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Pixelwise Instance Segmentation Of Leaves In Dense
Foliage
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aAgroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne-Franche-Comté, 26 Bd Dr
Petitjean, F-21000 Dijon, France

Abstract

Detecting and identifying plants using image analysis is a key step for many ap-

plications in precision agriculture (from phenotyping to site specific weed man-

agement). Instance segmentation is usually carried on to detect entire plants.

However, the shape of the detected objects changes between individuals and

growth stages. A relevant approach to reduce these variations is to narrow

the detection on the leaf. Nevertheless, segmenting leaves is a difficult task,

when images contain mixes of plant species, and when individuals overlap, par-

ticularly in an uncontrolled outdoor environment. To leverage this issue, this

study based on recent Convolutional Neural Network mechanisms, proposes a

pixelwise instance segmentation to detect leaves in dense foliage environment.

It combines “deep contour aware” (to separate the inner of big leaves from

its edges), “Leaf Segmentation trough classification of edges” (to separate in-

stances with a specific inner edges) and “Pyramid CNN for Dense Leaves” (to

consider edges at different scales). But the segmentation output is also re-

fined using a Watershed and a method to compute optimized vegetation indices

(DeepIndices). The method is compared to others running the leaf segmenta-

tion challenge (provided by the International Network on Plant Phenotyping)
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and applied on an external dataset of Komatsuna plants. In addition, a new

multispectral dataset of 300 images of bean plants is introduced (with dense fo-

liage, individuals overlapping, mixes of species and natural lighting conditions).

The ground truth (e.g. the leaves boundaries) is defined by labelled polygons

and can be used to train and assess the performance of various algorithms ded-

icated to leaf detection or crop/weed classification. On the usual datasets, the

performances of the proposed method are similar to those of the usual methods

involved in the leaf segmentation challenges. On the new dataset, their results

are strongly better than those of the usual RCNN method. Remaining errors

are bad fusion between neighboring areas and over segmentation of multi-foliate

leaves. Structural analysis methods could be studied in order to overcome these

deficiencies.

Keywords: precision agriculture, remote sensing, leaf segmentation,

dense foliage, boundary detection, semantic segmentation, CNN,

multispectral
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1. Introduction1

In precision agriculture, one of the hardest tasks is the detection of crops2

and weeds by imagery. Imaging systems will play a significant role in the new3

generation of agriculture, from the genetic selection in phenotyping (Omari4

et al., 2020) to site-specific weed management (Louargant et al., 2017). They5

are also used to record frequently and accurately the plant growth, crop yield,6

leaf area, etc (Gée et al., 2021). These data are then used to quantify and7

evaluate the quality of production.8

In proximal detection, this work is mainly done at the plant level and gives9

important agronomic information once reported at the plot level (number of10

weeds, crops and weeds locations,diseases, stress ...). The plant level is also11

needed for the new agricultural revolution, such as robotic weed management.12

Thus, studies try to detect crop and weeds plants by using a wide variety of13

techniques, which have been reviewed by (Wang et al., 2019). The instance14

segmentation is a key-step used before the task of classifying plants as crop and15

weeds. In CNN field, it is mostly based on a major class approaches (Hafiz and16

Bhat, 2020), such as Mask-RCNN. However, detecting the entire plants has 317

main limitations (i) when plants are too numerous, it is hard to distinguish indi-18

viduals when they overlap, one of them is undetected or both are merged which19

is due to the underlying non-max suppression algorithm (Bonneau et al., 2020),20

(ii) small and thin elements are undetected and (iii) the number of variations for21

a plant is infinite: the number of leaves, their orientations, their sizes and other22

differences that radically change between individuals and growth stages, implies23

a large amount of data for the training process. These limitations logically im-24

pact the detection rate and may cause a significant quantity of miss-detection.25

To solve this problem, one approach that should be relevant is to base the de-26

tection not on the whole plant, but on the leaf. For this purpose, a pixel-wise27
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instance segmentation is proposed. The idea is to separate the instances by28

detecting the edges of the leaves whose projected shadow gives an interesting29

gradient break, particularly in an uncontrolled outdoor environment.30

1.1. Related Works31

Some recent works on leaf segmentation were found in controlled illumina-32

tion environments with limited occlusion between individuals. Especially on33

an open dataset of Arabidopsis Thaliana (Scharr et al., 2016). Other studies34

related to biomedical imagery and nuclei segmentation were also found with35

pixel-wise instance segmentation. These studies show the important of defining36

one or more edges classes and a relevant loss function. These two factors are37

both related to the weight given to each sample of the training dataset in the38

estimated error for the optimization algorithm. But the way of how parts of the39

network are dedicated to the edge classification and thus on how the network40

focuses on instance separation. Edge detection therefore plays a significant role41

in pixelwise instance segmentation task.42

The first studies were dedicated to the definition of specific class of edges to43

separate instances. Thus Chen et al. (2016) proposed a novel approach named44

“Deep Contour-Aware” based on the semantic segmentation of two classes, one45

class is dedicated to the inside of glands, while the second is for the segmenta-46

tion of glands edges. A bit later, Morris (2018) was the first to define a pixelwise47

instance segmentation for dense leaf detection. They proposed the “Pyramid48

CNN for Dense Leaves” architecture which is similar to U-Net (the most com-49

mon CNN used for biomedical images segmentation). The network is dedicated50

to the detection of leaf boundaries. To facilitate the learning of edges at differ-51

ent scales, an auxiliary loss function is placed at each sub-scale of the pyramid.52

