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ABSTRACT 
 

This work studies the estimation of spectral density for random field (two-dimensional signal) 

when the spectral measure have certain mixture and the process is observed with a constant 
error. The objective of this paper is to give an estimator of the constant error by using the 

Jackson polynomial kernel. We show that the rate of convergence depends of size of sample and 

the behaviours of the spectral density at origin. Indeed the estimator converges rapidly when the 

spectral density is null at origin. Few long memory signals are taken here as example. 
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1. INTRODUCTION 
 

This work considers the class of symmetric alpha stable signals which are known as signals 
having infinite energy. These signals have been developed in recent decades by several authors, 

including [1]-[13], to name a few. 

 

The Gaussian density distribution remains a particular cases of alpha-stable distribution (α =2). 
 

Alpha stable distribution is a better model for signals that are impulsive in nature. It is adapted 

for signals that their variance is large and the Gaussian can not usedfor modelling this process. 
Signals in this class contain high-pitched bursts or occasional spikes.  

 

Symmetric alpha stable signals are used for modeling many phenomenons in several fields: : 

physics, biology, electronic and electrical engineering, hydrology, economies, communications 
and radar applications and signal image processing,…see [14]-[25]. 

 

In this work, we consider a symmetric 𝛼 stable random field 𝑍 = {𝑍(𝑛1,𝑛2): (𝑛1, 𝑛2) ∈ 𝑍
2} having 

the following integral representation:  

 

𝑍(𝑛1,𝑛2) = ∫
𝜋

−𝜋

∫
𝜋

−𝜋

exp[𝑖(𝑛1𝜆1 + 𝑛2𝜆2)]𝑑𝜉(𝜆1, 𝜆2) 

 

where 1 < 𝛼 < 2 and 𝜉 is a complex valued symmetric 𝛼-stable random measure on 𝑅2 with 

independent and isotropic increments. The measure defined by 𝑚(𝐴𝑥𝐵) = |𝜉(𝐴𝑥𝐵)|𝛼
𝛼 (see [4]) is 

called "control" measure or spectral measure. The case where this measure is absolutely 

continuous with respect to Lebegue measure: 𝑑𝑚(𝑥1, 𝑥2) = 𝜙(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 is considered in [4], 

[26], [27]. And  the function 𝜙called  the spectral density of $Z$ was already estimated by [4], 

http://airccse.org/cscp.html
http://airccse.org/csit/V12N22.html
https://doi.org/10.5121/csit.2022.122201
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when the time of the process is continuous, by [26] when the time of the process is discrete and 
by [27] when the time of the process is p-adic. 

 

This paper considersa case, often encountred in pratice namely when we observe this random 

field withan unknown constant error:𝑋(𝑛1,𝑛2) = 𝑎(𝑛1, 𝑛2) + 𝑍(𝑛1,𝑛2)Thus, the signal  observed is 

𝑋(𝑛1,𝑛2)instead of the signal  𝑍(𝑛1,𝑛2)alone.We also consider a more general case: when the spectral 

measure is the sum of an absolutely continuous measure with respect to Lebesgue measure, a 

discrete measure and a finite umber of ebsolutely continous measure on several lines:  
 

𝑑𝑚 = 𝜙(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 +∑

𝑞

𝑖=1

𝑐𝑖𝛿(𝑤(1,𝑖),𝑤(2,𝑖)) +∑

𝑞

𝑖=1

𝜑𝑘𝛿(𝑢1,   𝑎k𝑢1+𝑏k) 

 

where 𝛿 is a Dirac measure, 𝜙 and 𝜑𝑘are non-negative integrable and bounded functions. 𝑐𝑖 is 

unknown positive real number and 𝑤(1,𝑖),𝑤(2,𝑖), 𝑎k and 𝑏kare unknown real numbers. Assume that 

𝑤(1,𝑖) ≠ 0 and 𝑤(2,𝑖) ≠ 0 . The estimation of the constant error when the process have one 

dimension is given in [28]. This mixed measure is encountered when, for example, the resistance 

of the soil is measured on agricultural land which has a continuous random measurement and 

when pebbles are randomly encountered the measurement reaches jumps which represents the 
discrete measure.When the measures are made in places where the passage of tractors is frequent. 

The rate of convergence will be studied particularly for spectral densities which are zero at the 

origin as𝜙(𝜆1, 𝜆2) = sin
2𝑘𝛼 (

𝜆1

2
) sin2𝑘𝛼 (

𝜆2

2
)𝑔(𝜆1, 𝜆2) and 𝜙(𝜆1, 𝜆2) = |𝜆1𝜆2|

𝛽𝑔(𝜆1, 𝜆2). We show that 

the convergence speed is much faster depending on the value of the parameter of 𝛽. 
 

This paper is organized as follows: The second section gives some proprties of Jackson 

polynomial kernel and an estimator of the constant 𝑎. We show that the estimator converges to 

𝑎in probability and converges in 𝐿𝑝(𝑝 < 𝛼). Since, we assume that the spectral density of 𝑍 is 

vanishing at origin,we show that theestimator converges more rapidly to a in accordance with the 

values of 𝛽. The third sectionconsists in illustrating the results found through a numerical 

data.The last section, contains the concluding remarks, the potential applications and the open 
research problems. 

 

2. ESTIMATION OF THE CONSTANT  
 

This paper considers a (S𝛼S) process where its spectral representation is : 
 

𝑍(𝑛1,𝑛2) = ∫
𝜋

−𝜋

∫
𝜋

−𝜋

𝑒𝑖(𝑛1𝜆1+𝑛2𝜆2)𝑑𝜉(𝜆1, 𝜆2), 

 

where 𝜉 is a isotropic symmetric 𝛼-stable with independent increments.The measure defined by: 

𝑚(]𝑠1, 𝑡1]]𝑠2, 𝑡2]) = |𝜉(𝑠1, 𝑡1 , ) − 𝜉(𝑠2, 𝑡2)|𝛼
𝛼 is Lebesgue-Stiel measure called  the spectral 

measure (see [1], [4]) When 𝑚 is absolutely continuous 𝑑𝜇 = 𝜙(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2, the function 𝜙 is 

called  the spectral density of the process 𝑍. 
 

