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Abstract

The early stages of growth for two winter wheattigals, Apache and Rubisko, were
studied in field experiments based on destructigasurements and visible images. They
cover the period from the three-leaf stage toriillp at four sampling dates. Maps of
fractional vegetation cover (FVC) were establisf@dboth the crops and weeds. FVC
was automatically determined from the images witt5& M-RBF classifier, using Bag
of Visual Words vectors as inputs. The heteroggnieitpopulations and crop-weed
competition were studied using descriptive andreri@al statistics. The impact of weeds
on crops was evaluated by comparing the resulth sifnulations under unstressed
conditions.
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Introduction

In the next few decades, the issues of chemicaitirgduction and climate change will
require producers to pay particular attention eorgegular and precise monitoring of crop
growth. Biomass (BM) is one of the key variablespiecision agriculture for crop
management. It also enables addressing the negatpaet of harmful organisms on crop
growth by stress detection. Many remote sensors haen used so far to monitor plants
over time for crop protection management (Wesssal, 2020). The emergence of
artificial intelligence techniques such as macHe®ning (Suhet al, 2018) and deep
learning (Seet al, 2018), have also proved to be very efficient lmrating weeds in
cereals for site-specific weed management, allguigh-throughput field phenotyping
(HTFP). Thus, digital image approaches have be@madternative solution for deducing
plant biomass, especially at early growth stageas&@esus and Villegas, 2014).
However, to develop decision support tools, image ds no longer sufficient to make
predictions. Additional information -for example,nfoermation provided by
ecophysiological models- is needed. The main olwedf this paper was the assessment
of crop-weed competition using digital tools, conibg images with a simplified
ecophysiological model (Jeuffroy and Recous, 1998 cuses on the estimation of crop
biomass from a high-resolution visible imaging systto assess crop-weed competition
(Caussanel, 1989). The first part describes theisitign of data on two winter wheat
cultivars, Apache and Rubisko, on four differenteda Then, an image-processing
algorithm for crop-weeds discrimination is presentéhis leads to the creation of
vegetation maps (wheat vs. weeds) that help us etiberb understand crop-weed



competition through the weed pressure (WP) indicafm ecophysiological model
predicting wheat growth and identifying potentiakss is also presented. Heterogeneity
in populations and crop-weed competition was evatliasing descriptive statistics. In
the second part, the results are analyzed andsgieduo establish the portion of the wheat
stress related to weeds. The potential of visiltiages to detect the presence of such a
stress is discussed. The maintenance of a hostatmpu(i.e., weed) in a crop below a
nuisance threshold through non-destructive measamtais a major challenge for spatio-
temporal crop monitoring.

Materials and methods

Field experimental site: The study site was locatedDijon, Burgundy, France
(47°18°'32"N, 5°04'0.165” E). The experiment toolapé on micro-plots with a chalky-
clay deep soil. Two cultivars (Apache and Rubiskoyvinter wheat Triticum aestivum
L.) were sown on November 12, 2017, at a densi4&f seeds/m?2 on two plots of 15m
x 1.20m (total area = 18 3 each with 7 rows of plants spaced 15 cm apare T
experiments were conducted in 2018 during the eddges of wheat growth, from the
three-leaf stage to tillering on four sampling datdo nitrogen fertilizer was applied and
weeds were not controlled. The most frequent speftiand were annual dicots and
perennial dicots, which are not representative beat crops. The weed stand was
considered as a single class in the supervisediftaion.

Data collection: Wheat and weed plants were chariaed from RGB images acquired
with a spatial resolution of 0.2 mm/pixel and frolestructive measurements performed
at four different dates spanning from mid-Marctal-April at the end of the vegetative
stage (Figure 1). The plots were divided into feubplots representing 25% (area 1),
25% (area 2), 15% (area 3), and 35% (area 4) ofotiaé area for the Apache cultivar.
Each date corresponded to destructive measurermperitdsmed on a 0.342 m2 quadrat
with three replicates (R1 to R3).
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Figure 1. Experimental protocol applied to imagd dastructive measurements. The
size of the plot (number of areas) decreased awee because of the
destructive samplings. Area 1 is common to all slate



Three variables were studied at each samplingatatdor each stand: density; leaf area
index (LAI), measured using a planimeter; and ttyendatter biomass of aerial plant parts
(BM, g.nT?). The wheat and weed plants were collected sepaiagfore to be weighed
after oven drying at 80°C for 48h. Agronomists, exp in weed flora from the french
national research institute for agriculture, food ghe environment (INRAE), carried out
the weed identification. For each date, the twdspleere photographed using a Canon
EOS 450D (Canon Inc., Tokyo, Japan) camera fixaticaly on a movable sensing
platform made of PVC pipes 1 m above ground lewehst each photo exactly covered
one quadrat. As for a UAV platform, an orthomosalmto of the plot with a ~60%
overlap between successive images and a ~40% pueelaveen passes (3 passes = 3
columns) was constructed. Image Composite Editargidn 2.0.3.0, 2015, Microsoft
Corporation, Redmond, WA, USA), an image stitchergpam, to create a panoramic
image was used. Depending on the date, the imdgbatse ranged from ~250 images for
date 1 to ~50 images for date 4. The daily photihstically active radiation (PAR,
MJ.nT?) was measured by amorphous silicon sensors. Theasurements are required
as input data for the plant-growth model.

