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Highlights 
- Crop diversification is essential for agroecological weed management 

- Mechanistic weed models are crucial to synthesize knowledge on crop diversification 

- Key processes are emergence, morphology, shade response and biophysical soil memory 

- FLORSYS is used to track and promote crop ideotypes and crop-diverse solutions 

- Crop diversification benefits depend on production situations and cropping systems 
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Abstract 
 

Crop diversification, both in time and in space, is essential for agroecological pest management. Process-

based weed dynamics models are valuable tools to investigate this issue. Indeed, (1) weeds are the most 

harmful pest in arable crops and are essential for biodiversity, and (2) the processes driving crop-weed 

interactions are similar to those for crop-crop interactions in crop mixtures and crop rotations. Such 

models (3) synthesize existing and produce emergent knowledge on agroecological levers such as crop 

diversification and (4) mobilize this knowledge to cropping-system design, and (5) transfer research-

based knowledge to stakeholders. The present paper illustrates these five items with the FLORSYS model. 

Its inputs are a detailed list of cultural operations over several years (crop succession including cover 

crops and crop mixtures, management techniques), together with daily weather data, soil characteristics 

and a regional weed species pool. FLORSYS runs at a daily time step, (1) focusing on processes leading 

to plant emergence and establishment of crop and weed species with different ecological requirements 

(essential for crops sown in different seasons and in mixtures where timing often determines the fate of 

a species), (2) representing and modelling the functioning of heterogeneous crop-weed canopies 

including diverse plant ages, morphologies and shade responses (as in crop mixtures), (3) including a 

carryover effect on future cropping seasons (which is essential for crop rotations), and (4) assessing 

weed contribution to biodiversity. Detailed biophysical model outputs allow understanding the 

performance of a given crop, management technique or cropping system. Together with stakeholders, 

detailed model outputs were aggregated into indicators of crop production as well as weed benefits and 

harmfulness to simplify the multicriteria comparison of cropping systems. To facilitate decision support, 

FLORSYS was used as a virtual farm-field network, and the resulting simulation outputs were aggregated 

into a faster and easier-to-use metamodel (DECIFLORSYS) using machine learning techniques. These 

models were used to evaluate and promote the benefits of crop diversification for agroecological weed 

management, by (1) identifying crop ideotypes, (2) tracking crop-diverse solutions in farm-field 

networks, (3) evaluating crop-diverse solutions proposed by experts and stakeholders, and (4) feeding 

participatory workshops with farmers. The case studies demonstrate that the benefits of crop 

diversification depend on the production situations and cropping systems, and thus the need for flexible 

rules on crop diversification and the usefulness of models such as FLORSYS to establish these rules. 

 

Keywords. ecological intensification; mechanistic model; biological interaction; cropping system 

design; cover crop; intercropping; rotation; crop-weed competition; ideotype 
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1 Introduction 
 

Weeds are an interesting model to investigate ecological intensification as they are the most harmful 

pest for crop production (Oerke, 2006), explaining why herbicides amount for a large part of sprayed 

pesticide (more than 40% of sold pesticides in France, Agreste, 2019). To date, the only alternative to 

the highly efficient herbicides is to combine a large range of partially effective techniques (Liebman and 

Dyck, 1993; Liebman and Gallandt, 1997) to manipulate biotic interactions (Bommarco et al., 2013). 

Weeds can also be beneficial, feeding fauna or protecting the soil (Blaix et al., 2018). Finally, the 

analysis of crop-weed interactions, which is essential for non-chemical weed control, greatly contributes 

to understand and manage crop diversification. The latter is a major component of ecological 

intensification, both in time (cover crops, crop succession) and in space (variety mixtures, intercropping, 

regional crop pattern) (Weisberger et al., 2019).  

 

Rotating winter and spring crops alternates different growing seasons, deteriorating the conditions for 

weeds with stringent ecological requirements (e.g. autumn-emerging weeds, Chauvel et al., 2001) and 

allows timing specific control measures relatively to the weeds' period of susceptibility (e.g. tillage and 

weed germination, Cordeau et al., 2017). Similarly, diversifying crop canopies by mixing cultivars or 

species reduces the probability of weeds encountering suitable growing environments, mainly by 

increasing competition for resources and leaving fewer niches for weeds (Petit et al., 2018). The effect 

of habitat diversity at the landscape level also influences weed communities. The frequency and/or 

probability of weed species presence inside individual fields depend on adjacent semi-natural habitats 

and the management of neighbouring fields (Alignier and Petit, 2012), with weed floras getting 

increasingly similar with the proximity of the analysed fields (Alignier et al., 2013). Finally, companion 

crops or fallow cover crops can be introduced into a rotation to contribute to weed management, either 

directly by suppressing weeds by competition (Teasdale, 1996) and/or allelopathy (Sturm et al., 2018), 

or indirectly by favouring weed predators (Blubaugh et al., 2016). 

