) and weed distribution (Wiles, 2009). But 

650 otherwise, inputs specific to site-specific spraying (i.e., spraying-system and weed-detection 

651 inputs) had negligible first-order effects, particularly compared to differences among cropping 

652 systems. This is consistent with literature (Timmermann et al., 2003; Wiles, 2009) reporting that 

653 the impact of the production situation greatly exceeds that of the characteristics site-specific 

654 spraying.

655 Unsurprisingly, the weight of the interactions was the most important for the weed-crop biomass 

656 ratio at crop flowering (i.e., the proxy for yield loss due to weeds). This indicator is the result of 

657 processes not only related to weeds, but also to crop-weed interactions, all of which strongly 

658 interact with weather and cropping system. A more complex method should be used in order to 

659 consider stochasticity and identify correlations between input variables (Gauchi et al., 2017; 

660 Sudret, 2008; Sudret and Caniou, 2013).

661 The number of the relevant inputs and the weight of the interactions were larger in the complex 

662 cropping system, notably when looking at indicators like the field infestation and the weed-

663 control variation due to site-specific spraying. The rotation consisted of different crop species 

664 sown in different seasons, resulting in more diverse weed floras which, moreover, varied over 

665 the years. As a result, both the weed-detection and the herbicide-efficiency rates varied over time. 

666 The different crops were also sown with different interrows, influencing the proportion of patch-

667 sprayed field area. These results are consistent with (Audsley, 1993; Christensen et al., 2009; 

668 Rider et al., 2006; Wiles, 2009) who concluded that, to increase the effectiveness of site-specific 

669 management, spraying systems need information about weed species composition and density. 

670 The latter vary between fields and over time, hence the relevance of multiannual multispecies 

671 models such as FLORSYS to predict them.
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672

Table 8: Results and discussion summary considering inputs impact on crop production and herbicide use

Increase in …

Impact on crop 

production

Impact on 

herbicide use Reason Similar findings in literature

Spraying width & length None  Sprays more area

True and false detection 

rate (particularly 

interrow)

None None

Controlled impact of weed infestation and long-

term overall infestation remained stable in the 

long term

(Timmermann et al., 2003; 

Villette et al., 2019; Wiles, 

2009)

Sowing density  None
Fewer resources for weeds

(depend on weed competitiveness)

Interrow width  (spring crop) None Fewer crop rows

Treatment date
None (spring crop),

 (winter crop)
None

More emerged weeds to detect, but more difficult 

to destroy in spring crops

(Audsley, 1993; Rider et al., 

2006)

Herbicide dosage  

More product sprayed  more weeds killed

Low herbicide use rate can lead to non-target site-

based resistance

(Audsley, 1993; Manalil et al., 

2011; Neve and Powles, 2005)
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Herbicide efficiency  None More weeds killed
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674

675 5.3 Implications for weed management in the field

676 The maize-based case study confirmed the main conclusions of the sensitivity and uncertainty 

677 analyses: except for the sprayed field area and the herbicide amount (via the treatment frequency 

678 index TFI), modifications in the spraying strategies (spraying pattern, weed detection) had no 

679 effect on weed-impact indicators. Most importantly, average crop production was as good in the 

680 site-specific spraying than in fully sprayed scenarios.

681 The analysis of indicator values during the 30 simulated years explains why the accuracy of the 

682 detection system had no effect. The sprayed area increased with the field infestation. In other 

683 words, when the weed infestation increased too much, the spray system adapted by spraying 

684 more herbicide, regardless of its sensitivity (Villette et al., 2019; Wiles, 2009). This avoided any 

685 drop in crop production at the cost of spraying the whole field in some years or weather 

686 repetitions. But, on average herbicide used decreased by 34% compared the full spraying 

687 strategy, very similar to the 35% reported by (Wiles, 2009) or the 40% in average in (Medlin and 

688 Shaw, 2000).

689 Thus, the site-specific spraying can be useful to reduce herbicide use while allowing a robust 

690 long-term management of weeds. However, as highlighted in previous works (Barroso et al., 

691 2004; Timmermann et al., 2003; Wiles, 2009), income of this strategy mainly depends on the 

692 weed patch distribution. Site-specific weed management certainly will be the most advantageous 

693 when preventive weed management options reduce weed infestation to residual patches rather 

694 than a continuous dense weed canopy. Moreover, an economic study remains to be done to check 

695 that the investment in the site-specific spraying system is cancelled out by the reduction in 

696 herbicide costs.

697
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698 6 Conclusion

699 The present study used a novel approach combining (1) a complex multispecies multiannual 

700 model (FLORSYS) producing detailed realistic predictions of crop-weed canopies, (2) a new 

701 submodel to simulate the detection and site-specific treatment of weeds, and (3) field 

702 measurements to characterize a site-specific herbicide-spraying platform. A global sensitivity 

703 analysis combined with an uncertainty analysis were used to identify the most influential inputs 

704 and the most sensitive output indicators evaluating crop production, weed harmfulness and 

705 benefits as well as herbicide use intensity. The general conclusions were consistent with 

706 literature, i.e., cropping system (rotation with associated sowing patterns, herbicide products and 

707 treatment dates) was much more influential than the characteristics of the spraying system in 

708 terms of geometrical spraying pattern and weed detection. But thanks to the realism of the 

709 FLORSYS model and the complexity of the simulation plan, we were able to go much further in 

710 exploring different cropping systems and weed floras and understanding interactions. Finally, a 

711 real-life case study was used to demonstrate the feasibility of reconciling crop production with 

712 reduced herbicide use, thanks to site-specific spraying, at a multiannual scale. This is a major 

713 step forward compared to previous studies focusing on short-term (annual) herbicide savings, 

714 disregarding risk for future crops due to weed-seed production of missed or surviving weeds. The 

715 next steps will be to explore more cropping systems to identify in which situations and with 

716 which weeds floras site-specific spraying will be the most beneficial.

717

718
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