Let 𝑍(𝑛1,𝑛2) observations of the process 𝑍: (𝑍(𝑛1,𝑛2)) with 0 ≤ 𝑛1 ≤ 𝑁1 − 1 and 0 ≤ 𝑛2 ≤ 𝑁2 −

1, where 𝑁1, 𝑁2 satisfy: 𝑁1 − 1 = 2𝑘(𝑛1 − 1) and 𝑁2 − 1 = 2𝑘(𝑛2 − 1) with 𝑛1 , 𝑛2 ∈ 𝑁    𝑘 ∈

𝑁 ∪ {
1

2
}if 𝑘 =

1

2
then𝑛1 = 2𝑛′1 − 1,  𝑛′1 ∈ 𝑁 and 𝑛2 = 2𝑛′2 − 1, 𝑛′2 ∈ 𝑁. 

 

The Jackson polynomial kernel  is defined in [29], [11] and [26], as follows: 
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|𝐻𝑁(𝜆1, 𝜆2)|
𝛼 = |𝐴(𝑁1,𝑁2)𝐻

(𝑁1,𝑁2)(𝜆1, 𝜆2)|
𝛼

 

 

where 𝐻(𝑁1,𝑁2)(𝜆1, 𝜆2) =
1

𝑞𝑘,𝑛1,𝑛2
(
sin(

𝑛1𝜆1
2
)

sin(
𝜆1
2
)
)

2𝑘

(
sin(

𝑛2𝜆2
2
)

sin(
𝜆2
2
)
)

2𝑘

 

 

with𝑞𝑘,𝑛1,𝑛2 = (
1

2𝜋
)
2

∫
𝜋

−𝜋 ∫
𝜋

−𝜋
(
sin(

𝑛1𝜆1
2
)

sin(
𝜆1
2
)
)

2𝑘

(
sin(

𝑛2𝜆2
2
)

sin(
𝜆2
2
)
)

2𝑘

𝑑𝜆1𝑑𝜆2 

 

In addition, we have 𝐴(𝑁1,𝑁2) = (𝐵𝛼,𝑁1,𝑁2)
−1

𝛼  with 𝐵𝛼,𝑁1,𝑁2 = ∫
𝜋

−𝜋 ∫
𝜋

−𝜋
|𝐻(𝑁1,𝑁2)(𝜆1, 𝜆2)|

𝛼
𝑑𝜆1𝑑𝜆2. 

 
The estimator: 

 

In this paper, we constructthe following estimate of the error 𝑎:  

 

𝑎̂ =
𝐴(𝑁1,𝑁2)

𝐻𝑁(0,0)
∑𝑘((𝑛1−1)
𝑛′=−𝑘(𝑛1−1)

∑𝑘((𝑛2−1)
𝑛′′=−𝑘(𝑛2−1)

𝑋(𝑛′ + 𝑘(𝑛1 − 1, 𝑛′′ + 𝑘(𝑛2 − 1)).(1) 

 

We start by showing that the estimator 𝑎̂converges to a in probability and converges in 𝐿𝑝(𝑝 <

𝛼). Then we show that theses convergences are faster for signals whose spectral density vanishes 

at the origin. This means that the etimator is slowed down by the disturbance of the energy at the 
origin.To lighten the formulas and make the paper easy to read, we delete in the rest of this paper 

the last term of the expression of the spectral measure.Thus, henceforth the considered spectral 

measure becomes: 
 

𝑑𝑚 = 𝜙(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 +∑

𝑞

𝑖=1

𝑐𝑖𝛿(𝑤(1,𝑖),𝑤(2,𝑖)) 

 

Citing nowtwo lemmas given propertiesof Jackson polynomial kernel that we will use later. Their 

proofs are given [26], [29]. 

 

Lemma 1 

 

The function𝐻(𝑁1,𝑁2)(𝜆1, 𝜆2) can be written as follows: 
 

𝐻(𝑁1,𝑁2)(𝜆1, 𝜆2) = ∑

𝑘(𝑛1−1)

𝑚1=−𝑘(𝑛1−1)

∑

𝑘(𝑛2−1)

𝑚2=−𝑘(𝑛2−1)

ℎ𝑘 (
𝑚1

𝑛1
) 𝑐𝑜𝑠(𝑚1𝜆1)ℎ𝑘 (

𝑚2

𝑛2
) 𝑐𝑜𝑠(𝑚1𝜆1), 

where ℎ𝑘 is  a even positive function. 

 

Lemma 2. 

 

 Let  

𝐵′𝛼,𝑁1,𝑁2 = ∫
𝜋

−𝜋

∫
𝜋

−𝜋

|
𝑠𝑖𝑛

𝑛1𝜆1

2

𝑠𝑖𝑛
𝜆1

2

|

2𝑘𝛼

|
𝑠𝑖𝑛

𝑛2𝜆2

2

𝑠𝑖𝑛
𝜆2

2

|

2𝑘𝛼

𝑑𝜆1𝑑𝜆2 

 

and  
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𝐽𝑁1,𝑁2,𝛼 = ∫
𝜋

−𝜋

∫
𝜋

−𝜋

|(𝑢1, 𝑢2)|
𝛾|𝐻𝑁1,𝑁2(𝜆1, 𝜆2)|

𝛼𝑑𝜆1𝑑𝜆2, 

 

where 𝛾 ∈]0,2].  Then we have the following inqualities, 

 

𝐵′𝛼,𝑁1,𝑁2

(

 
 ≥ (2𝜋 (

2

𝜋
)
2𝑘𝛼

)

2

𝑛1
2𝑘𝛼−1𝑛2

2𝑘𝛼−1    𝑖𝑓  0 < 𝛼 < 2

≤ (
4𝜋𝑘𝛼

2𝑘𝛼 − 1
)
2

𝑛1
2𝑘𝛼−1𝑛2

2𝑘𝛼−1            𝑖𝑓  
1

2𝑘
< 𝛼 < 2

 

 

 

and  
 

𝐽𝑁1,𝑁2,𝛼 ≤ (
𝜋𝛾+2𝑘𝛼

22𝑘𝛼(𝛾 − 2𝑘𝛼)
)

2
1

𝑛1
2𝑘𝛼−1

1

𝑛2
2𝑘𝛼−1

   𝑖𝑓   
1

2𝑘
< 𝛼 <

𝛾 + 1

2𝑘
, 

𝐽𝑁1,𝑁2,𝛼 ≤ (
2𝑘𝛼𝜋𝛾+2𝑘𝛼

22𝑘𝛼(𝛾 + 1)(2𝑘𝛼 − 𝛾 − 1)
)

2
1

(𝑛1𝑛2)𝛾
  𝑖𝑓 

 𝛾 + 1 

 2𝑘
< 𝛼 < 2. 