 

Tailoring crop diversification to integrated pest management is particularly difficult when pest 

propagules survive for several years in a field as is the case for weeds (Lewis, 1973). A management 

decision has repercussions over several years, and benefits are often visible only in the following crop 

or even later. Testing the entire range of cropping systems resulting from combining crops and 

techniques in time and in space in experiments or farm-field networks is literally impossible, particularly 

when evaluating long-term effects and variability in response to weather. This is the reason why 

simulation models are increasingly used to evaluate and design cropping systems (Ould-Sidi and 

Lescourret, 2011; Dury et al., 2012; Martin et al., 2013). They are also a formidable tool to synthesize 

knowledge produced by different teams and disciplines, and they can be used to develop decision-

support systems or to interact with farmers. 

 

Because of the many facets of weed impacts, and their sensitivity to management techniques and 

biological regulations, we hypothesize that weed dynamics models are a particularly appropriate case 

study for investigating ecological intensification in general and crop diversification in particular. The 

latter is supported further by the fact that plant-plant interactions in intercropping are driven by the same 

processes as in a crop-weed canopy and that crops, just as weeds, have carry-over effects on the 

following crops in a rotation. Both crop-crop and crop-weed canopies are heterogeneous canopies where 

plants compete for space, light, nutrients and water (Teasdale, 1996), release allelopathic compounds 

that hinder competitors (Sturm et al., 2018), or harbour pests that can spread to their neighbours or 

successors (Gutteridge et al., 2006). Similarly to intercropping, crops and weeds could also benefit from 

each other, e.g. weeds could reduce nitrate leaching, protect soil from erosion or harbour pest enemies, 

though these aspects are rarely appreciated (Blaix et al., 2018; Moreau et al., 2020). While crop models 

historically mostly focused on homogeneous monospecies canopies at the annual scale (Keating and 

Thorburn, 2018), weed models, per force, were always at least bi-species, with a particular focus on the 

effects of management techniques at a multiannual scale (Colbach and Debaeke, 1998; Holst et al., 2007; 

Freckleton and Stephens, 2009) as weed seeds survive for several years in the soil (Lewis, 1973).  
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Here, we intend to illustrate that weed models are a useful basis for a modelling framework to synthesize 

knowledge on the functions and effects of crop diversity, to produce emergent knowledge on the 

functioning of the agroecosystems and for systems design, and to promote the benefits of ecological 

intensification, illustrating with the example of crop diversification (Figure 1). Not all weed dynamics 

models (Colbach and Debaeke, 1998; Holst et al., 2007; Freckleton and Stephens, 2009) are appropriate 

to investigate and implement crop diversification. Suitable models must be both multispecies and 

multiannual, they must be spatially explicit and include all management techniques, with interactions 

among techniques and with pedoclimatic conditions. Mechanistic models make it easier than empirical 

ones to synthesize knowledge on functions and effects of processes (Colbach, 2010). They make it easier 

to add new species, processes, knowledge, they have a larger domain of validity without reestimating 

parameters when switching regions, and their conclusions are more robust as knowing the cause of an 

effect makes it easier to predict its domain of validity. These advantages though come at a cost in terms 

of speed and easiness of use (Colbach, 2010). Moreover, tailoring the models' structures and outputs to 

stakeholders' needs is essential to ensure that models are actually used and to translate the synthesized 

knowledge into indicators relevant for decision making in farming (Voinov and Bousquet, 2010; Prost 

et al., 2012). 

 

Here, the objective was to use an existing weed dynamics model to illustrate how such a model can be 

used to (1) synthesize knowledge relevant for biological interactions and agroecological management 

levers, using spatio-temporal crop diversification and the major concerned biological interactions as a 

case study, (2) evaluate and design multiperformant cropping systems based on diverse crops, and 

(3) conclude on the rules driving the efficacy of crop diversification for agroecological weed 

management. The model used as a case study was FLORSYS (Gardarin et al., 2012; Munier-Jolain et al., 

2013; Colbach et al., 2014b; Mézière et al., 2015) which is, to our knowledge, the weed dynamics model 

that answers most of the requirements listed above. 

 

 

2 How FLORSYS models the effects of crop diversification 
 

This section first gives a general overview of the model used as a case study, followed by sections 

focusing on the features and functions that are relevant for considering crop diversification and 

demonstrating how these were included in the FLORSYS model (Table 1). This section mostly uses 

previous publications to support our arguments. 

