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This work studies the estimation of spectral density for random field (two-dimensional signal) when the spectral measure have certain mixture and the process is observed with a constant error. The objective of this paper is to give an estimator of the constant error by using the Jackson polynomial kernel. We show that the rate of convergence depends of size of sample and the behaviours of the spectral density at origin. Indeed the estimator converges rapidly when the spectral density is null at origin. Few long memory signals are taken here as example.

INTRODUCTION

This work considers the class of symmetric alpha stable signals which are known as signals having infinite energy. These signals have been developed in recent decades by several authors, including [START_REF] Cambanis | Complex Symmetric stable variables and processes[END_REF]- [START_REF] Bibalan | Characteristic function based parameter estimation of skewed alpha-stable distribution: An analytical approach[END_REF], to name a few.

The Gaussian density distribution remains a particular cases of alpha-stable distribution (α =2).

Alpha stable distribution is a better model for signals that are impulsive in nature. It is adapted for signals that their variance is large and the Gaussian can not usedfor modelling this process. Signals in this class contain high-pitched bursts or occasional spikes.

Symmetric alpha stable signals are used for modeling many phenomenons in several fields: : physics, biology, electronic and electrical engineering, hydrology, economies, communications and radar applications and signal image processing,…see [START_REF] Gogineni | Fractional-Order Correntropy Adaptive Filters for Distributed Processing of α-Stable Signals[END_REF]- [START_REF] Gao | Impulsive gear fault diagnosis using adaptive Morlet wavelet filter based on alpha-stable distribution and kurtogram[END_REF].

In this work, we consider a symmetric 𝛼 stable random field 𝑍 = {𝑍 (𝑛 1 ,𝑛 2 ) : (𝑛 1 , 𝑛 2 ) ∈ 𝑍 2 } having the following integral representation:

𝑍 (𝑛 1 ,𝑛 2 ) = ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 exp[𝑖(𝑛 1 𝜆 1 + 𝑛 2 𝜆 2 )]𝑑𝜉(𝜆 1 , 𝜆 2 )
where 1 < 𝛼 < 2 and 𝜉 is a complex valued symmetric 𝛼-stable random measure on 𝑅 2 with independent and isotropic increments. The measure defined by 𝑚(𝐴𝑥𝐵) = |𝜉(𝐴𝑥𝐵)| 𝛼 𝛼 (see [START_REF] Masry | Spectral density estimation for stationary stable processes[END_REF]) is called "control" measure or spectral measure. The case where this measure is absolutely continuous with respect to Lebegue measure: 𝑑𝑚(𝑥 1 , 𝑥 2 ) = 𝜙(𝑥 1 , 𝑥 2 )𝑑𝑥 1 𝑑𝑥 2 is considered in [START_REF] Masry | Spectral density estimation for stationary stable processes[END_REF], [START_REF] Sabre | Spectral density estimate for stationary symmetric stable random field[END_REF], [START_REF] Sabre | Spectral density estimate for alpha-stable p-adic processes[END_REF]. And the function 𝜙called the spectral density of $Z$ was already estimated by [START_REF] Masry | Spectral density estimation for stationary stable processes[END_REF], when the time of the process is continuous, by [START_REF] Sabre | Spectral density estimate for stationary symmetric stable random field[END_REF] when the time of the process is discrete and by [START_REF] Sabre | Spectral density estimate for alpha-stable p-adic processes[END_REF] when the time of the process is p-adic. This paper considersa case, often encountred in pratice namely when we observe this random field withan unknown constant error:𝑋 (𝑛 1 ,𝑛 2 ) = 𝑎(𝑛 1 , 𝑛 2 ) + 𝑍 (𝑛 1 ,𝑛 2 ) Thus, the signal observed is 𝑋 (𝑛 1 ,𝑛 2 ) instead of the signal 𝑍 (𝑛 1 ,𝑛 2 ) alone.We also consider a more general case: when the spectral measure is the sum of an absolutely continuous measure with respect to Lebesgue measure, a discrete measure and a finite umber of ebsolutely continous measure on several lines:

𝑑𝑚 = 𝜙(𝑥 1 , 𝑥 2 )𝑑𝑥 1 𝑑𝑥 2 + ∑ 𝑞 𝑖=1 𝑐 𝑖 𝛿 (𝑤 (1,𝑖) ,𝑤 (2,𝑖) ) + ∑ 𝑞 𝑖=1 𝜑 𝑘 𝛿 (𝑢 1 , 𝑎 k 𝑢 1 +𝑏 k )
where 𝛿 is a Dirac measure, 𝜙 and 𝜑 𝑘 are non-negative integrable and bounded functions. 𝑐 𝑖 is unknown positive real number and 𝑤 (1,𝑖) ,𝑤 (2,𝑖) , 𝑎 k and 𝑏 k are unknown real numbers. Assume that 𝑤 (1,𝑖) ≠ 0 and 𝑤 (2,𝑖) ≠ 0 . The estimation of the constant error when the process have one dimension is given in [START_REF] Sabre | Estimation of Additive Error in Mixed Spectra for Stable Precesses[END_REF]. This mixed measure is encountered when, for example, the resistance of the soil is measured on agricultural land which has a continuous random measurement and when pebbles are randomly encountered the measurement reaches jumps which represents the discrete measure.When the measures are made in places where the passage of tractors is frequent. The rate of convergence will be studied particularly for spectral densities which are zero at the origin as𝜙(𝜆

1 , 𝜆 2 ) = sin 2𝑘𝛼 ( 𝜆 1 2 ) sin 2𝑘𝛼 ( 𝜆 2 2 ) 𝑔(𝜆 1 , 𝜆 2 ) and 𝜙(𝜆 1 , 𝜆 2 ) = |𝜆 1 𝜆 2 | 𝛽 𝑔(𝜆 1 , 𝜆 2 ).
We show that the convergence speed is much faster depending on the value of the parameter of 𝛽.