Finally, the instances are retrieved by using a superpixel algorithm.53

Cui et al. (2019) enhance the “Deep Contour-Aware” model proposed in54
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2016 by using a real U-Net architecture and data augmentation. Concerning55

edge classes based instances segmentation, Bell and Dee (2019) study shows56

the importance of separating edges into two classes. As the outer edges are57

dominant in the samples, the corresponding error on contiguous edges are less58

important. Thus, the edges of leaves are separated into two classes, one for the59

outer edges and one for inner edges (when leaves are touching or overlapping).60

The multi-scale loss function is still used and proposed by Xie et al. (2020)61

for nucleus instance segmentation. They show that multi-scale loss helps to62

regularize the network and narrow down the perceptual distances and enlarge63

the semantic dissimilarity between individuals. In addition, a count ranking loss64

is used on the last feature layer of a fully-connected layer. This count ranking65

loss enforces the network to focus on the learning of samples containing crowded66

nuclei. This technique results in an implicitly regularized trained network, to67

be aware of individuals quantity.68

1.2. Objectives69

All these studies show that pixelwise instance segmentation technique is70

viable but still limited. They also underline the importance of choosing a loss71

function adapted to the defined semantic classes. Based on these related works,72

this paper proposes to merge most recent advances in the field of pixelwise73

instance segmentation.74

First, the proposed method combines “deep contour aware” (to separate the75

inner of big leaves from its edges), “Leaf Segmentation trough classification of76

edges” (to separate instances with a specific inner edges) and “Pyramid CNN77

for Dense Leaves” (to consider edges at different scales). Second, a new loss78

function is also introduced to limit under and over-segmentation. Third output79

is refined using a specific vegetation index based on previous work (Vayssade80

et al., 2021) and a watershed algorithm.81
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This method is applied to dense leaf segmentation, on images containing82

mixes of plant species and acquired in natural light. A specific multispectral83

dataset has been acquired, it is presented in the next section 2.1 and released84

publicly. The method is also evaluated on two common online leaf RGB image85

databases (Scharr et al., 2016), presented in section 2.2.1 and 2.2.2.86

The proposed method is much more robust compared to previous pixel-87

wise instance segmentation methods and solves the issue of methods based on88

bounding-box regression : all small and thin elements are detected.89

2. Material and data90

2.1. Specific multispectral dataset91

2.1.1. Experimental plot92

The data were acquired at the site of INRAE (Figure 1) in Montoldre (Allier,93

France, at 46°20’30.3”N 3°26’03.6”E) within the framework of the “RoSE chal-94

lenge” founded by the French National Research Agency (ANR) in 2019. The95

aim of the Challenge is to objectively compare the solutions proposed by partic-96

ipants for intra-row weed control (Avrin et al. (2020)). Within this context, the97

challenge provides to contestants an evaluation plan and a set of experimental98

plots of bean and maize plants. In addition various natural weeds (yarrows,99

amaranth, geranium, plantago, etc) and sown ones (mustards, goosefoots, may-100

weed and ryegrass) are managed to compare performances.101
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Figure 1: Aerial view of the experimentation plot located in Montoldre (now INRAE)

2.1.2. multispectral camera102

The images were acquired with the Airphen (Hyphen, Avignon, France) six-103

band multispectral camera (visible on the upper-left of the Figure 2). This is104

a scientific camera developed by agronomists for agricultural applications. The105

camera embeds six sensors using six bandpass (450/570/675/710/730/850 nm)106

filters with a 10 nm FWHM each. The focal length of each lens is 8 mm. The107

raw resolutions for each spectral band are 1280× 960 px with 12 bit precision.108

Due to the conception of the camera, spectral images are not aligned. Based109

on previous work (Vayssade et al., 2020), a method for registration has been110

developed with a registration accuracy down to sub-pixel. After the registration,111

all spectral images are cropped to 1200*800 px and concatenated to channel-wise112

where each dimension refers to a spectral band.113

2.1.3. Image acquisition and annotation114

From the presented experimental plots, a set of images were acquired. The115

camera is attached in front of an hybrid autonomous tractor called “TREK-116

TOR” launched by SITIA Company (Bouguenais, France) in 2019. The camera117

is setup to have a top-down view of crop rows, thus it is mounted on a pole in118
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front of the platform allowing to remove visible part of the robot and at 1.8 m119

from the ground. The Figure 2 below shows the arrangement of the elements.120

Crops and weeds were between phenological state 3 and 4 which means they121

have between 2 and 6 leaves. The ground truth is defined on images by ex-122

perts with polygons around each leaf boundary. In addition, polygons contain123

a label for their classification between crop and weed (not used in this study).124

The annotation was defined using the VIA annotation software (Dutta and Zis-125

serman, 2019) and a total of 300 images of bean were annotated, 170 from126

acquisition made in June and 130 in October. These dataset is freely available127

at https://doi.org/10.15454/JMKP9S.128

Figure 2: The experimental set-up : the multispectral camera and the robotic plateform

8



2.2. Online image databases129

2.2.1. Additional data from the Computer Vision Problems in Plant Phenotyp-130

ing dataset (CVPPP)131

To compare the method proposed in this study with others, an additional132

dataset was used. This dataset is proposed for the Leaf Segmentation Challenge133

(LSC Scharr et al. (2017)) provided by the International Network on Plant134

Phenotyping (INPP), a very popular challenge for data scientists. It is composed135

of RGB images of Arabidopsis Thaliana (783 images) and Rosette (27 images)136

plants segmented into several leaves. The authors state that the images were137

collected from multiple locations in a growth chamber experiment and divided138

into four groups, named A1 through A4. In addition, the dataset is composed139

of various image sizes (respectively 530× 530, 565× 565, 2048× 2048, 441× 441140

for each sub-dataset), which have been resize to 512× 512× 3.141

Figure 3: Example of images from the CVPPP dataset (top) and their corresponding ground
truth (bottom)

2.2.2. Additional data from Komatsuna dataset142

Similar to the LSC dataset, Komatsuna dataset consists in RGB images of143

plants taken in a top view. This dataset contains a large number of plant growth144
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stages, it was designed to solve the problem of 3D phenotyping (Uchiyama et al.,145

2017). It is used here primarily as a test set due to its similarity to the CVPPP146

dataset (training set), as shown in Figure 4. This dataset includes 900 images147

of size 480× 480× 3.148

Figure 4: Example of RGB images from the Komatsuna dataset (top) and their corresponding
ground truth (bottom)