 

Theorem 1  

 

Let p a real number such that 0 < 𝑝 < 𝛼. We have 
 

|𝑎̂ − 𝑎|𝑝 = 𝑂(
1

(𝑛1𝑛2)
𝑝

𝛼

) 

 
Proof Using the spectral representation of the process, we obtain 

 

 

𝑎̂ =
𝐴(𝑁1,𝑁2)

𝐻(𝑁1,𝑁2)(0,0)
∑

𝑘((𝑛1−1)

𝑛′=−𝑘(𝑛1−1)

∑

𝑘((𝑛2−1)

𝑛′′=−𝑘(𝑛2−1)

ℎ𝑘 (
𝑛′

𝑛1
,
𝑛′′

𝑛2
)∫

𝜋

−𝜋

∫
𝜋

−𝜋

𝑒𝑥𝑝[𝑖([𝑛′ + 𝑘(𝑛1 − 1)]𝜆1)] 

𝑒𝑥𝑝[𝑖([𝑛′′ + 𝑘(𝑛2 − 1)]𝜆2)]𝑑𝜉(𝜆1, 𝜆2) + 𝑎 

 

From [1], we can writte the characteristic function of (𝑎̂ − 𝑎):  
 

𝐸exp[𝑖ℜ𝑒𝑟(𝑎̂ − 𝑎)] = 

𝑒𝑥𝑝 − 𝐶𝛼|𝑟|
𝛼∫

𝜋

−𝜋

|
𝐴(𝑁1,𝑁2)

𝐻(𝑁1,𝑁2)(0,0)
∑

𝑘((𝑛1−1)

𝑛′=−𝑘(𝑛1−1)

∑

𝑘((𝑛2−1)

𝑛′′=−𝑘(𝑛2−1)

ℎ𝑘 (
𝑛′

𝑛1
,
𝑛′′

𝑛2
)𝑒𝑖𝑛′𝜆1𝑒𝑖𝑛′′𝜆2|

𝛼

𝑑𝜉(𝜆1, 𝜆2) 

  

 

where 𝑟 = 𝑟1 + 𝑖𝑟2. It is easy to show that:  
 

𝐸exp[𝑖ℜ𝑒𝑟(𝑎̂ − 𝑎)] = exp(−𝐶𝛼|𝑟|
𝛼𝜓(𝑁1,𝑁2)), where 𝜓(𝑁1,𝑁2) = 𝜓𝑁1,𝑁2,1 +𝜓𝑁1,𝑁2,2 with  

𝜓𝑁1,𝑁2,1 = ∫
𝜋

−𝜋

∫
𝜋

−𝜋

|𝐻(𝑁1,𝑁2)(𝜆1, 𝜆2)|
𝛼

|𝐻(𝑁1,𝑁2)(0,0)|
𝛼 𝜙(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2   𝑎𝑛𝑑    
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𝜓𝑁1,𝑁2,2 =∑

𝑞

𝑖=1

𝑐𝑖
|𝐻(𝑁1,𝑁2)(𝑤𝑖,1, 𝑤𝑖,2)|

𝛼

|𝐻(𝑁1,𝑁2)(0,0)|
𝛼 . 

 

The function 𝜙 being bounded on [−𝜋, 𝜋]2 and |𝐻(𝑁1,𝑁2)(. , . )|
𝛼 being a kernel, it can be shown 

that ∫
𝜋

−𝜋 ∫
𝜋

−𝜋
|𝐻(𝑁1,𝑁2)(𝜆1, 𝜆2)|

𝛼
𝜙(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 is converging to 𝜙(0,0). On the other hand, 

from lemma 2, we have:  

 
1

|𝐻(𝑁1,𝑁2)(0,0)|
𝛼 =

𝐵′𝛼,𝑁1,𝑁2
𝑛1
2𝑘𝛼𝑛2

2𝑘𝛼 = 𝑂(
1

𝑛1𝑛2
) (2) 

 

 

Therefore 𝜓𝑁1,𝑁2,1 converges to 0.  

 

𝜓𝑁1,𝑁2,2 ≤∑

𝑞

𝑖=1

𝑐𝑖
𝐵′𝛼,𝑁1,𝑁2

1

|sin [
𝑤𝑖,1

2
] sin [

𝑤𝑖,2

2
]|
2𝑘𝛼

𝐵′𝛼,𝑁1 ,𝑁2
𝑛1
2𝑘𝛼𝑛2

2𝑘𝛼
. 

 

Therefore 𝜓𝑁1,𝑁2,2 = 𝑂(
1

𝑛1
2𝑘𝛼𝑛2

2𝑘𝛼). Thus  

 

𝜓(𝑁1,𝑁2) = 𝑂 (
1

𝑛1𝑛2
). 

 

Consequently, the characteristic function of 𝑎̂ − 𝑎 converges to 1 when 𝑁1 and 𝑁2 tend to 

infinity. We deduce that𝑎̂ convergences to 𝑎in probability.  

 

In order to study the convergence in 𝐿𝑝 where 0 < 𝑝 < 𝛼, we put 

 

𝐷𝑝 = ℜ𝑒∫
∞

−∞

∫

𝜋

4

−
𝜋

4

1 − 𝑒𝑖𝑟cos𝜃

|𝑟|1+𝑝
𝑑𝑟𝑑𝜃. 