This paper is organized as follows: The second section gives some proprties of Jackson polynomial kernel and an estimator of the constant 𝑎. We show that the estimator converges to 𝑎in probability and converges in 𝐿 𝑝 (𝑝 < 𝛼). Since, we assume that the spectral density of 𝑍 is vanishing at origin,we show that theestimator converges more rapidly to a in accordance with the values of 𝛽. The third sectionconsists in illustrating the results found through a numerical data.The last section, contains the concluding remarks, the potential applications and the open research problems.

ESTIMATION OF THE CONSTANT

This paper considers a (S𝛼S) process where its spectral representation is :

𝑍 (𝑛 1 ,𝑛 2 ) = ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 𝑒 𝑖(𝑛 1 𝜆 1 +𝑛 2 𝜆 2 ) 𝑑𝜉(𝜆 1 , 𝜆 2 ),
where 𝜉 is a isotropic symmetric 𝛼-stable with independent increments.The measure defined by:

𝑚(]𝑠 1 , 𝑡 1 ]]𝑠 2 , 𝑡 2 ]) = |𝜉(𝑠 1 , 𝑡 1 , ) -𝜉(𝑠 2 , 𝑡 2 )| 𝛼
𝛼 is Lebesgue-Stiel measure called the spectral measure (see [START_REF] Cambanis | Complex Symmetric stable variables and processes[END_REF], [START_REF] Masry | Spectral density estimation for stationary stable processes[END_REF]) When 𝑚 is absolutely continuous 𝑑𝜇 = 𝜙(𝑥 1 , 𝑥 2 )𝑑𝑥 1 𝑑𝑥 2 , the function 𝜙 is called the spectral density of the process 𝑍.

Let 𝑍 (𝑛1,𝑛2) observations of the process 𝑍: (𝑍 (𝑛 1 ,𝑛 2 ) ) with 0 ≤ 𝑛 1 ≤ 𝑁 1 -1 and 0 ≤ 𝑛 2 ≤ 𝑁 2 -1, where 𝑁 1 , 𝑁 2 satisfy:

𝑁 1 -1 = 2𝑘(𝑛 1 -1) and 𝑁 2 -1 = 2𝑘(𝑛 2 -1) with 𝑛 1 , 𝑛 2 ∈ 𝑁 𝑘 ∈ 𝑁 ∪ { 1 2 }if 𝑘 = 1 2 then𝑛 1 = 2𝑛′ 1 -1, 𝑛′ 1 ∈ 𝑁 and 𝑛 2 = 2𝑛′ 2 -1, 𝑛′ 2 ∈ 𝑁.
The Jackson polynomial kernel is defined in [START_REF] Demesh | Application of the polynomial kernels to the estimation of the spectra of discrete stable stationary processes[END_REF], [START_REF] Sabre | Estimation de la densité de la mesure spectrale mixte pour un processus symétrique stable strictement stationnaire[END_REF] and [START_REF] Sabre | Spectral density estimate for stationary symmetric stable random field[END_REF], as follows: )

|𝐻 𝑁 (𝜆 1 , 𝜆 2 )| 𝛼 = |𝐴 (𝑁 1 ,𝑁2) 𝐻 (𝑁
) 2𝑘 𝑑𝜆 1 𝑑𝜆 2
In addition, we have

𝐴 (𝑁 1 ,𝑁 2 ) = (𝐵 𝛼,𝑁 1 ,𝑁 2 ) -1 𝛼 with 𝐵 𝛼,𝑁 1 ,𝑁 2 = ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 |𝐻 (𝑁 1 ,𝑁 2 ) (𝜆 1 , 𝜆 2 )| 𝛼 𝑑𝜆 1 𝑑𝜆 2 .
The estimator:

In this paper, we constructthe following estimate of the error 𝑎:

𝑎 ̂= 𝐴 (𝑁 1 ,𝑁2)
𝐻 𝑁 (0,0) ∑ 𝑘((𝑛 1 -1) 𝑛 ′ =-𝑘(𝑛 1 -1) ∑ 𝑘((𝑛 2 -1) 𝑛 ′′ =-𝑘(𝑛 2 -1) 𝑋(𝑛′ + 𝑘(𝑛 1 -1, 𝑛′′ + 𝑘(𝑛 2 -1)).( 1)

We start by showing that the estimator 𝑎 ̂converges to a in probability and converges in 𝐿 𝑝 (𝑝 < 𝛼). Then we show that theses convergences are faster for signals whose spectral density vanishes at the origin. This means that the etimator is slowed down by the disturbance of the energy at the origin.To lighten the formulas and make the paper easy to read, we delete in the rest of this paper the last term of the expression of the spectral measure.Thus, henceforth the considered spectral measure becomes:

𝑑𝑚 = 𝜙(𝑥 1 , 𝑥 2 )𝑑𝑥 1 𝑑𝑥 2 + ∑ 𝑞 𝑖=1 𝑐 𝑖 𝛿 (𝑤 (1,𝑖) ,𝑤 (2,𝑖) )
Citing nowtwo lemmas given propertiesof Jackson polynomial kernel that we will use later. Their proofs are given [START_REF] Sabre | Spectral density estimate for stationary symmetric stable random field[END_REF], [START_REF] Demesh | Application of the polynomial kernels to the estimation of the spectra of discrete stable stationary processes[END_REF].

Lemma 1

The function𝐻 (𝑁 1 ,𝑁 2 ) (𝜆 1 , 𝜆 2 ) can be written as follows:

𝐻 (𝑁 1 ,𝑁 2 ) (𝜆 1 , 𝜆 2 ) = ∑ 𝑘(𝑛 1 -1) 𝑚 1 =-𝑘(𝑛 1 -1) ∑ 𝑘(𝑛 2 -1) 𝑚 2 =-𝑘(𝑛 2 -1) ℎ 𝑘 ( 𝑚 1 𝑛 1 ) 𝑐𝑜𝑠(𝑚 1 𝜆 1 )ℎ 𝑘 ( 𝑚 2 𝑛 2 ) 𝑐𝑜𝑠(𝑚 1 𝜆 1 ),
where ℎ 𝑘 is a even positive function.

Lemma 2.