Image analysis: Before the use of a supervisedwesn classification method, a pre-
processing stage is required to discriminate batveed and vegetation based on a new
vegetation index called Metalndex, which is defiasda vote of six indices widely used
in the literature (Géet al, 2020). The image processing for crop/weed disoation
used machine learning classification (support vect@chine-radial basis function
(SVM-RBF)) combined with the Bag of Visual Wordghaique. The training data set
corresponded to 85% of the total dataset and caegof 3841 thumbnail images for
each class of plant. All the algorithms were impdeed in Matlab (Version 2016b, The
Mathworks, Natick, MA, USA). At the end of the pemsture, two distinct vegetation maps
were obtained and the fractional vegetation codegarh stand was calculated with:
FVCc for wheat and FVCw for weeds. Subsequentlynditator of weed pressure (WP)
namely, the FVCw/FVCc ratio was defined to chanargethe crop-weed competition.
The results were compared to destructive measutsméabove-ground biomass (BM),
and calibration curves were deduced in order td teplant-growth model based on the
Monteith equation with FVC.

Statistical analysis: An analysis of variance (AN®Wvas performed to test which
factors (cultivar, area, column) showed a significaffect on both crop and weed
vegetation cover in order to assess the crop/westetition. The two variables, FVCc
and FVCw, were specifically studied concerning ¢hfactors: the area (4 areas), the
column (3 columns), and their interaction. Statatianalyses were performed in the
Renvironment for statistical computing, using Rsvan 4.0.3 (R Core Team, 2020) and
RStudio (RStudio Team, 2020), an integrated deveéy environment for R.
Description of the plant-growth model: The modebwaplied to both wheat cultivars. It
calculates the dry matter biomass of the aeriaspdmplants (Jeuffroy and Recous, 1999)
at a daily time-step during the vegetative phagt wo stress. Starting from the end of
winter with an initial crop aerial biomass valueMBinitial, g.nT?) deduced from images
the biomass was then calculated every day. The @étbnéequation (Monteith, 1972,
1977) was calculated and the accumulated dry bismvas established depending on the
photosynthetically active radiation (PAR) and othlant parameters such as the radiation
intercepted by the plants (APAR) and the radiatise efficiency £). A detailed
description can be found in Gékal.(2019). The health status of the wheat was andlyze
at four dates by comparing the wheat biomass steuilander unstressed conditions,




BMsimuiated t0 the actual biomass, BMened The difference, BMbserved - BMsimuiated,
indicated the presence of crop stress due to weedther stressors, depending on the
location and the date of observation, but did xplagn its cause.

Results and discussion

Figure 2 presents the spatio-temporal evoluticgh@¥egetation cover of the crop (FVCc)
and weed (FVCw) stands for the Apache cultivar.iimesults were observed with the
Rubisko cultivar. Over time, the wheat and weednmginocan be finely described with a
strong presence of weeds at the top left of the plguantitative analysis can be carried
out for both stands for each cultivars.
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Figure 2. Example of FVCc and FVCw digital mapsAgache cultivar for the four
dates. Red color is associatied with low value$-¥Cc (wheat) and,
conversely, with high values of FVCw (weeds).

Concerning the FVC values, Figure 3a shows thastiwed of the winter wheat cultivar
Apache is slightly more heterogeneous than the $kolones.
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Figure 3. Temporal evolution of a) FVCc and FVCwvd dr) weed pressure indicator
(WP) for both the Apache and Rubisko cultivars.



In addition, at the early dates, the FVC valuethefApache cultivar appear to be slightly
lower than those of Rubisko, which is explainedtlyeing a variety with a less-dense
tillering. As for the weed stand, the FVCw valuesrevsimilar for both cultivars, with
slightly more heterogeneity observed for Rubiskae@ossible explanation for this is
higher weed diversity in the Rubisko plot. Over d@irand for both cultivars, weed
populations increased slightly and became morerégde@eous, probably due to the
emergence of new weed flora. In order to assessinipact of weeds on wheat
development, a weed pressure indicator (WP) wasldped. Figure 3b indicates the
temporal evolution of the WP. For both cultivahsstslightly increased until date 3, with
a higher dispersion of the values, and then itebesd. This dispersion is associated with
an increase in the spatial heterogeneity of weedhfand is particularly clear in the
Rubisko plot.
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Figure 4. Temporal evolution of the distribution wdlues depending on the area
(4 horizontal rows) and column (3 vertical columf)a) FVCc (%) for the Apache
cultivar b) FVCc (%) for the Rubisko cultivar ¢) EW (%) for the Apache cultivar
and d) FVCw (%) for the Rubisko cultivar.