3. Methodology149

We consider the leaf segmentation as a binary segmentation problem of150

boundaries as proposed by Morris (2018). The main idea is to detect the sharp151

edges of leaves or to follow the projected shadow of a leaf on the one below it.152

This methodology section is split into three sub-tasks (3.1) the proposed CNN153

architecture to detect and separate leaves, (3.2) the specific loss function defined154

to limit under and over-segmentation, and (3.3) a simple watershed algorithm155

which takes the CNN output and a vegetation mask to refine the segmentation.156

3.1. Proposed CNN architecture157

Unlike recent CNN architectures, the proposed approach is slightly more de-158

composed like standard biomedical and agricultural computer vision pipelines159

(Perez-Sanz et al., 2017; Lottes and Stachniss, 2017). Thus, the architecture160

10



(Figure 5) is composed of three upstream modules (IIT, IBF, UFA) that im-161

proves the input data and eliminates unnecessary information. This step com-162

posed of 3 upstream modules, was proposed in a previous work to construct a163

vegetation index (Vayssade et al. (2021)). It is used to identify relevant spectral164

features on the input data to exploit the inter-channel relationships. After this165

stage, a core network is used to consider spatial information at different scales166

on the image, the core network returns four down-scaled feature maps. Finally,167

at the end of the network, three downstream modules (CoordConv, UFA,168

Classification) are proposed to fuse spectral and spatial information. Sigmoid169

activation function is used at the end of all convolution layers to learn more170

complex structures and allows non-linearity of the reconstructed function.171

Input

1x512x512xN

IIT

1x512x512x(N+7)
IBF

1x512x512x8

UFA

1x512x512x16

Loss Aux Loss
Core Network

1x512x512x64

Classification

1x512x512x4

UFA

1x512x512x16

CoordConv

1x512x512x73
Aux Loss

Figure 5: Diagram of the CNN network architecture and losses (dotted). Multiple arrow show
concatenation as input layer.

The network takes an input image of size 512 × 512 × 6, thus the learning172

and computation are done by a sliding window within the registered images of173

the Airphen camera of size 1200 × 800 × 6. The output layer is defined as a174

semantic segmentation of four classes. One class is dedicated to the inner of175

individuals, while three classes are dedicated to the detection of edges to keep176

aware of leaves instance. As mentioned by Bell and Dee (2019), one class is177

dedicated to outer of leaf (touching soil texture), while the second is dedicated178

to inner edges (touching/overlapping another leaf). Within our dataset, a third179
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class appears with thin leaves which can be considered as a kind of edge. The180

ground truth is a set of polygons, drawn with the respect of these classes. Edge181

classes were empirically drawn with three pixel thickness. The following figure182

shows the input ground truth.183

Figure 6: Example of input data: from left to right, the first three bands (RGB) of the Airphen
multispectral camera, three edge classes and the inner of individual class

3.1.1. Upstream of the network184

It is composed of three upstream modules: Initial Image Transforms (IIT),185

Input Band Filter (IBF) and Universal Function Approximator (UFA).186

Initial Image Transforms (IIT). In order to enrich the pool of information,187

spectral band transformations are added to take into account specific spatial188

gradients in the image and spectral mixing. Seven important transformations189

are considered. The standard deviation between spectral bands, noted ρstd can190

help to detect the spectral mixture. For example, between two different surfaces191

like ground and leaf (which have opposite spectral radiance), the spectral mixing192

makes a pixel with linear combination, thus the standard deviation tends to zero193

(Louargant et al., 2017). Three Gaussian derivatives on different orientations194

are computed. Gxx, Gxy and Gyy filters on ρstd give an important spatial195

information about the breaks of gradient, and therefore about the outer limits196

of surfaces. The Laplacian, the minimum and maximum eigenvalues (of the197

Hessian matrix) also called ridge of the ρstd seems to easily detect fine elements198
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(Lin et al., 2014), such as monocotyledons for vegetation images. All these199

transformations are concatenated to the channel-wise normalized spectral band200

input and build the final input image. In the end we have six spectral images201

plus seven transformations for a final image composed of 13 channels.202

Input Band Filter (IBF). To remove unneeded parts of the signal, low-pass,203

high-pass and band-pass filters are added. To apply the low-pass filter we use204

the equation z = max(x−a, 0)/(1−a) and thus it allows to suppress low values.205

For the high-pass filter we apply the equation w = max(b− x, 0)/b to suppress206

the high values. The band-pass filter is the product of low-pass and high-pass207

filters defined by y = z∗w. The output layer is the concatenation in the channel-208

wise of the input images, the low-pass, the high-pass and the band-pass filter209

which produce 4*13 = 52 channels. Finally, to reduce the output data for the210

rest of the network, a bottleneck is inserted using a 3× 3 convolution layer, and211

it generates a new tensor with 16 channels.212

Universal Function Approximator (UFA). To separate efficiently leaves from213

the background and to learn spectral features, a Universal Function Approxi-214

mator is defined on the upstream of the network (Figure 7). The UFA is based215

on Taylor expansion theorem, an approach to learn this form of development216

in deep-learning is called DenseNet and then corresponds to the sum of the217

concatenation of the signal with these spatio-spectral derivatives. This was218

successfully used for vegetation segmentation Vayssade et al. (2021). Three pa-219

rameters, such as the depth (number of convolutions), the width (number of220

filters denoted W ) and k (kernel size) configure the network and were empiri-221

cally fixed to depth = 3, width = 16 and k = 1. An auxiliary output is used222

here to maximize the class similarity on the upstream of the network and to223

extract pure spectral information.224
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Input

1x512x512xN

Conv

1x512x512xW

Conv

1x512x512xW

Conv

1x512x512xW

Output

1x512x512xW

Figure 7: Universal function approximator based on DenseNet. Multiple arrows shows con-
catenation as input layer

3.1.2. Core network model225

The proposed core CNN architecture is based on an advanced U-Net archi-226

tecture named MFP-Unet (multi-feature pyramid U-net) proposed by Moradi227

et al. (2019). It is a neural network composed by several 2D convolution layers228

between different sub-scales. At each sub-scale, the spatial size is divided by229

two and the number of filters is multiplied by two. Sub-scales are obtained by230