Let

𝐵′ 𝛼,𝑁 1 ,𝑁 2 = ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 | 𝑠𝑖𝑛 𝑛 1 𝜆 1 2 𝑠𝑖𝑛 𝜆 1 2 | 2𝑘𝛼 | 𝑠𝑖𝑛 𝑛 2 𝜆 2 2 𝑠𝑖𝑛 𝜆 2 2 | 2𝑘𝛼 𝑑𝜆 1 𝑑𝜆 2 and 𝐽 𝑁 1 ,𝑁 2 ,𝛼 = ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 |(𝑢 1 , 𝑢 2 )| 𝛾 |𝐻 𝑁 1 ,𝑁 2 (𝜆 1 , 𝜆 2 )| 𝛼 𝑑𝜆 1 𝑑𝜆 2 ,
where 𝛾 ∈]0,2]. Then we have the following inqualities,

𝐵 ′ 𝛼,𝑁 1 ,𝑁 2 ( ≥ (2𝜋 ( 2 𝜋 ) 2𝑘𝛼 ) 2 𝑛 1 2𝑘𝛼-1 𝑛 2 2𝑘𝛼-1 𝑖𝑓 0 < 𝛼 < 2 ≤ ( 4𝜋𝑘𝛼 2𝑘𝛼 -1 ) 2 𝑛 1 2𝑘𝛼-1 𝑛 2 2𝑘𝛼-1 𝑖𝑓 1 2𝑘 < 𝛼 < 2
and

𝐽 𝑁 1 ,𝑁 2 ,𝛼 ≤ ( 𝜋 𝛾+2𝑘𝛼 2 2𝑘𝛼 (𝛾 -2𝑘𝛼) ) 2 1 𝑛 1 2𝑘𝛼-1 1 𝑛 2 2𝑘𝛼-1 𝑖𝑓 1 2𝑘 < 𝛼 < 𝛾 + 1 2𝑘 , 𝐽 𝑁 1 ,𝑁 2 ,𝛼 ≤ ( 2𝑘𝛼𝜋 𝛾+2𝑘𝛼 2 2𝑘𝛼 (𝛾 + 1)(2𝑘𝛼 -𝛾 -1) ) 2 1 (𝑛 1 𝑛 2 ) 𝛾 𝑖𝑓 𝛾 + 1 2𝑘 < 𝛼 < 2.

Theorem 1

Let p a real number such that 0 < 𝑝 < 𝛼. We have

|𝑎 ̂-𝑎| 𝑝 = 𝑂 ( 1 
(𝑛 1 𝑛 2 ) 𝑝 𝛼
)

Proof Using the spectral representation of the process, we obtain

𝑎 ̂= 𝐴 (𝑁 1 ,𝑁 2 ) 𝐻 (𝑁 1 ,𝑁2) (0,0) ∑ 𝑘((𝑛 1 -1) 𝑛 ′ =-𝑘(𝑛 1 -1) ∑ 𝑘((𝑛 2 -1) 𝑛 ′′ =-𝑘(𝑛 2 -1) ℎ 𝑘 ( 𝑛 ′ 𝑛 1 , 𝑛 ′′ 𝑛 2 ) ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 𝑒𝑥𝑝[𝑖([𝑛 ′ + 𝑘(𝑛 1 -1)]𝜆 1 )] 𝑒𝑥𝑝[𝑖([𝑛 ′′ + 𝑘(𝑛 2 -1)]𝜆 2 )]𝑑𝜉(𝜆 1 , 𝜆 2 ) + 𝑎
From [START_REF] Cambanis | Complex Symmetric stable variables and processes[END_REF], we can writte the characteristic function of (𝑎 ̂-𝑎):

𝐸exp[𝑖ℜ𝑒𝑟(𝑎 ̂-𝑎)] = 𝑒𝑥𝑝 -𝐶 𝛼 |𝑟| 𝛼 ∫ 𝜋 -𝜋 | 𝐴 (𝑁 1 ,𝑁 2 ) 𝐻 (𝑁 1 ,𝑁 2 ) (0,0) ∑ 𝑘((𝑛 1 -1) 𝑛′=-𝑘(𝑛 1 -1) ∑ 𝑘((𝑛 2 -1) 𝑛′′=-𝑘(𝑛 2 -1) ℎ 𝑘 ( 𝑛′ 𝑛 1 , 𝑛′′ 𝑛 2 ) 𝑒 𝑖𝑛′𝜆 1 𝑒 𝑖𝑛′′𝜆 2 | 𝛼 𝑑𝜉(𝜆 1 , 𝜆 2 )
where 𝑟 = 𝑟 

1 |𝐻 (𝑁 1 ,𝑁 2 ) (0,0)| 𝛼 = 𝐵′ 𝛼,𝑁 1 ,𝑁 2 𝑛 1 2𝑘𝛼 𝑛 2 2𝑘𝛼 = 𝑂 ( 1 𝑛 1 𝑛 2 ) (2) 
Therefore 𝜓 𝑁 1 ,𝑁 2 ,1 converges to 0.

𝜓 𝑁 1 ,𝑁 2 ,2 ≤ ∑ 𝑞 𝑖=1 𝑐 𝑖 𝐵′ 𝛼,𝑁 1 ,𝑁 2 1 |sin [ 𝑤 𝑖,1 2 ] sin [ 𝑤 𝑖,2 2 ]| 2𝑘𝛼 𝐵′ 𝛼,𝑁 1 ,𝑁 2 𝑛 1 2𝑘𝛼 𝑛 2 2𝑘𝛼 . Therefore 𝜓 𝑁 1 ,𝑁 2 ,2 = 𝑂 ( 1 𝑛 1 2𝑘𝛼 𝑛 2 2𝑘𝛼 ). Thus 𝜓 (𝑁 1 ,𝑁 2 ) = 𝑂 ( 1 𝑛 1 𝑛 2 ).
Consequently, the characteristic function of 𝑎 ̂-𝑎 converges to 1 when 𝑁 1 and 𝑁 2 tend to infinity. We deduce that𝑎 ̂ convergences to 𝑎in probability.