 

2.1 General structure of FLORSYS 
 

FLORSYS (Gardarin et al., 2012; Munier-Jolain et al., 2013; Colbach et al., 2014b; Mézière et al., 2015) 

is a virtual field on which many and diverse cropping systems can be tested and evaluated, in terms of 

crop production, weed benefits (e.g. biodiversity) and detriments (e.g. harmfulness for production). The 

user enters a list of cultural operations lasting for several years, similar to the operations applied to a 

real field in an experimental station or a farmer's field, together with latitude, daily weather data, and 

soil characteristics (Figure 2). The list includes all operations (i.e. tillage, sowing, mechanical weeding, 

fertilisation, pesticide spraying, mowing and harvesting operations), which must be described in detail 

in terms of dates and options (e.g. date, density, depth, interrow, orientation, equipment, species and 

cultivars, seed treatments, impurity rate of the seed lot for a sowing operation) over the many years or 

decades that the simulation is meant to run.  

 

These inputs influence the annual life cycle of both crop and weeds, based on a mechanistic 

representation of biological interactions and other biophysical processes (section 2.2) at the "grain" of 

the individual (plant or seed)  day. Simpler, empirical relationships are preferred for processes whose 

mechanistic representation would require to downscale to the cellular or molecular scale (e.g., seasonal 

seed dormancy is predicted from calendar date rather than abscissic acid content or phytochrome 

activation). For discussion on mechanistic vs empirical pest modelling, see Colbach (2010). 
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The thorough representation of biophysical processes produces very detailed outputs, at a daily time 

step and in 3D, which are essential to understand why a given technique or cropping system results in a 

given performance. The model thus allows testing both temporal and spatial crop diversity, by 

simulating diverse crop rotations (including cover crops during summer fallow and multiannual 

grassland) and crop mixtures (including undersown cover crops). The model is currently parameterized 

for 26 frequent and contrasting annual weed species and 33 cash and cover crop species (section A.2 

online).  

 

2.2 Which processes are crucial for crop diversification 
 

To understand and model the effects and responses of crop diversity, three key steps must be considered 

in the model (Table 1.B).  

 

2.2.1 Emergence timing and establishment: the first out wins the race 

Processes relative to emergence and early growth are essential to predict crop establishment in terms of 

timing and magnitude for species with diverse ecological requirements. This is crucial for rotations 

including crops sown in different seasons and, even more, for crop mixtures as the first established 

species often outgrows later emerging species, even if the latter are potentially more competitive. The 

same applies when focusing on weed dynamics as weed floras consist of species emerging in different 

seasons and the most harmful weed species are usually those that emerge either with or slightly earlier 

than the crop (Freckleton and Watkinson, 1998; Forcella et al., 2000; Fahad et al., 2015; Swanton et al., 

2015). This explains why weed dynamics models are helpful to understand crop emergence in crop-

diverse systems. 

 

Initially, crop emergence models made emergence timing simply depend on temperature (Donatelli and 

Marchetti, 1994). Processes such as germination failure and pre-emergent seedling mortality were only 

considered when emergence failure in particular crop species was investigated (e.g. sugar beet, Dürr et 

al., 2001). FLORSYS took this generic approach a step further, by including processes relevant not only 

for weeds but also for crop diversification (Figure 3). For instance, cover crop seeds can be broadcast 

onto the soil surface where they are exposed to predation and have more trouble germinating (Gardarin 

et al., 2012; Cordeau et al., 2015) because of insufficient soil-seed contact (Figure 3.A and D). 

Moreover, genetic progress is slower for many minor crops introduced into cropping systems for 

diversification purposes (Meynard et al., 2018). For instance, cover crop seeds are often more dormant 

and smaller than major grain crops (e.g. average seed mass of FLORSYS cover crops is 20 mg, compared 

to 57 mg and 195 mg for cereals and grain legumes, respectively), and their seed lots can also comprise 

more impurities, i.e. seeds of other cultivars or species. This means less and slower germination (Figure 

3.D), more seedling loss due to insufficient seed reserves (Figure 3.E) and insufficient shoot strength to 

grow around soil clods (Figure 3.F) as well as more seeds of other cultivars or species (whether crop or 

weed) introduced into the field (Figure 3.C). 

 

2.2.2 Competition for resources: be large or be flexible 

Once established, the major interaction between different plant species is competition for light and soil 

resources. In high-input agroecosystems of temperate climates, light is generally the resource for which 

crop and weed plants compete the most (Wilson and Tilman, 1993; Perry et al., 2003), and the same 

applies to multispecies crop canopies. FLORSYS splits competition for light into two processes. First, as 

in classic ecophysiological models, biomass increase is the difference between the newly produced 

photosynthate as a function of intercepted photosynthetic active radiation (PAR), species light use 

efficiency, species temperature requirements and air temperature on one hand, and, on the other hand, 

photosynthate loss due to respiration as a function of the existing biomass of the various plant organs 

(Colbach et al., 2014b). In contrast to most crop models, FLORSYS simulates these processes at the scale 

of each individual plant, making the intercepted light not only depend on the plant's leaf area, but also 

on where the plant is located in the canopy and how much light is intercepted by its neighbours (section 

2.3). This level of detail is necessary to realistically represent the structure and interactions of a 
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heterogeneous crop-weed canopy (Renton and Chauhan, 2017) and essential to allow simulating any 

number of species combinations in a canopy, a prerequisite to tackle crop diversification. 