 

Assuming now 𝑟 = 𝜀𝑟′,        𝜃 = 𝜏′ − 𝜏0 

𝐷𝑝 = ℜ𝑒∫
∞

−∞

∫

𝜋

4
+𝜏0

−
𝜋

4
+𝜏0

1 − 𝑒𝑖𝜀𝑟′cos(𝜏′−𝜏0)

|𝜀|1+𝑝|𝑟′|1+𝑝
𝜀𝑑𝑟′𝜏′ 

𝐷𝑝|𝑥|
𝑝 = ℜ𝑒∫

∞

0

∫

𝜋

4
+𝜏0

−
𝜋

4
+𝜏0

1 − 𝑒𝑖ℜ𝑒(𝑡̅𝑥)|

𝑡|1+𝑝
𝑑|𝑡|𝑑𝜃′ − ℜ𝑒∫

0

−∞

∫

𝜋

4
+𝜏0

−
𝜋

4
+𝜏0

1 − 𝑒𝑖ℜ𝑒(𝑡̅𝑥)

|𝑡|1+𝑝
𝑑|𝑡|𝑑𝜃′. 

 

Let us substitute 𝑥 by 𝑎̂ − 𝑎, we have  

 

𝐷𝑝𝐸|𝑎̂ − 𝑎|
𝑝 = ∫

∞

−∞

∫

𝜋

4
+𝜏0

−
𝜋

4
+𝜏0

1 − 𝑒−𝐶𝛼|𝑡|
𝛼𝜓(𝑁1,𝑁2)

|𝑡|1+𝑝
𝑑|𝑡|𝑑𝜃′ =

𝜋

2
∫
∞

−∞

1 − 𝑒−𝐶𝛼|𝑡|
𝛼𝜓𝑁

|𝑡|1+𝑝
𝑑𝑡. 

  

Let 𝑢 = 𝑡[𝜓(𝑁1,𝑁2)]
1𝛼 and using (2), we obtain  

 

2

𝜋
𝐶𝑝,𝛼𝐸|𝑎̂ − 𝑎|

𝑝 = (𝜓(𝑁1,𝑁2))
𝑝

𝛼 = 𝑂 (
1

𝑛1
𝑝/𝛼

𝑛2
𝑝/𝛼). (3) 
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 where 𝐶𝑝,𝛼 = 𝑅𝑝𝐹𝑝,𝛼
−1(𝐶𝛼)

−
𝑝

𝛼 

 

with 𝑅𝑝 = ∫
1−cos(𝑢)

|𝑢|1+𝑝
𝑑𝑢   𝑎𝑛𝑑  𝐹𝑝,𝛼 = ∫

1−𝑒−|𝑢|
𝛼

|𝑢|
1+𝑝
𝛼

𝑑𝑢. 

 
Improvement of the rate of convergence 

 
We take the case where the spectral density vanishes at the origin. The following theorems will 

show that the speed of convergence is better. 

 

Theorem 2 

 

Assume that the spectral density is satisfying:  
 

𝜙(𝜆1, 𝜆2) = |𝜆1|
𝛽|𝜆2|

𝛽𝑔(𝜆,1 , 𝜆2) 
 

where 𝛽 ∈]0,2𝑘𝛼 − 1[, 𝜆1, 𝜆2 ∈ [−𝜋, 𝜋] and 𝑔(𝜆1, 𝜆2) is a bounded function on [−𝜋, 𝜋]2, 

continuous in neighborhood of (0,0) and 𝑔(0,0) = 0. Then  

 

28𝑘𝑝𝐿 ≤ 𝑙𝑖𝑚
𝑁1,𝑁2→∞

(𝑛1𝑛2)
𝑝(𝛽+1)

𝛼 𝐸|𝑎̂ − 𝑎|𝑝 ≤ 𝜋8𝑘𝑝𝐿, 

 

where 𝐿 is the following constant:  

 

𝐿 =
𝜋

2𝐶𝑝,𝛼
[𝑔(0,0)∫

∞

−∞

|𝑠𝑖𝑛
𝑣

2
|
2𝑘𝛼

|𝑣|2𝑘𝛼−𝛽
𝑑𝑣]

2𝑝

𝛼

. 

 

Proof: 

 

 From (2), the function 𝜓(𝑁1,𝑁2) can be written as:  

 

𝜓(𝑁1,𝑁2) = (𝑛1𝑛2)
−2𝑘𝛼∫

𝜋

−𝜋

∫
𝜋

−𝜋

|
sin

𝑛1𝜆1

2

sin
𝜆1

2

|

2𝑘𝛼

|
sin

𝑛2𝜆2

2

sin
𝜆2

2

|

2𝑘𝛼

|𝜆1𝜆2|
𝛽𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 

 +(𝑛1𝑛2)
−2𝑘𝛼 ∑𝑞

𝑖=1 𝑐𝑖 |
sin[

𝑛1𝑤𝑖,1

2
]

sin[
𝑤𝑖,1

2
]

sin[
𝑛2𝑤𝑖,2

2
]

sin[
𝑤𝑖,2

2
]
|

2𝑘𝛼

 

 

 
Using the following inequality:  

 
|sin𝑥2| ≥ 𝑥𝜋        0 ≤ 𝑥 ≤ 𝜋, (4) 

  

we maximize 𝜓(𝑁1,𝑁2) as follows:  

 

𝜓(𝑁1,𝑁2) ≤ (𝜋
4𝑘𝛼)

2
(𝑛1𝑛2)

−2𝑘𝛼 ∫
𝜋

−𝜋

∫
𝜋

−𝜋

|sin
𝑛1𝜆1

2
|
2𝑘𝛼

|𝜆1|2𝑘𝛼−𝛽

|sin
𝑛2𝜆2

2
|
2𝑘𝛼

|𝜆2|2𝑘𝛼−𝛽
𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 
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 +(𝑛1𝑛2)
−2𝑘𝛼 ∑𝑞

𝑖=1 𝑐𝑖 |
1

sin[
𝑤𝑖,1

2
]

1

sin[
𝑤𝑖,2

2
]
|

2𝑘𝛼

. 

  

Putting 𝑛1𝜆1 = 𝑢1 and 𝑛2𝜆2 = 𝑢2, we have  

 

𝜓(𝑁1,𝑁2) ≤ (𝜋
4𝑘𝛼)

2
(𝑛1𝑛2)

−1−𝛽∫
∞

−∞

|sin
𝑢1

2
|
2𝑘𝛼

|𝑢1|2𝑘𝛼−𝛽

|sin
𝑢2

2
|
2𝑘𝛼

|𝑢2|2𝑘𝛼−𝛽
𝑔 (
𝑢1
𝑛1
,
𝑢2
𝑛2
) 𝑑𝑢1𝑑𝑢2 

 +
(𝑛1𝑛2)

−2𝑘𝛼+1+𝛽

(𝜋4𝑘𝛼)2
∑𝑞
𝑖=1 𝑐𝑖 |

1

sin[
𝑤𝑖,1

2
]

1

sin[
𝑤𝑖,2

2
]
|

2𝑘𝛼

. 