In order to study the convergence in 𝐿 𝑝 where 0 < 𝑝 < 𝛼, we put

𝐷 𝑝 = ℜ𝑒 ∫ ∞ -∞ ∫ 𝜋 4 - 𝜋 4 
1 -𝑒 𝑖𝑟cos𝜃 |𝑟| 1+𝑝 𝑑𝑟𝑑𝜃.

Assuming now 𝑟 = 𝜀𝑟′, 𝜃 = 𝜏′ -𝜏 0

𝐷 𝑝 = ℜ𝑒 ∫ ∞ -∞ ∫ 𝜋 4 +𝜏 0 - 𝜋 4 +𝜏 0 1 -𝑒 𝑖𝜀𝑟′cos(𝜏′-𝜏 0 ) |𝜀| 1+𝑝 |𝑟′| 1+𝑝 𝜀𝑑𝑟′𝜏′ 𝐷 𝑝 |𝑥| 𝑝 = ℜ𝑒 ∫ ∞ 0 ∫ 𝜋 4 +𝜏 0 - 𝜋 4 +𝜏 0 1 -𝑒 𝑖ℜ𝑒(𝑡̅ 𝑥) | 𝑡| 1+𝑝 𝑑|𝑡|𝑑𝜃′ -ℜ𝑒 ∫ 0 -∞ ∫ 𝜋 4 +𝜏 0 - 𝜋 4 +𝜏 0 1 -𝑒 𝑖ℜ𝑒(𝑡̅ 𝑥) |𝑡| 1+𝑝 𝑑|𝑡|𝑑𝜃′.
Let us substitute 𝑥 by 𝑎 ̂-𝑎, we have

𝐷 𝑝 𝐸|𝑎 ̂-𝑎| 𝑝 = ∫ ∞ -∞ ∫ 𝜋 4 +𝜏 0 - 𝜋 4 +𝜏 0 1 -𝑒 -𝐶 𝛼 |𝑡| 𝛼 𝜓 (𝑁 1 ,𝑁 2 ) |𝑡| 1+𝑝 𝑑|𝑡|𝑑𝜃 ′ = 𝜋 2 ∫ ∞ -∞ 1 -𝑒 -𝐶 𝛼 |𝑡| 𝛼 𝜓 𝑁 |𝑡| 1+𝑝 𝑑𝑡.
Let 𝑢 = 𝑡[𝜓 (𝑁 1 ,𝑁 2 ) ] 1𝛼 and using (2), we obtain 𝑑𝑢.

Improvement of the rate of convergence

We take the case where the spectral density vanishes at the origin. The following theorems will show that the speed of convergence is better.

Theorem 2

Assume that the spectral density is satisfying:

𝜙(𝜆 1 , 𝜆 2 ) = |𝜆 1 | 𝛽 |𝜆 2 | 𝛽 𝑔(𝜆, 1 , 𝜆 2 )
where 𝛽 ∈]0,2𝑘𝛼 -1[, 𝜆 1 , 𝜆 2 ∈ [-𝜋, 𝜋] and 𝑔(𝜆 1 , 𝜆 2 ) is a bounded function on [-𝜋, 𝜋] 2 , continuous in neighborhood of (0,0) and 𝑔(0,0) = 0. Then

2 8𝑘𝑝 𝐿 ≤ 𝑙𝑖𝑚 𝑁 1 ,𝑁 2 →∞ (𝑛 1 𝑛 2 ) 𝑝(𝛽+1) 𝛼 𝐸|𝑎 ̂-𝑎| 𝑝 ≤ 𝜋 8𝑘𝑝 𝐿,
where 𝐿 is the following constant:

𝐿 = 𝜋 2𝐶 𝑝,𝛼 [𝑔(0,0) ∫ ∞ -∞ |𝑠𝑖𝑛 𝑣 2 | 2𝑘𝛼 |𝑣| 2𝑘𝛼-𝛽 𝑑𝑣] 2𝑝 𝛼
.

Proof:

From (2), the function 𝜓 (𝑁 1 ,𝑁 2 ) can be written as:

𝜓 (𝑁 1 ,𝑁 2 ) = (𝑛 1 𝑛 2 ) -2𝑘𝛼 ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 | sin 𝑛 1 𝜆 1 2 sin 𝜆 1 2 | 2𝑘𝛼 | sin 𝑛 2 𝜆 2 2 sin 𝜆 2 2 | 2𝑘𝛼 |𝜆 1 𝜆 2 | 𝛽 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 +(𝑛 1 𝑛 2 ) -2𝑘𝛼 ∑ 𝑞 𝑖=1 𝑐 𝑖 | sin[ 𝑛 1 𝑤 𝑖,1 2 ] sin[ 𝑤 𝑖,1 2 ] sin[ 𝑛 2 𝑤 𝑖,2 2 ] sin[ 𝑤 𝑖,2 2 ] | 2𝑘𝛼
Using the following inequality:

|sin𝑥2| ≥ 𝑥𝜋 0 ≤ 𝑥 ≤ 𝜋, (4) 
we maximize 𝜓 (𝑁 1 ,𝑁 2 ) as follows:

𝜓 (𝑁 1 ,𝑁 2 ) ≤ (𝜋 4𝑘𝛼 ) 2 (𝑛 1 𝑛 2 ) -2𝑘𝛼 ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 |sin 𝑛 1 𝜆 1 2 | 2𝑘𝛼 |𝜆 1 | 2𝑘𝛼-𝛽 |sin 𝑛 2 𝜆 2 2 | 2𝑘𝛼 |𝜆 2 | 2𝑘𝛼-𝛽 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 +(𝑛 1 𝑛 2 ) -2𝑘𝛼 ∑ 𝑞 𝑖=1 𝑐 𝑖 | 1 sin[ 𝑤 𝑖,1 2 ] 1 sin[ 𝑤 𝑖,2 2 ] | 2𝑘𝛼 .
Putting 𝑛 1 𝜆 1 = 𝑢 1 and 𝑛 2 𝜆 2 = 𝑢 2 , we have