 

The other key difference with existing crop models is the inclusion of shading response (Munier-Jolain 

et al., 2014; Colbach et al., 2020b). FLORSYS simulates the shading response of key aboveground 

morphological plant variables (see examples in Table 2). This response depends on the species, and the 

species parameters are measured in garden-plot experiments where individual plants are grown either in 

unshaded conditions or under shading nets mimicking shading by neighbour plants. For each variable 

and each plant species at a given phenological stage, a non-linear regression is then fitted vs. shading 

intensity to estimate (1) the potential value in unshaded condition and (2) a parameter assessing the 

shading response of the variable (details in section B.3 online). This approach allowed identifying the 

most plastic plant variables and the types of shading response of weeds and crop species from different 

botanical families (Table 2). In the studied species and varieties, the morphological characteristics that 

the most responded to shading are the specific leaf area (increasing leaf area for a given leaf biomass) 

and specific plant height (increasing plant height for a given plant biomass); generally, non-legume 

dicotyledenous species respond more than Poaceae, and weeds more than crops. The approach also 

demonstrated that there are potentially two strategies, either be large by occupying the field before 

neighbours cast shade and leave no space available for latecomers, or be flexible by changing one's plant 

shape to avoid or outgrow shade cast by early arrivals (also see section 3.3).  

 

2.2.3 The biophysical field memory: vengeance is a dish best served cold 

Crops do not only interact inside a multispecies canopy, they also interact over time by changing the 

biophysical environment. Summer cover crops are often chosen specifically for this carryover effect 

(e.g. to reduce nitrate leaching, soil evapotranspiration and/or weed growth) (McCracken et al., 1994; 

Teasdale, 1996; Carrer et al., 2018; Gfeller et al., 2018; Sturm et al., 2018) but can also have adverse 

effects (e.g. reducing soil water available for cash crops in case of late termination, Munawar et al., 

1990). This field memory also applies to successive crops in a rotation. FLORSYS includes the memory 

of physical state variables, e.g., soil structure and soil water, which will affect germination and 

emergence of both subsequent crops and weed communities (section 2.2.1). The effects of management 

techniques, plant communities and weather on the physical state variables do not need to be modelled 

specifically for crop and weed canopies. Generic submodels from crop models such as STICS (Brisson 

et al., 2003) or decision support systems such as DéciBlé (Chatelin et al., 2005) were linked to FLORSYS 

(Gardarin et al., 2012), demonstrating the role of mechanistic models for aggregating knowledge 

produced by different teams and disciplines. 

 

The biological memory, i.e. the weed seed bank, is the main reason why weeds are so difficult to manage. 

Indeed, it is usually not the sole weed plant surviving in one year that damages crop production, but the 

hundreds or thousands of seeds it produces, which will infest later crops (Cardina et al., 1991) according 

to the processes described in section 2.2.1. Crops can also directly contribute to weed seed bank 

replenishment, via volunteers resulting from crop seeds lost before or during harvests (Gruber et al., 

2008). These volunteers can compete with other crop species, resulting in yield loss (Odonovan et al., 

1989), or contaminate the production of other cultivars of the same species, for instance by changing 

the fatty-acid composition of oilseed rape (Baux et al., 2011). The risk of a species leading to volunteers 

depends on seed persistence and temperature requirements (section 2.2.1). In temperate conditions, 

oilseed rape volunteers are thus much more common than wheat and, particularly, maize volunteers 

(Gruber et al., 2008). 

 

 

2.3 Canopy and plant structure tailored to many contrasting species  
FLORSYS consists of three spatial layers (Munier-Jolain et al., 2013; Colbach et al., 2018; Pointurier et 

al., 2021): (1) a generic 3D representation of plant structure, (2) a 3D location of leaf area inside the 

field resulting from individual plants, and (3) a spatially-explicit representation of field clusters and 

semi-natural habitats. This representation applies to both crop and weed species, irrespective of clade, 

plant growth form, plant size or shading response, as demonstrated by validation studies (section 2.5). 
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2.3.1 A generic plant structure 

Because weed floras consist of many contrasting annual species (Fried et al., 2010), FLORSYS needed 

to include many contrasting annual species. The representation of individual plants had to be compatible 

with multiannual and multi-field simulations of thousands of plants per field. Consequently, detailed 

representations such as those used in functional-structural plant models (Evers et al., 2016; Gaudio et 

al., 2019) were too complicated for our purpose. 