Max-Pooling layers. Then, to retrieve the original size a 2D UpSampling layer231

is used. In this study the depth of the U-Net model is fixed to three down-scale232

(size 512, 256, 128, 64). The specificity of MFP-Unet is that all sub-scale feature233

maps are directly up-sampled to the initial size, concatenated to the channel-234

wise and then used for the classification (Figure 8). In addition according to235

Morris (2018) and Xie et al. (2020) an auxiliary loss function is put at each236

sub-scale feature layer and it enforces the learning of edges at different scale,237

making the network more robust to spatial resolution. Losses at each predic-238

tion also shorten the back propagation path leading to faster convergence. All239

convolution layers use a kernel size of 3 × 3 and are followed by a Batch Nor-240

malization and a sigmoid activation function (Moradi et al. (2019); Nwankpa241

et al. (2018)).242
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Aux Loss 1/8
Output

1x512x512x64

1/4 1/4 Aux Loss

1/2 1/2 Aux Loss

Input

1x512x512x24
1/1 Aux Loss

Figure 8: Synthesis of the core network based on MFP-Unet.Red arrows shows MaxPooling.
Blue arrows shows Conv+UpSampling. Black arrows shows Conv. Sub-scale ratio are labelled
on corresponding layer. The final output is the concatenation of features UpSampling. Mul-
tiple arrows shows concatenation as input layer

3.1.3. Downstream of the network243

It is composed of three downstream modules: CoordConv and Universal244

Function Approximator (UFA) and Classification.245

CoordConv. The core network model produces a concatenation of 4 layers of 16246

features (4× 512× 512× 16) which results of a layer of size 1× 512× 512× 64.247

A coordinate layer (Liu et al., 2018) is also concatenated and allows to consider248

the mapping between the coordinates in (x,y) Cartesian space to one-hot pixel249

space. Three variables are appended, the normalized x and y coordinate and the250

radial coordinate
√

(x− 0.5)2 + (y − 0.5)2. This module improves the results251

removing noise, ground moisture and it fixes few small holes in the segmentation252

mask.253

Universal Function Approximator (UFA). This UFA – also presented on the254

upstream – is used to accurately mix features coming from various scales as255

well as the Cartesian coords. This module reconstructs the mapping function256

from the Cartesian space to a spatio-spectral feature of size 1× 512× 512× 16.257

However, in contrast with the upstream UFA, the kernel size k was fixed to 3258

to take into account neighboring.259
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Classification and Auxiliary output. The classification is done through a small260

network composed of two 1 × 1 convolution layers. Followed by a “Pyramid261

Pooling Module” to consider different scales before the outputs and smooth the262

boundary prediction. Zhao et al. (2017) showed that fusing the low to high-level263

features improved the segmentation task. It consists in the sum of different 2D264

convolutions whose kernel sizes have been set to 3, 5, 7 and 9. The number of265

filters is the same as the number of classes : 4 (defined in 3.1). The result of266

each convolution is concatenated and the final image output is given by a 2D267

convolution. In addition all convolutions are followed by a Batch Normalization268

and a sigmoid activation function. The figure 9 shows that sub-network.269

Input

1x512x512x16

Conv 1x1

1x512x512x8
Conv 3x3 Conv 5x5

Conv 1x1

1x512x512x4

Conv 1x1

1x512x512x4

Conv 7x7 Conv 9x9
Output

1x512x512x4

Figure 9: Auxiliary output and classification module. Multiple arrows shows concatenation
as input layer

3.2. Loss function270

A wide variety of loss functions have been developed during the emergence

of deep-learning. Recently, Rahman and Wang (2016) proposed a solution to

optimize an approximation of the mean Intersection over Union (mIoU) which

seems to be optimal for binary segmentation (Zhou et al., 2019). The loss

function using ground truth (p) and the prediction (p̂) is defined by:

mIoU(p, p̂) = 1− pp̂

p+ p̂− pp̂
(1)

This loss function was used on each auxiliary. In addition the loss is com-

puted separately on each class, weighted (denoted WC) and summed. The result
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of this function is:

Aux(p, p̂) =

4∑
C=0

WC × mIoU(pC , p̂C) (2)

In the above equation, the weightW were empirically set to [0.175, 0.526, 0.211, 0.09].271

Meaning that the second class (inner edges) is prioritized (to separate inner in-272

stance). Then it is outer edges that allow to separate the “big” leaves from273

small or thin leaves. Finally the thin leaves (mostly spectral mixing) and inner274

big leaves (essentially vegetation minus boundaries) have the smallest weight275

values because these classes should be easier to learn.276

In recent CNN architectures for instance segmentation, the loss function277

does not take into account the number of detected instances or the shape of278

the segmentation. This aspect is only evaluated after learning, e.g., using a279

symmetric best dice metric. This implies that we can not guaranty that the280

network is well learned on crowded scene, where instance is generally merged.281

One problem is that until recently, instances could not be retrieved directly dur-282

ing the learning phase, this is due to the “non-maximal suppression” algorithm283

required after the CNN or the time required for the association between the284

detected instances and the ground truth. In this paper, we introduce a new loss285

function considered at the downstream of the network. The main idea is to take286

into account an approximation of the segmentation quality of each leaf.287

To estimate the segmentation quality, the undetected, under/over segmented288

and fused objects can be evaluated, trough a sorted histogram of the number of289

pixels associated to each connected component for both prediction and ground290

truth, as showed in the next figure 10 for both prediction (orange) and ground291

truth (blue).292
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Figure 10: Sorted histogram of the number of pixels associated to each component, the blue
(resp. red) line represents the true (resp. predicted) number of pixels for each component.