𝜓 (𝑁 1 ,𝑁 2 ) ≤ (𝜋 4𝑘𝛼 ) 2 (𝑛 1 𝑛 2 ) -1-𝛽 ∫ ∞ -∞ |sin 𝑢 1 2 | 2𝑘𝛼 |𝑢 1 | 2𝑘𝛼-𝛽 |sin 𝑢 2 2 | 2𝑘𝛼 |𝑢 2 | 2𝑘𝛼-𝛽 𝑔 ( 𝑢 1 𝑛 1 , 𝑢 2 𝑛 2 ) 𝑑𝑢 1 𝑑𝑢 2 + (𝑛 1 𝑛 2 ) -2𝑘𝛼+1+𝛽 (𝜋 4𝑘𝛼 ) 2 ∑ 𝑞 𝑖=1 𝑐 𝑖 | 1 sin[ 𝑤 𝑖,1 2 ] 1 sin[ 𝑤 𝑖,2 2 ] | 2𝑘𝛼 .
FromLemma 2, andthe theorem of Lebesgue's dominated convergence we obtain that:

lim 𝑁 1 ,𝑁 2 →∞ (𝑛 1 𝑛 2 ) 𝑝(𝛽+1)𝛼 (𝜓 (𝑁 1 ,𝑁 2 ) ) 𝑝𝛼 ≤ (𝜋 4𝑘𝑝 (𝑔(0,0) ∫ +∞ -∞ |sin𝑢2| 2𝑘𝛼 |𝑢| 2𝑘𝛼-𝛽 𝑑𝑢) 𝑝𝛼 ) 2 .
Thus 𝜓 (𝑁 1 ,𝑁 2 ) converges to zero.Using the following inequality

|sin𝑥| ≤ |𝑥| ∀𝑥 ∈ [-𝜋, 𝜋], (5) 
we obtain: .

𝜓 (𝑁 1 ,𝑁 2 ) ≥ 2 8𝑘𝛼 (𝑛 1 𝑛 2 ) -2𝑘𝛼 ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 |sin 𝑛 1 𝜆 1 2 | 2𝑘𝛼 |𝜆 1 | 2𝑘𝛼-𝛽 |sin 𝑛11𝜆 2 2 | 2𝑘𝛼 |𝜆 2 | 2𝑘𝛼-𝛽 𝑔(𝜆
Since 𝑅 𝑛 converges to zero, the equality (5) gives

lim 𝑁 1 ,𝑁 2 →∞ (𝑛 1 𝑛 2 ) 𝑝(𝛽+1) 𝛼 (𝜓 (𝑁 1 ,𝑁 2 ) ) 𝑝 𝛼 ≥ 2 8𝑘𝑝 (𝑔(0,0) ∫ +∞ -∞ |sin ( 𝑢 2 )| 2𝑘𝛼 /|𝑢| 2𝑘𝛼-𝛽 𝑑𝑢) 2𝑝/𝛼
. We arrive at the result of this theorem and this because of equality (3).

Theorem 3

Assuming that the spectral density satisfies : ] | 2𝑘𝛼 .

𝜙(𝜆
To minimize ψ_((N_1,N_2)) , using the proprities of sinus we obtain

𝜓 (𝑁 1 ,𝑁 2 ) ≥ (𝑛 1 𝑛 2 ) -2𝑘𝛼 ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 [(sin 𝑛 1 𝜆 1 2 sin 𝑛 2 𝜆 2 2 ) 2 ] [𝑘𝛼]+1 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 +(𝑛 1 𝑛 2 ) -2𝑘𝛼 ∑ 𝑞 𝑖=1 𝑐 𝑖 | sin[ 𝑛 1 𝑤 𝑖,1 2 ] sin[ 𝑤 𝑖,1 2 ] sin[ 𝑛 1 𝑤 𝑖,2 2 ] sin[ 𝑤 𝑖,2 2 ] | 2𝑘𝛼
where [𝑘𝛼] represents the integer part of 𝑘𝛼, we obtain

𝜓 (𝑁 1 ,𝑁 2 ) ≥ (𝑛 1 𝑛 2 ) -2𝑘𝛼 ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 [cos 𝑛 1 𝜆 1 -𝑛 2 𝜆 2 2 -cos 𝑛 1 𝜆 1 + 𝑛 2 𝜆 2 2 ] 2[𝑘𝛼]+2 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 +(𝑛 1 𝑛 2 ) -2𝑘𝛼 ∑ 𝑞 𝑖=1 𝑐 𝑖 | sin[ 𝑛 1 𝑤 𝑖,1 2 ] sin[ 𝑤 𝑖,1 2 ] sin[ 𝑛 1 𝑤 𝑖,2 2 ] sin[ 𝑤 𝑖,2 2 ] | 2𝑘𝛼
Using the binomial formula we have:

[cos 𝑛 1 𝜆 1 -𝑛 2 𝜆 2 2 -cos 𝑛 1 𝜆 1 + 𝑛 2 𝜆 2 2 ] 2[𝑘𝛼]+2 = ∑ 2[𝑘𝛼]+2 𝑟=1 𝐶 2[𝑘𝛼]+2 𝑟 (-1) 𝑟 (cos 𝑟 𝑛 1 𝜆 1 -𝑛 2 𝜆 2 2 cos (2[𝑘𝛼]+2-𝑟) 𝑛 1 𝜆 1 +𝑛 2 𝜆 2 2 )
Using again the binomial formula, we obtain:

cos 𝑟 (𝑎) = (𝑒 𝑎 + 𝑒 -𝑖𝑎 2) 𝑟 = 12 𝑟 ∑ 𝑟 𝑗=0
𝐶 𝑟 𝑗 𝑒 𝑖𝑗𝑎 𝑒 -𝑖(𝑟-𝑗)𝑎 .