 

Instead, FLORSYS represents each plant as a combination of a cylinder (for the above-ground part of the 

plant) and a spilled cone (for the root system) (Figure 4.A) whose dimensions are determined daily by 

plant biomass and a series of state variables depending on species, plant stage and past shading exposure. 

For instance, the cylinder dimensions are determined by specific plant height and width (Table 2). Then, 

the plant variables relevant for competition processes are distributed inside the plant volume. For 

instance, leaf area is calculated from specific leaf area (i.e. plant leaf area per unit of leaf biomass) and 

leaf biomass ratio (i.e. plant leaf biomass per unit of aboveground biomass), and then distributed along 

layers according to median leaf area height (i.e. relative plant height below which 50% of leaf area are 

located) (Table 2). In total, in addition to plant above-ground biomass, eight state variables are used to 

determine above-ground plant morphology. These variables are derived from eight parameters 

describing potential morphology for a given species and stage, and five parameters describing species 

response to shading (section 2.2.2). 

 

2.3.2 A voxel-based 3D representation of the canopy 

At plant emergence (section 2.2.1), FLORSYS places each plant on the field map (Figure 4.B). Crop 

plants are usually sown in rows, and their pattern depends on the user's choices in terms of density, 

interrow width, sowing precision and orientation. But, they can also be sown in strips or broadcast, 

which can be the case for summer cover crops. Weeds are placed in aggregated patches, as this is usually 

the case in fields (Cardina et al., 1997; Colbach et al., 2000; Pollnac et al., 2008). Above and below-

ground areas are discretized with voxels (3D pixels), including the leaf area and root density of the 

different plants of the field (Figure 4.C). Each day, light trickles down successive voxel layers, 

depending on incident radiation (PAR), leaf area, species extinction coefficients and solar angle (Figure 

4.D). This representation allows calculating not only the PAR intercepted by each individual plant, but 

also the shade cast onto neighbour plants, thus laying the basis for plant-plant competition for light 

(section 2.2.2). A similar approach is currently being implemented to simulate plant:plant competition 

for soil resources (e.g., water, Moreau et al., 2018; nitrogen, Moreau et al., 2021; Perthame et al., 

submitted). 

 

In addition to representing a large diversity of sowing pattern for single-species crops, FLORSYS's 

modelling approach allows simulating any kind of crop mixture, unlimited by the number of species, 

their characteristics, sowing patterns and dates.  

 

2.3.3 A spatially-explicit field pattern 

Crop diversification can occur not only inside each field, by mixing or alternating different crops. It is 

also essential to consider it at the landscape scale, which is to date rarely considered in crop models or 

in cropping-system design. Indeed, landscape crop patterns contribute to weed dynamics by placing 

favourable habitats, both in time and in space (Petit et al., 2013). This effect is larger for more mobile 

pests (Angelella et al., 2016) than for weeds (Petit et al., 2016). Crops can also directly interact by 

exchanging pollen which can affect harvest purity (Bilsborrow et al., 1998; Klein et al., 2003; Devaux 

et al., 2008), or indirectly by shattered crop seeds which can contribute to the establishment of feral 

populations in semi-natural habitats (Squire et al., 2011) and to volunteer populations in neighbour fields 

(Colbach, 2009). Both dispersal mechanisms make difficult or even impossible the coexistence of 

different production chains (Bilsborrow et al., 1998; Sausse et al., 2013). 

 

FLORSYS allows tackling some of these questions by upscaling from the field to the field cluster, 

simulating several fields and semi-natural habitats in parallel and, at seed shed, dispersing weed seeds 

as well as shattered crop seeds from a source plot to neighbouring habitats (Colbach et al., 2018). Seed 
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dispersal distance increases with weed plant height and decreases with seed mass; it is higher for seeds 

dispersed by animals and wind than for those dispersed by gravity (Thomson et al., 2011; Colbach et 

al., 2018). The dispersed seeds then colonize new fields and habitats or integrate existing populations, 

both contributing to wild plant biodiversity and damaging crops.  

 

FLORSYS disregards seed dispersal related to human activities even though weed seeds have been 

reported to travel by agricultural machinery (Hodkinson and Thompson, 1997; Humston et al., 2005; 

Petit et al., 2012). These anthropogenic dispersal processes can lead to long dispersal events, particularly 

between distant fields of a given farmer. However, to date, proportions of seeds dispersed by machinery 

relatively to the natural dispersal fraction is only known in a few particular cases (Gao et al., 2018), 

which makes it difficult to include in a model. 