 

FromLemma 2, andthe theorem of Lebesgue’s dominated convergence we obtain that: 

 

lim
𝑁1,𝑁2→∞

(𝑛1𝑛2)
𝑝(𝛽+1)𝛼(𝜓(𝑁1,𝑁2))

𝑝𝛼
≤ (𝜋4𝑘𝑝 (𝑔(0,0)∫

+∞

−∞

|sin𝑢2|2𝑘𝛼|𝑢|2𝑘𝛼−𝛽𝑑𝑢)

𝑝𝛼

)

2

. 

 

Thus 𝜓(𝑁1,𝑁2) converges to zero.Using the following inequality  

 
|sin𝑥| ≤ |𝑥|        ∀𝑥 ∈ [−𝜋, 𝜋], (5) 

  
we obtain:  

 

𝜓(𝑁1,𝑁2) ≥ 2
8𝑘𝛼(𝑛1𝑛2)

−2𝑘𝛼 ∫
𝜋

−𝜋

∫
𝜋

−𝜋

|sin
𝑛1𝜆1

2
|
2𝑘𝛼

|𝜆1|2𝑘𝛼−𝛽

|sin
𝑛11𝜆2

2
|
2𝑘𝛼

|𝜆2|2𝑘𝛼−𝛽
𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 

 +(𝑛1𝑛2)
−2𝑘𝛼 ∑𝑞

𝑖=1 𝑐𝑖 |
sin[

𝑛1𝑤𝑖,1

2
]

sin[
𝑤𝑖,1

2
]

sin[
𝑛2𝑤𝑖,2

2
]

sin[
𝑤𝑖21
2
]
|

2𝑘𝛼

. 

𝜓(𝑁1,𝑁2) ≥ 2
8𝑘𝛼(𝑛1𝑛2)

−𝛽−1 [∫
𝜋

−𝜋

∫
𝜋

−𝜋

|sin
𝑢1

2
|
2𝑘𝛼

|𝑢1|2𝑘𝛼−𝛽

|sin
𝑢2

2
|
2𝑘𝛼

|𝑢1|2𝑘𝛼−𝛽
𝑔 (
𝑢1
𝑛1
,
𝑢2
𝑛2
) 𝑑𝑢1𝑑𝑢2 + 𝑅𝑛], 

 

where 𝑅𝑛 =
(𝑛1𝑛2)

−2𝑘𝛼+𝛽+1

28𝑘𝛼
∑𝑞
𝑖=1 𝑐𝑖 |

sin[
𝑛1𝑤𝑖,1

2
]

sin[
𝑤𝑖,1

2
]

sin[
𝑛2𝑤𝑖,2

2
]

sin[
𝑤𝑖,2

2
]
|

2𝑘𝛼

. 

 

Since 𝑅𝑛  converges to zero, the equality (5) gives 

 

lim
𝑁1,𝑁2→∞

(𝑛1𝑛2)
𝑝(𝛽+1)

𝛼 (𝜓(𝑁1,𝑁2))
𝑝

𝛼 ≥ 28𝑘𝑝 (𝑔(0,0) ∫
+∞

−∞
|sin (

𝑢

2
)|
2𝑘𝛼

/|𝑢|2𝑘𝛼−𝛽𝑑𝑢)
2𝑝/𝛼

. 

 

We arrive at the result of this theorem and this because of equality (3). 

 

Theorem 3 

 

Assuming that the spectral density satisfies : 
 

𝜙(𝜆1, 𝜆2) = (𝑠𝑖𝑛
𝑛2𝜆2

2
𝑠𝑖𝑛

𝑛2𝜆2

2
)
2𝑘𝛼

𝑔(𝜆1, 𝜆2)where 𝑔 is real function, integrable on [−𝜋, 𝜋] and 
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𝑔(0,0) ≠ 0. Then  

𝑐𝑡𝑒 (
𝜋

2𝐶𝑝,𝛼,
)

2

∫
𝜋

−𝜋

∫
𝜋

−𝜋

𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 ≤ 𝑙𝑖𝑚
𝑁1,𝑁2→∞

(𝑛1𝑛2)
2𝑘𝑝𝐸|𝑎̂ − 𝑎|𝑝 ≤ 

(
𝜋

2𝐶𝑝,𝛼,
)

2

∫
𝜋

−𝜋

∫
𝜋

−𝜋

𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 +∑

𝑞

𝑖=1

𝑐𝑖 |
𝑠𝑖𝑛 [

𝑛1𝑤𝑖,1

2
]

𝑠𝑖𝑛 [
𝑤𝑖,1

2
]

𝑠𝑖𝑛 [
𝑛2𝑤𝑖,2

2
]

𝑠𝑖𝑛 [
𝑤𝑖,2

2
]
|

2𝑘𝛼

 

 

𝑷𝒓𝒐𝒐𝒇:𝐹𝑟𝑜𝑚𝑡ℎ𝑒𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑜𝑓𝜓(𝑁1,𝑁2) and(2),we have  

 

𝜓(𝑁1,𝑁2) = (𝑛1𝑛2)
−2𝑘𝛼 ∫

𝜋

−𝜋

∫
𝜋

−𝜋

|sin
𝑛1𝜆1
2

sin
𝑛1𝜆1
2
|
2𝑘𝛼

𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 

+(𝑛1𝑛2)
−2𝑘𝛼∑

𝑞

𝑖=1

𝑐𝑖 |
sin [

𝑛1𝑤𝑖,1

2
]

sin [
𝑤𝑖,1

2
]

sin [
𝑛1𝑤𝑖,2

2
]

sin [
𝑤𝑖,2

2
]
|

2𝑘𝛼

. 