This figure shows that when the prediction curve is lower (orange) than the293

ground truth curve (blue), it means that there is over-segmentation. This arise294

when a bigger element is split in two, when the borders of the shape are trimmed295

or when zero pixels of the shape are detected (undetected). On the other hand,296

when the prediction curve is higher than the ground truth, it means that the297

contours of the shape are roughly detected or if it greatly exceeds the ground298

truth, then we are in the presence of fused shapes. Based on these curves, a loss299

function can be construct the deal with over and under segmentation on shape300

criterion, thus a custom absolute percentage error was defined:301

Leaf(p, p̂) =

∑N
i=0 |leaky relu(hi(p)− hi(p̂))|

hmax(p) + 1
(3)

leaky relu(x) =


x if x >= 0

x ∗ 0.2 if x < 0

(4)

On the above equation N is the number of components, hi(p), and hi(p̂) is302

respectively the number of pixels of a connected component in the ground truth303
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and on the predicted segmentation within the sorted histogram. While hmax(p)304

is the maximum number of pixels of a component in the ground truth.305

The leaky relu, is used to explicitly prioritise the learning on under-segmentation306

rather than over-segmentation which allows to prioritize the merged objects.307

This was defined because conventional losses did not give good results in dense308

vegetation cover, causing a large segmented area that is detected as a single en-309

tity. Note also that over-segmentation is less problematic, since it occurs mainly310

around the borders of the leaves, which are recovered later, through a watershed311

algorithm (section 3.3). It is the first study to suggest this type of loss.312

The downstream loss is defined by DownAux(p, p̂) = Aux(p, p̂) + Leaf(p, p̂).313

Finally the global loss considers the upstream auxiliary loss, each of the 4 feature314

scale auxiliary loss and the downstream loss. Thus the global loss is defined as315

the weighted sum of all auxiliaries losses (in the same order) where the weights316

W were empirically defined with W = [0.01, 1.0, 0.1, 0.1, 0.01, 4.0].317

3.3. Refinement with vegetation mask and watershed318

The used U-Net architecture is good at detecting “big” elements on the scene319

but lacks precision on very small and thin elements. A method to produce an320

optimized vegetation mask was proposed in a previous work Vayssade et al.321

(2021). Using this mask provides better performance than adding a specific322

class to the network. Thus our previous work is used here to get the best323

foreground/background segmentation mask as input of the watershed. It is also324

learned on a specific dataset with more illumination conditions and should be325

more robust, especially for thin elements.326

The proposed network generates 4 classes. The first two are associated to327

“big” leaf boundaries (denoted Edges = Outer+Inner). The third one is small328

and thin leaves (denoted Thin), and the fourth is the inner of big leaves denoted329

Big. The watershed seed is defined with the following equation 5 to generate330
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the seed mask and can be see in the figure 11 :331

Seed = Thin+Big − Edges (5)

Input Image CNN Outputs Watershed Seeds

Deep-Indices Refined Ouput

Figure 11: The refinement of the CNN output through watershed and Deep-Indices. The Seed
of the equation 5 can be seen on the “watershed seed” image.

3.4. Training setup332

The image dataset is randomly split into a training set (80%) and a validation333

set (20%). However the initial seed is kept for reproducibility. In addition a334

random data augmentation is used during the training to increase the dataset335

variability. A random vertical and horizontal flip is considered as well as a336

perlin simplex noise Bae et al. (2018) (of size 512 × 512), set with 2 modal in337

range [0.7− 1.3] which multiplies the number of input images. Low values add338

shadows, while high values add specular effects. The training is done through339

Keras module within Tensorflow 2.6.0 framework. All computations are done340
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on an NVidia RTX 3060 which have 12GiB of memory and due to the size of341

the network only one image is computed at once.342

3.5. Evaluation metrics343

There is a large number of possible evaluation metrics for instance segmen-344

tation, which have been reviewed in Scharr et al. (2016). However, we de-345

cided to keep the evaluation metrics used in the Leaf Segmentation Challenge346

(LSC) as a reference for comparison (Scharr et al., 2017; Kulikov et al., 2018;347

Bell and Dee, 2019; Ward and Moghadam, 2020). Therefore, we use the fore-348

ground/background DICE metric to evaluate the separation of large leaves from349

the ground (denoted FgBgDice). We estimate the average accuracy of leaf seg-350

mentation by the symmetric best DICE score among all objects (leaves). The351

best DICE score among all objects (leaves) to estimate the average accuracy of352

leaf segmentation is denoted BestDice. The AbsDiffFG estimates how good353

the algorithm is at segmenting the leaves. And finally, DiffFG estimates the354

efficiency of the algorithm for counting leaves. SBD for Symmetric best DICE355

is extract to estimate the average leaf segmentation accuracy. All these metrics356

are common and presented by Scharr et al. (2016). In addition, to compare357

datasets results, a new metric is introduced named NAbsDiffFG defined by358

the division of AbsDiffFG and the mean of leaves count in the dataset.359

4. Results360

As previously defined, all datasets were split into training and validation361

sets with a ratio of 80 − 20%. Once training is done on the defined setup and362

using the loss function, the evaluation metrics are extracted : the FGBGDice363

metric is used to evaluate the soil versus vegetation segmentation, while the364

BestDice metric is used to evaluate the instance segmentation. Each connected365

component is associated to its best corresponding ground truth based on a dice366
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score. Then the metric is defined by the mean dice score of the best match.367

Other metrics show relevant information about over and under segmentation.368

The following subsections are dedicated to each dataset, from the simplest to369

the most difficult to segment.370

4.1. Komatsuna dataset371

The first one is the Komatsuna dataset. It is composed of RGB data of372

growing Japanese Mustard. This dataset is interesting for its controlled illumi-373

nation conditions. In addition, the number of leaves it quite the same for all the374

growing stages, ranging from 3 to 6 leaves. This is important regarding our loss375

function which take into account the quantity and quality of each segmented376

leaf. However, this dataset does not contain small and thin leaves, thus the377

third class was replaced by a foreground class. The following Table 1 shows the378

evaluation on this dataset.379

metric training validation
FgBgDice 0.9732 0.9715
BestDice 0.8796 0.8565
SBD 0.8713 0.8517
DiffFG -0.2639 -0.4444
AbsDiffFG 0.3944 0.5222
Number of images 720 180
Mean leaf count 4.9194 4.9722
NAbsDiffFG 0.0802 0.1050