 

 

2.4 Parameterize many contrasting species 
 

A model aiming to understand and simulate the effects of crop diversification must necessarily include 

a large number of contrasting species. However, the mechanistic approach that was chosen here to 

simplify the continuous synthesis of knowledge (Colbach, 2010) requires an enormous amount of 

parameters, which hinders the addition of new species to the model. This is the reason why Gardarin et 

al. (Gardarin et al., 2012; Gardarin et al., 2016; Colbach et al., 2020b) developed a new methodology 

based on functional relationships to estimate difficult-to-measure model parameters from easily 

measured species traits, trait data bases and/or expert opinion (Figure 5). The approach was recently 

extended to crop species (Gardarin et al., 2016; Colbach et al., 2020b). It is the combination of these 

functional relationships with the generic representation of plants and canopies, which makes FLORSYS 

such a unique tool for synthesizing and using knowledge on plant species diversity in general and crop 

diversity in particular. 

 

 

2.5 Checking virtual against actual reality 
 

The model was evaluated with expert knowledge and independent observations in order to check 

modelling hypotheses, to determine the domain of validity and prediction error, and to identify missing 

or inadequately represented processes. Evaluation is an ongoing process, constantly acquiring new data 

to extend the domain of validity and rerunning simulations against previous data when new submodels 

are added to FLORSYS.  

 

Historically, the first evaluation step consisted in delimiting a first domain of validity based on the model 

structure. This domain excluded, for instance, weed floras predominantly consisting of perennials, 

locations with frequent drought or nitrogen stress as these factors are not yet included in the model 

(Colbach et al., 2014a). The second step consisted in setting up short-term experiments in controlled 

conditions or well monitored field experiments (lasting 1-2 years) for evaluating key processes or 

functions (e.g. emergence timing and abundance, light penetration into the canopy, parameter estimation 

from traits) (Colbach et al., 2006; Gardarin, 2008; Munier-Jolain et al., 2013). The last step consisted in 

gathering data from multi-annual field trials (lasting 10 years and more) and farmers' fields (Colbach et 

al., 2016) to evaluate how well FLORSYS predicts weed floras (density, biomass, seed bank), crop 

biomass and yields over a large range of arable cropping systems and pedoclimates. Adequate data were 

difficult to obtain, particularly for long time series and in terms of weed observation (particularly initial 

weed seed bank), which sometimes made it impossible to conclude whether the model was deficient or 

the inputs badly estimated. 

 

The evaluation showed that crop biomass and yields, weed seed banks, daily weed species densities and, 

particularly, densities averaged over the years were generally well predicted and ranked (e.g. modelling 

efficiency of 0.55 for crop yield, 85% of observed weed species density included inside the simulated 

confidence interval) as long as a corrective function was added to keep weeds from flowering during 
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winter at more southern latitudes (Colbach et al., 2016; Pointurier et al., 2021) (see details in section 

A.5 online). Prediction quality was usually better at the species than at the community scale, and better 

at the rotation than at the daily scale. The evaluation also identified missing processes, which set off 

another round of modelling (e.g. competition for nitrogen and water, seed predation by carabids). 

 

 

3 How FLORSYS was tailored and used to address real-world 
problems 

 

This section presents different methodologies for using a model such as FLORSYS to investigate and 

manage ecological intensification, and illustrates them with a focus on crop diversification. 

 

 

3.1 Tailor outputs to stakeholders' needs  
 

FLORSYS's mechanistic approach makes it possible to produce detailed outputs (at a daily time step and 

in 3D) mimicking measurements on actual canopies and biophysical environments in experimental or 

farmers' fields. These outputs are essential for scientists wanting to synthesize knowledge and 

understand the functioning of the canopy in the virtual field.  

 

To simplify the comparison of cropping systems (e.g., with different rotations, intercroppings and/or 

management plans) and to make simulations more accessible to outsiders, the detailed outputs are 

translated into indicators assessing crop production as well as weed impacts (i.e. benefits and 

detriments). FLORSYS production indicators comprise crop yield in terms of weight and energy. The 

latter allows comparing the production of diverse crops, to sum production over rotations and field 

clusters. Indicators of weed detriments describe weed harmfulness for crop production and were 

developed in interaction with farmers and crop advisors (Mézière et al., 2015; Colas et al., 2020), 

considering direct (crop yield loss and harvest pollution by weed debris) and indirect weed harmfulness 

for crop production (increase in weed-borne pests), technical harmfulness (harvesting problems due to 

weeds blocking the combine), and sociological harmfulness (field infestation as a proxy of the farmers' 

worry of being thought incompetent by their peers if their fields are infested with weeds even if there is 

no effect on yield). 
Weed-benefit indicators were developed with ecologists and agronomists (Mézière et al., 2015; Colbach 

et al., 2020a; Moreau et al., 2020) and reflect the contribution that weeds make to biodiversity and the 

environment. They consider wild plant diversity (weed species richness and evenness), the role of weeds 

for feeding three major guilds in the agro-ecosystems (pollinators, farmland birds, carabids) and for 

reducing three physical farming impacts on the environment (nitrate leaching, pesticide transfer, soil 

erosion). 