𝜓(𝑁1,𝑁2) ≤ (𝑛1𝑛2)
−2𝑘𝛼 ∫

𝜋

−𝜋

∫
𝜋

−𝜋

𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 

 +(𝑛1𝑛2)
−2𝑘𝛼 ∑𝑞

𝑖=1 𝑐𝑖 |
sin[

𝑛1𝑤𝑖,1

2
]

sin[
𝑤𝑖,1

2
]

sin[
𝑛2𝑤𝑖,2

2
]

sin[
𝑤𝑖,2

2
]
|

2𝑘𝛼

 

 

The lemma 2:  
 

lim
𝑁1,𝑁2→∞

𝜓(𝑁1,𝑁2)(𝑛1𝑛2)
2𝑘𝛼 ≤ ∫

𝜋

−𝜋

∫
𝜋

−𝜋

𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 +∑

𝑞

𝑖=1

𝑐𝑖 |
1

sin [
𝑤𝑖,1

2
]

1

sin [
𝑤𝑖,2

2
]
|

2𝑘𝛼

. 

 
To minimize ψ_((N_1,N_2))  , using the proprities of sinus we obtain  

 

𝜓(𝑁1,𝑁2) ≥ (𝑛1𝑛2)
−2𝑘𝛼 ∫

𝜋

−𝜋

∫
𝜋

−𝜋

[(sin
𝑛1𝜆1
2

sin
𝑛2𝜆2
2
)
2

]

[𝑘𝛼]+1

𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 

 +(𝑛1𝑛2)
−2𝑘𝛼 ∑𝑞

𝑖=1 𝑐𝑖 |
sin[

𝑛1𝑤𝑖,1

2
]

sin[
𝑤𝑖,1

2
]

sin[
𝑛1𝑤𝑖,2

2
]

sin[
𝑤𝑖,2

2
]
|

2𝑘𝛼

 

 

where [𝑘𝛼] represents the integer part of 𝑘𝛼, we obtain 

 

𝜓(𝑁1,𝑁2) ≥ (𝑛1𝑛2)
−2𝑘𝛼 ∫

𝜋

−𝜋

∫
𝜋

−𝜋

[cos
𝑛1𝜆1 − 𝑛2𝜆2

2
− cos

𝑛1𝜆1 + 𝑛2𝜆2
2

]
2[𝑘𝛼]+2

𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 

 +(𝑛1𝑛2)
−2𝑘𝛼 ∑𝑞

𝑖=1 𝑐𝑖 |
sin[

𝑛1𝑤𝑖,1

2
]

sin[
𝑤𝑖,1

2
]

sin[
𝑛1𝑤𝑖,2

2
]

sin[
𝑤𝑖,2

2
]
|

2𝑘𝛼

 

 
Using the  binomial formula we have:  

 

[cos
𝑛1𝜆1 − 𝑛2𝜆2

2
− cos

𝑛1𝜆1 + 𝑛2𝜆2
2

]
2[𝑘𝛼]+2

= 

 

 ∑2[𝑘𝛼]+2
𝑟=1 𝐶2[𝑘𝛼]+2

𝑟 (−1)𝑟 (cos𝑟
𝑛1𝜆1−𝑛2𝜆2

2
cos(2[𝑘𝛼]+2−𝑟)

𝑛1𝜆1+𝑛2𝜆2

2
) 
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Using again the binomial formula, we obtain:  

 

cos𝑟(𝑎) = (𝑒𝑎 + 𝑒−𝑖𝑎2)
𝑟
= 12𝑟∑

𝑟

𝑗=0

𝐶𝑟
𝑗
𝑒𝑖𝑗𝑎𝑒−𝑖(𝑟−𝑗)𝑎 . 

Hence 

 

[cos
𝑛1𝜆1 − 𝑛2𝜆2

2
− cos

𝑛1𝜆1 + 𝑛2𝜆2
2

]
2[𝑘𝛼]+2

= 

 ∑2[𝑘𝛼]+2
𝑟=1 𝐶2[𝑘𝛼]+2

𝑟 (−1)𝑟 (
1

2𝑟
∑𝑟𝑗=0 𝐶𝑟

𝑗
𝑒𝑖𝑗

𝑛1𝜆1−𝑛2𝜆2
2 𝑒−𝑖(𝑟−𝑗)

𝑛1𝜆1+𝑛2𝜆2
2 ) 

[cos
𝑛1𝜆1 − 𝑛2𝜆2

2
− cos

𝑛1𝜆1 + 𝑛2𝜆2
2

]
2[𝑘𝛼]+2

= 

 ∑2[𝑘𝛼]+2
𝑟=1 𝐶2[𝑘𝛼]+2

𝑟 (−1)𝑟𝑒−𝑖(𝑟)
𝑛2𝜆2
2 (12𝑟 ∑𝑟𝑗=0 𝐶𝑟

𝑗
𝑒𝑖(2𝑗𝑟)

𝑛1𝜆1
2 ) 

 

∫
𝜋

−𝜋

∫
𝜋

−𝜋

[cos
𝑛1𝜆1 − 𝑛2𝜆2

2
− cos

𝑛1𝜆1 + 𝑛2𝜆2
2

]
2[𝑘𝛼]+2

𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 = 

∑

2[𝑘𝛼]+2

𝑟=1

𝐶2[𝑘𝛼]+2
𝑟 (−1)𝑟 ∫

𝜋

−𝜋

𝑒−𝑖(𝑟)
𝑛2𝜆2
2 (

1

2𝑟
∑

𝑟

𝑗=0

𝐶𝑟
𝑗∫

𝜋

−𝜋

𝑒𝑖(2𝑗𝑟)
𝑛1𝜆1
2 𝑔(𝜆1, 𝜆2)𝑑𝜆1)𝑑𝜆2 

  

The function 𝑔(. , 𝜆2) being even for all 𝜆2 ∈ [−𝜋, 𝜋], we have  

 