A detailed description of the two variables FVCadafvCw was carried out using
ANOVA analysis. Whatever the date, no significaotrelation between these two



variables was observed (Kendall's test). Moreothex distributions of FVCc and FVCw
were not normal regardless of the area and therso(lrigure 4). Subsequently, different
non-parametric tests were used to test the infli@hthe two factors: area and column.
In addition, the temporal evolution of FVCc shoveatdincreasingly wide distribution on
the other dates due to an increase in leaf areaaag@ater dispersion of values was
observed indicating spatial variation in the whgetwth (Figures 4a-b). The variance
comparison demonstrated that the factor area abk agethe column factor had a
significant influence on FVCc for the first threatds for the Apache cultivar. The
interaction (area vs. column) is also significartha first two dates (Test of Scheirer Ray
Hare). For the Rubisko cultivar, the column fagsanot significant, nor is the interaction.
Concerning the weeds (Figures 4c-d), for date &, distribution is clearly different
according to the area, the column, and the whdétvau It exhibits different shapes.
Several non-parametric tests were used for the FV&vable to evaluate the influence
of the two factors area and column. In the Appgabg with the area factor as well as
the column factor, a significant effect was obsdnkeor areas 2 and 3, the test of Scheirer
Ray Hare did not indicate a significant effect. \Wd#es, concerning the Rubisko plot, only
the area factor presented a significant influencéhe FVCw variable.

Plant-growth model to characterize wheat growthustathe simulated aboveground
biomass of the crop, BMhuiateds Was compared to the actual biomass,.BMeq at the
four dates and for each cultivar. The model stasith the initial value of the crop
aboveground biomass (BMa, g.nT?). It is normally fed by destructive biomass
measurement, which has been substituted, by proxsmasing data (FVCc) from
calibration (Figure 5). Meriennet al, (2019) demonstrated that FVCc and BM were
highly linearly correlated (r2 = 0.93) for the Apeccultivar. Concerning the Rubisko
cultivar, a new correlation was obtained withrarsger correlation (r2 = 0.98). The results
are presented in Figure 5. The results confirmttinatcalibration method for estimating
the aerial biomass from the parameters obtained th@ image can be generalized to the
early growth stage of wheat crops.
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Figure 5. Linear regression (dashed line) betwekhaBd FVC displayed for wheat
Apache cultivar (black) and Rubisko cultivar (grefydpr each date, there are
three replicates (the filled circle) and the saglares represent the mean
and the standard deviation (vertical errors baaf)as for each date.




Figure 6 presents the deviation (%) betweenoBMesand BMimuiated fOr each image
acquired for each cultivar and for the last threed. The BMmulatedof date 2 is compared
with the images of date 2 located at the same mhtlee image of date 1 and so on. One
can notice that in most cases, the predicted bisnsagreater than the experimental one,
indicating a negative value of deviation and theffecting a stress with no explanation
of its origin.
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Figure 6. Temporal evolution of crop growth statiugh the deviation from the
model for both cultivars (red color for Apache ditde color for Rubisko).

Over time, the deviation increased and almost aintiehavior was observed whatever
the cultivar. In order to understand the crop-weaapetition, it is necessary to correlate
these results with those of the weed pressureatali¢Fig. 3b). For the last three dates,
the WP values hardly increase, whereas the dewmidtiom the model increases.

Consequently, on date 4 the majority of stressabably not related to weeds. The main
hypothesis is that this stress is related to tlok& @ nitrogen supply. However, this

hypothesis remains unchecked, as no precise measorehas been performed to
quantify the nitrogen in plants and soil.

Conclusion

Digital farming solutions (visible images, statsti analysis of extracted parameters and
plant-growth model) have been used to charactédnzéealth status of two winter wheat
cultivars (Apache and Rubisko). With the spatiaperal mapping of crop and weeds,
areas with a high weed density or low wheat grdveive been highlighted with the future
aim of concentrating on agricultural interventiof$is led us to assess the crop-weed
competition with a simplified ecophysiological mad&he results of this study
demonstrate the potential of visible images totifenstress and, based on the observation
of weed pressure, it is shown that the major sisasst always due to weeds. This simple
and fast method based on proximal detection allogys-throughput field phenotyping
and can be transposed to UAV images. It offers oy results in agroecological
cropping systems, where high responsiveness ig@ etaallenge for site-specific weed
management.
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