 

Calculating these indicators via a mechanistic model allows predicting them for any combination of crop 

and weed flora, once the various species are parameterized in FLORSYS. This is a fundamental difference 

from previous approaches in weed science, notably for estimating yield loss, which established two-by-

two empirical relationships linking yield of crop x to a state variable (usually plant density) of weed y 

(e.g., Cousens, 1985). Such equations are next to impossible to use to assess the effects of crop 

diversification, as they are specific to a given crop-weed couple as well as to the location and resource 

availability of the field where they were established. 

 

 

3.2 Move from process-based modelling to decision support 
 

Despite these tailoring efforts, FLORSYS remains a research model in that (1) it requires numerous input 

variables to be assigned and parameters to be tuned, particularly when including many diverse crops, 

(2) it evaluates cropping-system candidates rather than actually designing these candidates, and (3) its 

mechanistic and individual-based approach induces a high algorithmic complexity and very slow 
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simulations (Colbach, 2010). In order to address these limitations, we transformed FLORSYS into a 

decision support system, DECIFLORSYS co-designed with future users (Colas, 2018; Colas et al., 2020) 

and resulting from metamodeling FLORSYS (Colas, 2018) (section C online for further details). 

The first step consisted in building a large set of simulation results by using the research model to set 

up a network of several thousand virtual farm fields, including both actual systems (as in section 3.4) 

and systems based on random choices of techniques. The latter were essential to ensure that the domain 

of validity of the metamodel was not limited by current practices or experts' imagination, particularly in 

terms of crop diversity, rotational patterns or crop mixtures. 

 

Then, we linked the weed impacts on crop production and biodiversity simulated by FLORSYS to 

cropping-system variables, as if developing an empirical model from field data. To do this, we chose 

two complementary machine-learning approaches, resulting into two different tools. Multivariate 

regression trees (Breiman et al., 1984; De'ath, 2001) provide a synthetic graphical representation 

("decision tree") to identify candidate changes in cropping systems that improve their performance, 

through navigation among branches (see example in Figure 6). In addition, we built multivariate random 

forests (Breiman, 2001; Segal and Xiao, 2011), which function as black-box models ("predictor") that 

directly predict weed impact indicators from cropping-system variables, thus emulating FLORSYS, but 

with a much faster response time and easier to handle than the parent model. While the predictor is as 

good as FLORSYS to rank cropping systems, it cannot adequately evaluate effects that strongly interact 

with pedoclimatic conditions, such as the effect of tillage timing with respect to soil moisture (Colas, 

2018; Colas et al., 2018; Colas et al., 2019). In terms of crop diversification, this means that rotations or 

intercropping strategies are correctly ranked but that the difference between the different systems might 

be over or underestimated. 

 

The tools can be either generic and applicable to most of France as the example of Figure 6, or tailored 

to the specificities of pedoclimatic production contexts (Colas, 2018; Colas et al., 2018; Colas et al., 

2019). The decision tree of Figure 6 focuses on temporal crop diversification and demonstrates the 

importance of the proportion of winter and spring crops in a rotation as well as the duration of crop 

cover. For instance, decreasing winter crops below 35% reduces both weed harmfulness for crop 

production and weed-based bee food offer from high to intermediate (performance profile P12 vs P11). 

Rotation also has an indirect effect, by changing the seasonality of cultural operations, particularly 

tillage. For instance, the profiles with the lowest weed impact (P3, P7) are both located within the branch 

starting with frequent summer tillage. But, weed impact did not only depend on seasonality or on the 

frequency of operations, it also varied with options, such as the tillage tool (e.g. frequent chisel 

ploughing to the detriment of power harrowing and residue shredding decreased weed impact in P5 vs 

P6) or the type of herbicides (e.g. non-systemic herbicides in P13).  

 

 

3.3 Identify parameters that make a good diversification crop 
 

This case study is a first example where simulations were run to address a real-world issue related to 

crop diversification. The objective was to identify which crop parameters drive crop production in weed-

free and weed-infested crop stands as well as the parameters that reduce yield loss and weed 

reproduction (leading to yield loss in future crops). This knowledge will contribute to establish rules for 

choosing crops in rotations and crop mixtures and to identify ideotypes, i.e. theoretical ideal crop plants 

that combine all the characteristics required to reach one or several goals in a production situation 

(Martre et al., 2015). 

 

3.3.1 Monitor a virtual farm-field network 

FLORSYS was used to run virtual experiments in seven French and Spanish regions, with 272 cropping 

systems collected from farm surveys, farm-field networks and crop advisors, and varying in terms of 

crop rotations, herbicide use and tillage intensity (Colbach and Cordeau, 2018; Colbach et al., 2019). 