Table 1: Evaluation metrics for the Komatsuna dataset

The result on this dataset shows a relatively perfect score of the soil and380

vegetation segmentation with a FGBGDice of 0.97. Few errors remain as shown381

in figure 12, a green bottle is visible on the left side of some images, which382

seems to indicate that the green component has a major impact on vegetation383

detection. Since RGB data are used, this error should be visible in most studies.384

This interesting element also demonstrate that the used CoordConv layer does385

not play its role in the spatial management of this element.386
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Input CNN output Ground truth

Figure 12: Visual comparison of Komatsuna dataset after the training, the red arrow in the
input image shows a green bottle

As shown by theDiffFG score, our method mostly detects the right number387

of leaves. This score is small and negative and shows that few leaves are split,388

which occurs when a big leaf mostly overlaps a smaller one. A visible bottle389

also has an impact on the other metrics, shown in figure 12. However, most390

of the errors for the BestDice comes from under and over-segmentation. The391

under-segmentation occurs on the leaves stems. The stem that connects the392

leaf to the plant is usually not well detected, and this can play a significant393

role in lowering the BestDice and SymmetricBestDice scores. The stem can394

be undetected (under-segmentation) or may be identified as another leaf (over-395

segmentation). It can also cover some small leaves and divide them in two, which396

is expected in pixelwise segmentation. To benchmark our study, the following397

table 2 reports the results of few previous studies using the same metrics.398
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Study SBD AbsDiffFG
Our method’s results (2021) 0.8565 0.5222
Ward and Moghadam (2020) ward 2020 0.7776 -
Gomes and Zheng (2020) gomes 2020 0.7700 0.8800

Table 2: Comparison of the ResNet 101 based on Detectron II framework of facebook and the
UPGen based on Mask-RCNN. Our solution is the most effective in both metrics

As comparison our results tackle one of the states of the art ResNet 101399

based on Detectron II framework of facebook (Gomes and Zheng, 2020). And400

the proposed UPGen methods proposed by Ward and Moghadam (2020).401

4.2. Leaf Segmentation Challenge dataset402

The second dataset is interesting for its controlled illumination conditions.403

Unlike the Komatsuna dataset, this one includes a greater diversity of leaf quan-404

tity, between 2 and 16 leaves. This is important to show the robustness of our405

loss function. In the same regard as the Komatsuna section, this dataset does406

not contain small and thin leaves. Thus third class was replaced by a foreground407

class, which is also used by the competition evaluation. In addition, the testing408

dataset is not publicly available, thus a separated evaluation was performed on409

the online competition website 1. The training and validation are defined by410

splitting the publicly available dataset. This step is used to reduce the over-411

fitting and retrieve stable parameters. The next table summarizes the number412

of images for each training, validation and test datasets.413

dataset A1 A2 A3 A4 total
training 102 25 22 499 648
validation 25 6 5 125 161
test 33 9 56 168 266

Table 3: Number of images for each sub LSC dataset

The following Table 4 shows the overall evaluation on this dataset (merged414

1competitions.codalab.org/competitions/18405
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A1, A2, A3, A4). The test results can be found in the online leader-board. The415

results are fairly the same between training, validation and test datasets in term416

of FGBGDice and BestDice. However a notable divergence with the testing417

dataset for the others metrics is visible. The DiffFG, and AbsDiffFG for418

training and validation indicate an over-segmentation, while the test dataset419

highlights an under-segmentation. This over-segmentation probably enhances420

the SBD score while the BestDice remains stable.421

metric training validation test
FgBgDice 0.9489 0.9522 0.9489
BestDice 0.7659 0.7707 0.7608
SBD 0.7608 0.7655 0.8047
DiffFG -1.9634 -2.1223 3.5628
AbsDiffFG 2.1707 2.3050 6.1257
Number of images 648 161 266
Mean leaf count 13.8390 13.1463 -
NAbsDiffFG 0.1568 0.1753 -

Table 4: Evaluation metrics of the overall LSC dataset

As discussed in the materials and data section, this database is composed of422

four sub-databases with different cameras and plants. The learning was done423

independently on each of them, but they were merged for the presentation in the424

previous table. The test on the online evaluation platform returns the results for425

each of them, summarized in the table 5. First of all, the sub-datasets A2 and426

A3 contain a very small amount of images, respectively 25 and 22 for the training427

sets. Moreover the A3 dataset is composed of images of size 2048 × 2048 re-428

scaled to 512×512. This imply a huge loss of information, especially on the leaf429

boundaries. In addition, this A3 dataset contains hard shadows. These three430

factors explain most of the errors for this dataset. The quality, acquisition431

conditions, and plants of the other three data sets (A1, A2, A4) are similar.432

Only the background and the amount of images mainly changes, which is also433

reflected in the evaluation score. The figure 16 also shows unlabeled leaves in434
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the center of the plant, moreover they are even defined as background.435

metric A1 A2 A3 A4
FGBGDice 0.9641 0.9294 0.9692 0.9416
BestDice 0.6905 0.6944 0.6783 0.7964
SBD 0.8047 0.7895 0.7317 0.8294
DiffFG 2.0909 1.7778 21.2857 0.0892
AbsDiffFG 3.0000 3.1111 14.9285 1.6250

Table 5: Evaluation metrics of the independent sub LSC dataset

For all sub-dataset the FGBGDice score is slightly less than the Komatsuna436

dataset. Most pictures of the A1 present wide area of green moisture on the437

ground, visible on the Input inside the figure 13. A2 contains few very small438

weeds and few small spots of moisture, but the performances of FGBGDice is439

mainly due to the quantity of images for the learning, as showed by the figure440

14 boundaries are miss-classified. For the same reason, it is also visible for the441

A3 dataset shown by the figure 15. It’s also important to notice that leaves442

from an outside plant are visible in few images and detected by the algorithm,443

however these leaves are unlabelled, resulting an over-segmentation.444
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Input CNN output Ground truth

Figure 13: Visual example of LSC results for A1

Input CNN output Ground truth

Figure 14: Visual example of LSC results for A2
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Input CNN output Ground truth

Figure 15: Visual example of LSC results for A3

Input CNN output Ground truth

Figure 16: Visual example of LSC results for A4
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The following table 6 reports method’s results of different previous studies,445

to benchmark our method’s results on this LSC dataset.446

Study SBD AbsDiffFG
Ward and Moghadam (2020) ward 2020 0.8800 -
Kulikov et al. (2018) kulikov 2018 0.8040 2.00
Gomes and Zheng (2020) gomes 2020 0.7700 0.88
Ours method’s results (2021) 0.7608 6.12
Pape and Klukas (2015) pape 2015 0.7440 2.60
Scharr et al. (2016) scharr 2016 0.6830 3.80

Table 6: Comparison of our solution with state-of-the-art challengers in this dataset.