Hence

[cos 𝑛 1 𝜆 1 -𝑛 2 𝜆 2 2 -cos 𝑛 1 𝜆 1 + 𝑛 2 𝜆 2 2 ] 2[𝑘𝛼]+2 = ∑ 2[𝑘𝛼]+2 𝑟=1 𝐶 2[𝑘𝛼]+2 𝑟 (-1) 𝑟 ( 1 2 𝑟 ∑ 𝑟 𝑗=0 𝐶 𝑟 𝑗 𝑒 𝑖𝑗 𝑛 1 𝜆 1 -𝑛 2 𝜆 2 2 𝑒 -𝑖(𝑟-𝑗) 𝑛 1 𝜆 1 +𝑛 2 𝜆 2 2 ) [cos 𝑛 1 𝜆 1 -𝑛 2 𝜆 2 2 -cos 𝑛 1 𝜆 1 + 𝑛 2 𝜆 2 2 ] 2[𝑘𝛼]+2 = ∑ 2[𝑘𝛼]+2 𝑟=1 𝐶 2[𝑘𝛼]+2 𝑟 (-1) 𝑟 𝑒 -𝑖(𝑟) 𝑛 2 𝜆 2 2 (12 𝑟 ∑ 𝑟 𝑗=0 𝐶 𝑟 𝑗 𝑒 𝑖(2𝑗𝑟) 𝑛 1 𝜆 1 2 ) ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 [cos 𝑛 1 𝜆 1 -𝑛 2 𝜆 2 2 -cos 𝑛 1 𝜆 1 + 𝑛 2 𝜆 2 2 ] 2[𝑘𝛼]+2 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 = ∑ 2[𝑘𝛼]+2 𝑟=1 𝐶 2[𝑘𝛼]+2 𝑟 (-1) 𝑟 ∫ 𝜋 -𝜋 𝑒 -𝑖(𝑟) 𝑛 2 𝜆 2 2 ( 1 2 𝑟 ∑ 𝑟 𝑗=0 𝐶 𝑟 𝑗 ∫ 𝜋 -𝜋 𝑒 𝑖(2𝑗𝑟) 𝑛 1 𝜆 1 2 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 ) 𝑑𝜆 2
The function 𝑔(. , 𝜆 2 ) being even for all 𝜆 2 ∈ [-𝜋, 𝜋], we have

∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 [cos 𝑛 1 𝜆 1 -𝑛 2 𝜆 2 2 -cos 𝑛 1 𝜆 1 + 𝑛 2 𝜆 2 2 ] 2[𝑘𝛼]+2 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 = ∑ 2[𝑘𝛼]+2 𝑟=1 𝐶 2[𝑘𝛼]+2 𝑟 (-1) 𝑟 ∫ 𝜋 -𝜋 𝑒 -𝑖(𝑟) 𝑛 2 𝜆 2 2 ( 1 2 𝑟 ∑ 𝑟 𝑗=0 𝐶 𝑟 𝑗 ∫ 𝜋 -𝜋 cos ((2𝑗𝑟) 𝑛 1 𝜆 1 2 ) 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 ) 𝑑𝜆 2
The function 𝑔(𝜆 1 , . ) being even for all 𝜆 1 ∈ [-𝜋, 𝜋], we have 

∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 [cos 𝑛 1 𝜆 1 -𝑛 2 𝜆 2 2 -cos 𝑛 1 𝜆 1 + 𝑛 2 𝜆 2 2 ] 2[𝑘𝛼]+2 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 = ∑ 2[𝑘𝛼]+2 𝑟=1 𝐶 2[𝑘𝛼]+2 𝑟 (-1) 𝑟 ∫ 𝜋 -𝜋 cos (-𝑖r 𝑛 2 𝜆 2 2 ) ( 1 2 𝑟 ∑ 𝑟 𝑗=0 𝐶 𝑟 𝑗 ∫ 𝜋 -𝜋 cos ((2𝑗𝑟) 𝑛 1 𝜆 1 2 ) 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 ) 𝑑𝜆 2 Since 1 2 𝑟 ∑ 𝑟 𝑗=0 𝐶 𝑟 𝑗 ∫ 𝜋 -𝜋 cos ((2𝑗𝑟) 𝑛 1 𝜆 1 2 ) 𝑔(𝜆

Proof:

Define the continuous function 𝑙 as follows:

𝑙(𝜆) = { 𝜋 2𝑘𝛼 𝑖𝑓|𝜆| > 𝜋 |𝜆| 2𝑘𝛼 |𝑠𝑖𝑛 𝜆 2 | 2𝑘 𝑖𝑓 0 < |𝜆| ≤ 𝜋 2 2𝑘𝛼 𝑖𝑓 𝜆 = 0.
The function 𝜓 (𝑁 1 ,𝑁 2 ) can be written as: Using the inequality (6), we obtain 𝑙(𝜆 1 ) ≤ 𝜋 2𝑘𝛼 and 𝑙(𝜆 2 ) ≤ 𝜋 2𝑘𝛼 . Thus

𝜓 (𝑁
∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 ℎ(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 ≤ 4𝜋 4𝑘𝛼 sup(𝑔) ∫ 𝜋 0 ∫ 𝜋 0 (𝜆 1 𝜆 2 ) 𝛽-2𝑘𝛼 𝑑𝜆 1 𝑑𝜆 2 .
Since 𝛽 > 2𝑘𝛼 -1, the function ℎ is integrable. From (3) and the theorem 1, the result is obtained.

NUMERICAL STUDIES

We give the simulation of the studied process:

𝑍 𝑛 1 ,𝑛 2 = ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 𝑒 𝑖(𝑛 1 𝜆 1 +𝑛 2 𝜆 2 ) 𝑑𝜉(𝜆 1 , 𝜆 2 ), (7) 
where 1 < 𝛼 < 2 and 𝜉 is a complex symmetric 𝛼-stable measure on 𝑅 with independent and isotropic increments and with control measure 𝑚 such that 𝑑𝑚 = 𝜙(𝑥 1 , 𝑥 2 )𝑑𝑥 1 𝑑𝑥 2 .

For that, we use the series representations given by [START_REF] Janicki | Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes[END_REF]). Therein the authors have shown that the process 𝑍 defined by ( 8) can be expressed as follows: We find that the estimator converges more and more to a (a=45) when the size of the sample increases. The approximation is more accurate when 𝛽 is larger than 2𝑘𝛼 -1compared to the case where 𝛽 is smaller than 2𝑘𝛼 -1.