∫
𝜋

−𝜋

∫
𝜋

−𝜋

[cos
𝑛1𝜆1 − 𝑛2𝜆2

2
− cos

𝑛1𝜆1 + 𝑛2𝜆2
2

]
2[𝑘𝛼]+2

𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 = 

∑

2[𝑘𝛼]+2

𝑟=1

𝐶2[𝑘𝛼]+2
𝑟 (−1)𝑟∫

𝜋

−𝜋

𝑒−𝑖(𝑟)
𝑛2𝜆2
2 (

1

2𝑟
∑

𝑟

𝑗=0

𝐶𝑟
𝑗 ∫

𝜋

−𝜋

cos ((2𝑗𝑟)
𝑛1𝜆1
2
)𝑔(𝜆1, 𝜆2)𝑑𝜆1)𝑑𝜆2 

 The function 𝑔(𝜆1, . ) being even for all 𝜆1 ∈ [−𝜋, 𝜋], we have  

∫
𝜋

−𝜋

∫
𝜋

−𝜋

[cos
𝑛1𝜆1 − 𝑛2𝜆2

2
− cos

𝑛1𝜆1 + 𝑛2𝜆2
2

]
2[𝑘𝛼]+2

𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 = 

∑

2[𝑘𝛼]+2

𝑟=1

𝐶2[𝑘𝛼]+2
𝑟 (−1)𝑟 ∫

𝜋

−𝜋

cos (−𝑖r
𝑛2𝜆2
2
)(

1

2𝑟
∑

𝑟

𝑗=0

𝐶𝑟
𝑗∫

𝜋

−𝜋

cos ((2𝑗𝑟)
𝑛1𝜆1
2
)𝑔(𝜆1, 𝜆2)𝑑𝜆1)𝑑𝜆2 

 Since 
1

2𝑟
∑𝑟𝑗=0 𝐶𝑟

𝑗
∫
𝜋

−𝜋
cos ((2𝑗𝑟)

𝑛1𝜆1

2
)𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 converges to ∫

𝜋

–𝜋
𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 

uniformly in 𝜆2 when 𝑟 is even and converges to 0 when 𝑟 is odd. Therefore 

∫
𝜋

–𝜋 ∫
𝜋

−𝜋
[cos

𝑛1𝜆1−𝑛2𝜆2

2
− cos

𝑛1𝜆1+𝑛2𝜆2

2
]
2[𝑘𝛼]+2

𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 

 Converges to ∑
2[𝑘𝛼]+2

2
𝑝=1 𝐶2[𝑘𝛼]+2

2𝑝 122𝑝 ∫
𝜋

−𝜋 ∫
𝜋

−𝜋
𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2. 

Since lim𝑁1,𝑁2→∞(𝑛1𝑛2)
−2𝑘𝛼 ∑𝑞

𝑖=1 𝑐𝑖 |
sin[

𝑛1𝑤𝑖,1

2
]

sin[
𝑤𝑖,1

2
]

sin[
𝑛2𝑤𝑖,2

2
]

sin[
𝑤𝑖,2

2
]
|

2𝑘𝛼

= 0. The similar arguments are 

used for showing that  

 lim
𝑁1,𝑁2→∞

(𝜓(𝑁1,𝑁2))
𝑝

𝛼(𝑛1𝑛2)
2𝑘𝑝 ≥ 𝑐𝑡𝑒(∫

𝜋

−𝜋
𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2)

𝑝𝛼
. (6) 
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Theorem 4 

 

Assume that spectral density satisfies:  

 

𝜙(𝜆1𝜆2) = |𝜆1|
𝛽|𝜆2|

𝛽𝑔(𝜆1, 𝜆2) 
 

where 𝑔 is real positive function and𝛽 > 2𝑘𝛼 − 1.  𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡 𝑔is bounded on [−𝜋, 𝜋]2. 
Then 

 

𝑐𝑡𝑒 × 𝑅 ≤ 𝑙𝑖𝑚
𝑁1,𝑁2→∞

(𝑛1𝑛2)
2𝑘𝑝𝐸|𝑎̂ − 𝑎|𝑝 ≤ 𝑅 

 

where 𝑅 = (
𝜋

2𝐶𝑝,𝛼
)
2

(∫
𝜋

−𝜋 ∫
𝜋

−𝜋
(

|𝜆1|
𝛽

|𝑠𝑖𝑛
𝜆1
2
|
2𝑘𝛼

|𝜆2|
𝛽

|𝑠𝑖𝑛
𝜆2
2
|
2𝑘𝛼 𝑔(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2)

𝑝𝛼

. 

 

Proof: 

 

  Define the continuous function 𝑙 as follows:  

 

𝑙(𝜆) =

{
 

 
𝜋2𝑘𝛼𝑖𝑓|𝜆| > 𝜋

|𝜆|2𝑘𝛼|𝑠𝑖𝑛
𝜆

2
|2𝑘         𝑖𝑓 0 < |𝜆| ≤ 𝜋

22𝑘𝛼                              𝑖𝑓       𝜆 = 0.

 

 

The function 𝜓(𝑁1,𝑁2) can be written as: 

 

𝜓(𝑁1,𝑁2) = 

(𝑛1𝑛2)
−2𝑘𝛼∫

𝜋

−𝜋

∫
𝜋

−𝜋

|
sin

𝑛1𝜆1

2

sin
𝜆1

2

|

2𝑘𝛼

sin2𝑘𝛼 (
𝜆1
2
) |
sin

𝑛2𝜆2

2

sin
𝜆2

2

|

2𝑘𝛼

sin2𝑘𝛼 (
𝜆2
2
)ℎ(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 + 

(𝑛1𝑛2)
−2𝑘𝛼∑

𝑞

𝑖=1

𝑐𝑖 |
sin [

𝑛1𝑤𝑖,1

2
]

sin [
𝑤𝑖,1

2
]

sin [
𝑛1𝑤𝑖,2

2
]

sin [
𝑤𝑖,2

2
]
|

2𝑘𝛼

 

 

where ℎ(𝜆1, 𝜆2) = 𝑙(𝜆1)𝑙(𝜆2)|𝜆1𝜆2|
𝛽−2𝑘𝛼𝑔(𝜆1, 𝜆2). The function ℎ is integrable on [−𝜋, 𝜋]2. 

Thus 
 

∫
𝜋

−𝜋

∫
𝜋

−𝜋

ℎ(𝜆1, 𝜆2)𝑑𝜆12𝑑𝜆 ≤ sup(𝑔)∫
𝜋

−𝜋

∫
𝜋

−𝜋

𝑙(𝜆1)𝑙(𝜆2)|𝜆1𝜆2|
𝛽−2𝑘𝛼𝑑𝜆1𝑑𝜆2. 