These results show that the studied method is less efficient than Ward and447

Moghadam (2020); Kulikov et al. (2018) and Gomes and Zheng (2020). Due to448

the small size of the training sample (102, 25, 22, 499 images for data subsets A1,449

A2, A3, A4, respectively), it can be assumed that this is due to the increase in450

data they use in order to expand their data set. It seems the data augmentation451

based on Perlin noise is insufficient. Nevertheless, our method is better than the452

following two: (Pape and Klukas, 2015; Scharr et al., 2016), since they don’t453

use any data augmentation. However it can be noted that the AbsDiffFG454

value for the studied method is much higher than for the others. This implies455

an important over-segmentation, resulting in particular from the quality of the456

A3 dataset as it can be seen in the table 5.457

4.3. Airphen dataset458

The last one presented is our multispectral dataset, which contains variable459

acquisition conditions (sunny, cloudy, rainy, etc.), a variable number of leaves460

(from a few to hundreds), and contains very small leaves that touch or overlap461

the others. The next table 7 show the results of our method applied our dataset.462
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metric training validation
FgBgDice 0.9791 0.9785
BestDice 0.6744 0.6678
SBD 0.6670 0.6638
DiffFG -41.3583 -49.4667
AbsDiffFG 46.7500 53.2333
Number of images 240 60
Mean leaf count 265.83 295.80
NAbsDiffFG 0.1758 0.1799

Table 7: Evaluation metrics for the Airphen dataset

It can be seen that the FGBGDice score shows adequate soil/vegetation463

segmentation, as demonstrated in our previous study Vayssade et al. (2021).464

The scores DiffFG and AbsDiffFG show the presence of over-segmentation.465

This is due to two issues: the presence of small leaves and the advanced stage of466

mustard development. Indeed, the method sometimes confuses small leaves and467

large leaves, which implies in some cases under-segmentation for monocotyle-468

dons or over-segmentation for dycotyledons, probably generated by an imprecise469

annotation of classes. In the second case, this is due to the proposed loss func-470

tion that forces over-segmentation, resulting in the detection of leaflets instead471

of leaves in the case of advanced mustard development, as showed in the figure472

17. These errors imply that the BestDice and SBD scores are not as good as473

on the Komatsuna dataset and LSC Challenge, studied previously.474
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Input CNN output Ground truth

Figure 17: Example of the visual results for the Airphen dataset

To show the difference and complexity of this dataset, the method developed475

by Ward and Moghadam (2020) was also learned. This method is based on476

the Mask-RCNN. However, the method uses data augmentation based on a477

library that only supports 8-bit unsigned integers. Thus, data augmentation478

was disabled because the dataset uses a 32-bit float format. The following table479

8 shows these results.480

metric training validation
FgBgDice 0.6266 0.6111
BestDice 0.2271 0.2157
SBD 0.2266 0.2149
DiffFG -186.0292 -217.0667
AbsDiffFG 186.5542 217.1333
NAbsDiffFG 0.7018 0.7341

Table 8: Evaluation metrics for the Airphen dataset using Mask-RCNN

These results show that the method proposed by Ward and Moghadam481

(2020) does not correctly detect leaves in a dense foliage environment. The482
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FgBgDice score shows that the soil/vegetation discrimination is weak. As well483

as the BestDice and SBD scores which shows poor detection of individuals seg-484

mentation mask. The DiffFG and AbsDiffFG scores confirm these results485

and show a large amount of undetected elements. As announced in the intro-486

duction, the methods based on object detection uses bounding box regressions487

and non-max suppression which strongly limit the detection in dense environ-488

ment. Moreover the part of the network allowing to obtain the segmentation489

mask uses a fixed low resolution resulting in coarse segmentation masks. As490

shows in the figure 18.491

Input Ground truth

CNN+Watershed Mask-RCNN

Figure 18: Example of the Watershed output versus Mask-RCNN for Airphen dataset
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5. Discussion492

In this study, we used different datasets. The Komatsuna dataset is com-493

posed only of mustard leaves at different stages of development acquired indoors494

under controlled acquisition conditions with a single camera. There are between495

3 and 6 leaves per image for an average of 4.9 leaves. The LSC dataset is de-496

composed into three sub-datasets of Arabidopsis-Thaliana and one of Rosette497

plants all at different stages of development. They are acquired indoors under498

controlled acquisition conditions with their own camera. There are between 2499

and 16 leaves per image for an average of 13.5 leaves. Our dataset is composed of500

bean plants and weeds. Beans are at a single stage of development while weeds501

are at different stages of development. The acquisitions were made outdoors502

under uncontrolled conditions. There are between 4 and 777 leaves per image503

with an average of 271.83 leaves. This dataset is now available online2 and504

may help other studies working on leaves segmentation in natural and complex505

situations.506

We are interested in the metric NAbsDiffFG to compare the performances507

of our method on the different datasets. We see that for our dataset it is508

0.1758, 0.1799 for the LSC dataset and 0.1050 for the Komatsuna dataset. We509

thus obtain good results for the Komatsuna dataset which is the simplest, we510

obtain an average result for our dataset which is the most complex and finally511

weaker results on the LSC dataset. This allows us to deduce that the lighting512

conditions as well as the number of leaves do not influence the performances.513

On the other hand, the use of several cameras, as on the LSC dataset, could514

be at the origin of the decrease in performance due to a variation in spatial515

resolution from one camera to another. We deduce that our method, designed516

to be used on complex data such as our dataset, gives results comparable to517

2https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/JMKP9S
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classical methods on other types of datasets.518