𝑍 𝑛 1 ,𝑛 2 = 𝐶 𝛼 ( ∫ 𝜙(𝑥 1 , 𝑥 2 )𝑑𝑥 1 𝑑𝑥 2 ) 1𝛼 ∑ ∞ 𝑘=1 𝜀 𝑘 Γ 𝑘 -1𝛼 𝑒 𝑖(𝑛 1 𝑉

CONCLUSIONS

This work presents an estimate of the constant error, which is added to the observation of the signal (SαS) when the spectral measurement is the sum of a continuous part and a few jumps (mixed measurement). The paper shows that the absence of the energy of signal at frequencies close to zero allows rapid convergence of the estimator. In other words, the energy at frequencies close to zero slows down and disturbs the convergence of our estimator.

This work may have several applications where processes have high variability and are disturbed by constant noise. For instance:

-Dynamic images of an agricultural field taken by drones, to identify weeds. These images can have a great variance, in particular when the images are disturbed by climatic conditions.

-The amount of certain microorganisms in the soil varies in a significant way that can be modelled by alpha stable random field. The measurement of microorganisms can be taken with a constant error and with some jumps when encountering rocks in the ground.

The proposed estimator depends on a smoothing parameter. Among the perspectives of this work is to find the optimal value of this parameter having the best convergence.

  1 ,𝑁 2 ) (𝜆 1 , 𝜆 2 )|

										𝛼
	where 𝐻 (𝑁 1 ,𝑁 2 ) (𝜆 1 , 𝜆 2 ) =	1 𝑞 𝑘,𝑛 1 ,𝑛 2	( sin( sin( 𝑛 1 𝜆 1 2 𝜆 1 2 )	)	) 2𝑘	( sin( sin( 𝑛 2 𝜆 2 2 𝜆 2 2 )	)	) 2𝑘
	with𝑞 𝑘,𝑛 1 ,𝑛 2 = (	1 2𝜋	)	2	∫ -𝜋 ∫ 𝜋 -𝜋 ( 𝜋 sin( sin( 𝑛 1 𝜆 1 2 𝜆 1 2 )	)	) 2𝑘	sin( ( sin( 𝑛 2 𝜆 2 2 𝜆 2 2	)

  1 + 𝑖𝑟 2 . It is easy to show that: 𝐸exp[𝑖ℜ𝑒𝑟(𝑎 ̂-𝑎)] = exp(-𝐶 𝛼 |𝑟| 𝛼 𝜓 (𝑁 1 ,𝑁 2 ) ), where 𝜓 (𝑁 1 ,𝑁 2 ) = 𝜓 𝑁 1 ,𝑁 2 ,1 + 𝜓 𝑁 1 ,𝑁 2 ,2 with

	𝜓 𝑁 1 ,𝑁 2 ,2 = ∑ 𝑞 𝑖=1	𝑐 𝑖	|𝐻 (𝑁 1 ,𝑁 2 ) (𝑤 𝑖,1 , 𝑤 𝑖,2 )| |𝐻 (𝑁 1 ,𝑁 2 ) (0,0)| 𝛼	𝛼	.
	The function 𝜙 being bounded on [-𝜋, 𝜋] 2 and |𝐻 (𝑁 1 ,𝑁 2 ) (. , . )| 𝛼 being a kernel, it can be shown that ∫ 𝜋 -𝜋 ∫ 𝜋 -𝜋 |𝐻 (𝑁 1 ,𝑁 2 ) (𝜆 1 , 𝜆 2 )| 𝛼 𝜙(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 is converging to 𝜙(0,0). On the other hand,
	from lemma 2, we have:	
	𝜓 𝑁 1 ,𝑁 2 ,1 = ∫ 𝜋 -𝜋	∫ 𝜋 -𝜋	𝛼 𝛼 𝜙(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 𝑎𝑛𝑑 |𝐻 (𝑁 1 ,𝑁 2 ) (𝜆 1 , 𝜆 2 )| |𝐻 (𝑁 1 ,𝑁 2 ) (0,0)|

  1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 converges to ∫ 𝜋 -𝜋 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2uniformly in 𝜆 2 when 𝑟 is even and converges to 0 when 𝑟 is odd. Therefore

	Theorem 4					
	Assume that spectral density satisfies:
						𝜙(𝜆 1 𝜆 2 ) = |𝜆 1 | 𝛽 |𝜆 2 | 𝛽 𝑔(𝜆 1 , 𝜆 2 )
	where 𝑔 is real positive function and𝛽 > 2𝑘𝛼 -1. 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡 𝑔is bounded on [-𝜋, 𝜋] 2 .
	Then					
						𝑐𝑡𝑒 × 𝑅 ≤ 𝑙𝑖𝑚 𝑁 1 ,𝑁 2 →∞	(𝑛 1 𝑛 2 ) 2𝑘𝑝 𝐸|𝑎 ̂-𝑎| 𝑝 ≤ 𝑅
	where 𝑅 = (	𝜋 2𝐶 𝑝,𝛼	)	2	(∫ -𝜋 ∫ 𝜋 -𝜋 ( 𝜋 |𝑠𝑖𝑛 |𝜆 1 | 𝛽 𝜆 1 2 | 2𝑘𝛼	|𝜆 2 | 𝛽 |𝑠𝑖𝑛 𝜆 2 2 | 2𝑘𝛼 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 )
	∫ -𝜋 ∫ 𝜋 -𝜋 [cos 𝜋 Converges to ∑ 𝑛 1 𝜆 1 -𝑛 2 𝜆 2 2 2[𝑘𝛼]+2 2 𝑝=1 Since lim 𝑁 1 ,𝑁 2 →∞ (𝑛 1 𝑛 2 ) -2𝑘𝛼 ∑ 𝑞 -cos 𝑛 1 𝜆 1 +𝑛 2 𝜆 2 2 𝐶 2[𝑘𝛼]+2 2𝑝 12 2𝑝 ∫ 𝜋 ] -𝜋 ∫ 2[𝑘𝛼]+2 𝜋 -𝜋 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 . 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 𝑖=1 𝑐 𝑖 | sin[ 𝑛 1 𝑤 𝑖,1 2 ] sin[ 𝑤 𝑖,1 2 ] sin[ 𝑛 2 𝑤 𝑖,2 2 2𝑘𝛼 ] sin[ 𝑤 𝑖,2 2 ] | = 0. The similar arguments are
	used for showing that	lim 𝑁 1 ,𝑁 2 →∞ (𝜓 (𝑁 1 ,𝑁 2 ) )	𝑝 𝛼 (𝑛 1 𝑛 2 ) 2𝑘𝑝 ≥ 𝑐𝑡𝑒(∫ -𝜋 𝑔(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 ) 𝜋	𝑝𝛼 .	(6)

𝑝𝛼

.