 

Using the inequality (6), we obtain 𝑙(𝜆1) ≤ 𝜋
2𝑘𝛼 and 𝑙(𝜆2) ≤ 𝜋

2𝑘𝛼. Thus  
 

∫
𝜋

−𝜋

∫
𝜋

−𝜋

ℎ(𝜆1, 𝜆2)𝑑𝜆1𝑑𝜆2 ≤ 4𝜋
4𝑘𝛼sup(𝑔)∫

𝜋

0

∫
𝜋

0

(𝜆1𝜆2)
𝛽−2𝑘𝛼𝑑𝜆1𝑑𝜆2. 

 

Since 𝛽 > 2𝑘𝛼 − 1, the function ℎ is integrable. From (3) and the theorem 1, the result is 
obtained. 
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3. NUMERICAL STUDIES 
 
We give the simulation of the studied process:  

 

𝑍𝑛1,𝑛2 = ∫
𝜋

−𝜋 ∫
𝜋

−𝜋
𝑒𝑖(𝑛1𝜆1+𝑛2𝜆2)𝑑𝜉(𝜆1, 𝜆2), (7) 

 

where 1 < 𝛼 < 2 and 𝜉 is a complex symmetric 𝛼-stable measure on 𝑅 with independent and 

isotropic increments and with control measure 𝑚 such that 𝑑𝑚 = 𝜙(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2. 

 
For that, we use the series representations given by [30]). Therein the authors have shown that the 

process 𝑍 defined by (8) can be expressed as follows:  

 

𝑍𝑛1,𝑛2 = 𝐶𝛼(∫ 𝜙(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2)
1𝛼 ∑∞𝑘=1 𝜀𝑘Γ𝑘

−1𝛼𝑒𝑖(𝑛1𝑉1,𝑘+𝑛2𝑉2,𝑘)𝑒𝑖𝜃𝑘        (8) 

  

where   
 

    • 𝜀𝑘 is a sequence of i.i.d. random variables such as 𝑃[𝜀𝑘 = 0] = 𝑃[𝜀𝑘 = 1] =
1

2
,  

    • Γ𝑘 is a sequence of arrival times of Poisson process,  

    • (𝑉1,𝑘 , 𝑉2,𝑘) is a couple of sequence of i.i.d. random variables independent of 𝜀𝑘 and of Γ𝑘 

having the same joint distribution of control measure 𝑚, which has probability density 𝜙 

    • 𝜃𝑘 is a sequence of i.i.d. random variables that have the uniform distribution on [−𝜋, 𝜋], 
independent of 𝜀𝑘, 𝑉1,𝑘 , 𝑉2,𝑘 and  Γ𝑘.  

 

For the similation of𝑁1 and 𝑁2 values of  the process 𝑍𝑛1,𝑛2  where  

 

(𝑁1,𝑁2 = 101,501,1001,1501,2001), we generate:   
 

    • 2000 values of 𝜀𝑘 

    • 2000 values of Γ𝑘 

    • 2000 values of 𝑉𝑘 

    • 2000 values of 𝜃𝑘 

 

and calculate for all 0 ≤ 𝑛1 ≤ 𝑁1 and 0 ≤ 𝑛2 ≤ 𝑁2 
 𝑍𝑛1,𝑛2 = 𝐶𝛼(∫ 𝜙(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2)

1𝛼 ∑2000𝑘=1 𝜀𝑘Γ𝑘
−1𝛼𝑒𝑖(𝑛1𝑉1,𝑘+𝑛2𝑉2,𝑘)𝑒𝑖𝜃𝑘  

 

The spectral density is taken as 𝜙(𝑥1, 𝑥2) = |𝑥1𝑥2|
𝛽𝑒−|𝑥1|−|𝑥2| for 𝑥1, 𝑥2 ∈ [−𝜋, 𝜋] and 

𝜙(𝑥1, 𝑥2) = 0 otherwise and 𝛼 = 1,68 and 𝑘 = 4. The value of  𝛽 is taken so as to have two 

cases: 𝛽 greater than 2𝑘𝛼 − 1 and 𝛽 less than 2𝑘𝛼 − 1. Afterwards, we generate : 

 

𝑋𝑛1,𝑛2 = 𝑎 + 𝑍𝑛1,𝑛2  where 𝑎 is chosen equal to 45. 

 

We calculate the estimator 𝑎̂ given in (1) for different sizes of sample 𝑁1, 𝑁2 =
101,501,1001,1501,2001. The result is given in the following table: 
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𝟐𝒌𝜶 − 𝟏 = 𝟏𝟐.𝟒𝟒 𝜷 = 𝟎. 𝟓 𝜷 = 𝟑𝟎 

N1= N2=101 𝑎̂ = 30.4 𝑎̂ =37 

N1= N2=501 𝑎̂ = 34.7 𝑎̂ =48 

N1= N2=1001 𝑎̂ = 50.2 𝑎̂ =42.2 

N1= N2=1501 𝑎̂ =39.9 𝑎̂ =47.1 

N1= N2=1201 𝑎̂ =43.8 𝑎̂ =44.2 

 

We find that the estimator converges more and more to a (a=45) when the size of the sample 

increases. The approximation is more accurate when 𝛽 is larger than 2𝑘𝛼 − 1compared to the 

case where 𝛽 is smaller than 2𝑘𝛼 − 1. 

 

4. CONCLUSIONS 
 
This work presents an estimate of the constant error, which is added to the observation of the 

signal (SαS) when the spectral measurement is the sum of a continuous part and a few jumps 

(mixed measurement). The paper shows that the absence of the energy of signal at frequencies 

close to zero allows rapid convergence of the estimator. In other words, the energy at frequencies 
close to zero slows down and disturbs the convergence of our estimator. 

 

This work may have several applications where processes have high variability and are disturbed 
by constant noise. For instance: 

 

-  Dynamic images of an agricultural field taken by drones, to identify weeds. These images can 
have a great variance, in particular when the images are disturbed by climatic conditions. 

 

- The amount of certain microorganisms in the soil varies in a significant way that can be 

modelled by alpha stable random field. The measurement of microorganisms can be taken with a 
constant error and with some jumps when encountering rocks in the ground. 

 

The proposed estimator depends on a smoothing parameter. Among the perspectives of this work 
is to find the optimal value of this parameter having the best convergence. 
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