The CNN used in our method deliberately gives a coarse segmentation in519

order to maximize the detection and separation of large leaves. The smaller520

ones are therefore poorly detected (over-segmentation or undetected). These521

results are reflected in the fact that there is little over-segmentation and under-522

segmentation of large leaves due to the loss function introduced which takes523

into account the number of elements detected and their surface. However two524

problems are raised with the use of this loss function. First of all, it is subject525

to error jumps in order to avoid merging objects, which makes its optimization526

difficult and thus requires several learning sessions for an optimal result. On527

the other hand, avoiding merging causes over-segmentation in some cases, such528

as the mustard in our dataset that detects leaflets. At this time we cannot say529

whether this is problematic. It is possible that the leaflet scale is more relevant530

in terms of segmentation than the leaf for advanced stages of plant development.531

With the watershed used next, we improve the coarse detection provided by532

the CNN by extending the detected areas to the ideal soil/vegetation segmenta-533

tion mask defined by the method developed in a previous study Vayssade et al.534

(2021). This step allows the identification of the smallest leaves. Although the535

smallest elements, with a diameter of 0−2 pixels, are still difficult to detect due536

to spectral mixing (Louargant et al., 2017). This is an important result as it537

allows to configure an acquisition system for a specific minimum size of leaves538

to detect. In this work, the remaining small leaves are already segmented as539

vegetation and can be considered as stable due to their sizes. Some features540

are still relevant to be extracted (such as the size of the leaf and its distance541

from the crop row) and should help in discriminating crop from weeds, other542

may suffer from the spectral mixing and become irrelevant (spectral signature,543

texture...).544
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There is still an important type of error. Indeed, a single pixel can be at the545

origin of errors leading to a bad fusion between two areas. It would therefore546

be interesting to study structural analysis methods in order to overcome these547

deficiencies. A possible method would be to vectorize the contours and look548

for an algorithm to reconnect or split the contours for instance according to549

convexity singularities.550

The main interest of the proposed method is its efficiency on mixes of plant551

species, acquired with natural light. It will be integrated in a processing chain552

dedicated to the discrimination of crops and weeds in agronomic scenes. Indeed,553

the detected leaves can be classified according to a large set of criteria (spectral554

signature, morphological characteristics, texture, distance from the crop row).555

The underlying hypothesis is that these criteria are more stable at the scale556

of the leaf than at the scale of the plant. However, this approach has certain557

limitations when leaves overlap others, as the detected shapes would be hetero-558

geneous. Multifoliate leaves could also be difficult to characterize. In that case,559

detecting leaflets instead of leaves may be more relevant.560

6. Conclusion561

The presented work shows that the CNN network enhances the quality of562

the segmentation based on multispectral images. Indeed, the background is563

well removed due to the upstream network with IBF and UFA modules with an564

accuracy of 95− 98% of mIoU. Our method is effective in the majority of cases,565

such as the segmentation of unifoliate leaves like Arabidopsis-Thaliana and early566

developmental stages of plants. However, our method is not effective in the567

advanced stages of plant development, especially on mustard which has highly568

segmented leaves. In this case our method detects leaflets instead of leaves.569

Their identification is nevertheless relevant for the phenotyping or classification570
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of weeds.571

We have seen that the developed method presents better SBD performances572

+[1.66− 7.89]% compared to studies that do not use data augmentation. How-573

ever, on small datasets, it presents lower SBD performances −[4.32 − 11.92]%574

compared to recent studies that use it. To make the method more consistent575

we will therefore focus on data augmentation. To improve the detection of576

classes it would be interesting to improve the upstream modules with atten-577

tion mechanisms. This method would allow to correct the illumination of the578

images. As well as the use of a MIRNET (Zamir et al., 2020) would allow to579

eliminate the noise. Finally, to improve the downstream modules, the use of580

Selective Kernel Convolution (Zamir et al., 2020) would allow a better fusion581

of the multi-scale information instead of Universal Function Approximator. We582

will then try to minimize the under-segmentation detected in our method, by583

using the Deep Watershed Transform for Instance Segmentation method (Bai584

and Urtasun, 2017).585

A small performance loss for the developed method is seen on our dataset586

compared to Komatsuna and LSC dataset. It would be interesting to evaluate587

the reason(s) leading to this loss as it may come from the uncontrolled acqui-588

sition conditions, the multispectral nature of the images, the size differences589

between leaves or the important number of leaves in each images.590

In all cases, this approach should lead to an enhancement of features ex-591

traction which may improve crop/weed classification. These increased perfor-592

mances would lead to a better tracking of the weed flora. These algorithms593

show promising and robust results in natural acquisition conditions. The seg-594

mentation results are obtained fast enough to be used in a real-time crop/weed595

discrimination setting and could be embedded on a Unmanned Ground Vehicle596

(UGV) for quick and localised intervention. Applied on images acquired from597
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an Unmanned Aerial Vehicle (UAV) this could be used for tool assisted plot598

management to help farmer in their decision making.599

7. Further research600

We defined the CNN architecture from the state of the art, adding compo-601

nents in an increasing development cycle. Thus, we have not established the602

contribution of each block on this paper. The first 3 modules (iit, ibf, ufa)603

and the last sprb modules have been widely developed in our previous study604

about vegetation segmentation, each module have showed a contribution. But605

further research is undergoing to show the impacts of different modules on the606

upstream and downstream of the network, and the proposed loss function, and607

loss weights. This task must be automated trough an hyper-parameter opti-608

mization process which we did’nt explored wet. And the watershed algorithm609

used to refine the output must be added to the neural network, and part of610

this optimization process. Finally more advanced data augmentation could be611

explored.612
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