  𝜆 1 , 𝜆 2 ) = 𝑙(𝜆 1 )𝑙(𝜆 2 )|𝜆 1 𝜆 2 | 𝛽-2𝑘𝛼 𝑔(𝜆 1 , 𝜆 2 ). The function ℎ is integrable on [-𝜋, 𝜋] 2 .

	1 ,𝑁 2 ) = (𝑛 1 𝑛 2 ) -2𝑘𝛼 ∫ 𝜋 -𝜋	∫ 𝜋 -𝜋	|	sin sin 𝑛 1 𝜆 1 2 𝜆 1 2	|	2𝑘𝛼	sin 2𝑘𝛼 (	𝜆 1 2	) |	sin sin 𝑛 2 𝜆 2 2 𝜆 2 2 (𝑛 1 𝑛 2 ) -2𝑘𝛼 ∑ 2𝑘𝛼 | sin 2𝑘𝛼 ( 𝑞 𝑖=1	𝜆 2 2 𝑐 𝑖 | ) ℎ(𝜆 1 , 𝜆 2 )𝑑𝜆 1 𝑑𝜆 2 + sin [ 𝑛 1 𝑤 𝑖,1 2 ] sin [ 𝑤 𝑖,1 2 ] sin [ 𝑛 1 𝑤 𝑖,2 2 sin [ 𝑤 𝑖,2 2 ]	]	|	2𝑘𝛼
	where ℎ(Thus													
	𝜋		𝜋									𝜋	𝜋	
	∫ -𝜋	∫ -𝜋	-𝜋 ℎ(𝜆 1 , 𝜆 2 )𝑑𝜆 1 2 𝑑𝜆 ≤ sup(𝑔) ∫	-𝜋 ∫	𝑙(𝜆 1 )𝑙(𝜆 2 )|𝜆 1 𝜆 2 | 𝛽-2𝑘𝛼 𝑑𝜆 1 𝑑𝜆 2 .

  1,𝑘 +𝑛 2 𝑉 2,𝑘 ) 𝑒 𝑖𝜃 𝑘 (8) where • 𝜀 𝑘 is a sequence of i.i.d. random variables such as 𝑃[𝜀 𝑘 = 0] = 𝑃[𝜀 𝑘 = 1] = 𝑘 is a sequence of arrival times of Poisson process, • (𝑉 1,𝑘 , 𝑉 2,𝑘 ) is a couple of sequence of i.i.d. random variables independent of 𝜀 𝑘 and of Γ 𝑘 having the same joint distribution of control measure 𝑚, which has probability density 𝜙 • 𝜃 𝑘 is a sequence of i.i.d. random variables that have the uniform distribution on [-𝜋, 𝜋], independent of 𝜀 𝑘 , 𝑉 1,𝑘 , 𝑉 2,𝑘 and Γ 𝑘 . For the similation of𝑁 1 and 𝑁 2 values of the process 𝑍 𝑛 1 ,𝑛 2 where (𝑁1, 𝑁 2 = 101,501,1001,1501,2001), we generate: • 2000 values of 𝜀 𝑘 • 2000 values of Γ 𝑘 • 2000 values of 𝑉 𝑘 • 2000 values of 𝜃 𝑘 and calculate for all 0 ≤ 𝑛 1 ≤ 𝑁 1 and 0 ≤ 𝑛 2 ≤ 𝑁 2 𝑍 𝑛 1 ,𝑛 2 = 𝐶 𝛼 ( ∫ 𝜙(𝑥 1 , 𝑥 2 )𝑑𝑥 1 𝑑𝑥 2 ) 1𝛼 ∑ 2000 𝑘=1 𝜀 𝑘 Γ 𝑘 -1𝛼 𝑒 𝑖(𝑛 1 𝑉 1,𝑘 +𝑛 2 𝑉 2,𝑘 ) 𝑒 𝑖𝜃 𝑘The spectral density is taken as𝜙(𝑥 1 , 𝑥 2 ) = |𝑥 1 𝑥 2 | 𝛽 𝑒 -|𝑥 1 |-|𝑥 2 | for 𝑥 1 , 𝑥 2 ∈ [-𝜋,𝜋] and 𝜙(𝑥 1 , 𝑥 2 ) = 0 otherwise and 𝛼 = 1,68 and 𝑘 = 4. The value of 𝛽 is taken so as to have two cases: 𝛽 greater than 2𝑘𝛼 -1 and 𝛽 less than 2𝑘𝛼 -1. Afterwards, we generate : 𝑋 𝑛 1 ,𝑛 2 = 𝑎 + 𝑍 𝑛 1 ,𝑛 2 where 𝑎 is chosen equal to 45. We calculate the estimator 𝑎 ̂ given in (1) for different sizes of sample 𝑁 1 , 𝑁 2 = 101,501,1001,1501,2001. The result is given in the following table:

	N1= N2=101 N1= N2=501 N1= N2=1001 N1= N2=1501 • Γ 𝟐𝒌𝜶 -𝟏 = 𝟏𝟐. 𝟒𝟒 N1= N2=1201	𝜷 = 𝟎. 𝟓 𝑎 ̂= 30.4 𝑎 ̂= 34.7 𝑎 ̂= 50.2 𝑎 ̂=39.9 𝑎 ̂=43.8	𝜷 = 𝟑𝟎 𝑎 ̂=37 𝑎 ̂=48 𝑎 ̂=42.2 𝑎 ̂=47.1 𝑎 ̂=44.2	1 2 ,
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