Two series of simulations were run. The first started with a regional weed flora pool from the cropping 

system's region of origin and predicted actual yield in weed-infested crop stands; the second was run 



Colbach et al 2021 Field Crops Res 

11 

 

without any weeds to estimate potential yield in weed-free crop stands. The comparison of the yields 

from the two series allowed calculating weed-caused yield loss. In each series, each cropping system 

was simulated over 30 years to include long-term effects, and repeated with 10 weather series to assess 

interactions with weather. Here, simulations worked with past weather data recorded by weather stations 

but future scenarios predicted by climate models (Xu et al., 2012; Boulard et al., 2017) can also be used. 

The simulated outputs in terms of crop grain yield, weed-caused yield loss, weed seed production (as a 

proxy for future yield loss) and weed-based trophic resources for domestic bees (as one example of weed 

benefits) were analysed as if they were measurements from actual farmers' fields.  

 

3.3.2 The winner depends on the goal  

The crop features that increase potential yield are different from those that reduce yield loss or weed 

seed production (i.e., yield loss in future crops). This is a frequently reported antagonism (Sardana et 

al., 2017), which makes the breeding of crop varieties that are both productive and competitive against 

weeds more difficult. So, in addition to the advice of Figure 6 on, e.g., the balance between winter and 

spring crops, Table 3 gives further pointers to which crops to combine in a rotation. 

When weed pressure is low, thanks to efficient management techniques, a crop or variety maximizing 

potential yield (i.e., yield in the absence of weeds) can be used. In the virtual farm-field network, 

potential yield increased with decreasing base temperature and, particularly, base water potential which 

ensure early emergence and better emergence success in spring and summer (Table 3). Other features 

ensuring high yield in weed-free conditions were leaves concentrated toward the top of plants (high 

RLH), vertically rather than laterally growing plants (low WM) with small thick leaves (low SLA), 

resulting in taller plants per unit biomass that shade less and/or cover less ground. Another feature was 

a weak shading response (low mu_HM, mu_RLH, mu_SLA) resulting in homogenous canopies as plants 

grew irrespective of their neighbours.  

 

However, when a weed-tolerant crop was needed in the rotation, the required species profile differed. 

The crops with the lowest yield loss were wide, shading and flexible, i.e. they grew laterally in unshaded 

conditions (high WM), had thinner larger leaves, particularly from flowering onwards (high SLA) and 

etiolated when shaded by neighbour plants, with taller plants (high mu_HM) and even thinner larger 

leaves (high mu_SLA). If the objective is to limit infestation of future crops that might be more weed-

sensitive or present fewer management options, that yet another profile is needed. Crops that 

photosynthesized well at lower temperatures and invested in plant width rather than height (low HM) 

reduced weed seed production the most. 

 

3.3.3 Which ideotypes for crop diversification 

The present case study demonstrated that ideotypes aiming to maximise yield potential are not the same 

as those that efficiently compete with weeds for light. As illustrated in the previous section, Table 3 can 

be a guide to choose crops in a rotation depending on whether the year's focus should be on production 

to boost the current income, or on weed suppression to safeguard the next year's productivity. When 

extrapolated to crop mixtures, the trade-off between yield potential and weed suppression could mean 

that crop species with a high yield potential can be mixed and grown together without hindering each 

other in terms of light use. It certainly means that crop species must be mixed together to efficiently 

occupy more ground and leave no niches for weeds. While this has already been demonstrated 

experimentally (Verret et al., 2017), our model-based approach allows us to identify the most relevant 

processes and species parameters or traits. This is essential to determine in which situations rules for 

combining traits and species are valid and to extrapolate to a larger range of contrasting crop and weed 

species. This approach will also be a key tool to investigate which crop trait mixtures answer to different 

performance goals. 

 

3.3.4 Crop parameters alone do not assure success 

Yield potential mostly depended on crop choice (partial R² of 0.46, compared to 0.06 for cropping 

system (other than crop and variety choice) in the analysis of Table 3, section D.1.2.3 online). But, the 

opposite was true for weed impacts and control, they were mostly driven by management (e.g. partial 

R² of 0.42 for cropping system vs 0.08 for crop species for weed seed production). Choosing optimal 
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crop parameters was not enough to ensure weed suppression, crop management also had to be adapted. 

This means that crop diversification is doubly efficient because it not only diversifies crop species and 

varieties, it also diversifies management practices as these strongly depend on the crops. 

 

 

3.4 Track crop-diverse solutions 
 

The previous simulation study showed that though crop parameters mostly drive potential crop 

production, they only determine a small part of performance in terms of actual production and, 

particularly, weed impacts. Here, we present three different approaches of using models such as 

FLORSYS to demonstrate how to combine crop species in time and in space and how to identify 

appropriate management practices to reach different goals, mainly to reconcile reduced herbicide use 

with reduced yield loss due to weeds and improved weed contribution to biodiversity. 

 

3.4.1 Track high-performance farmers' practices in virtual farm-field networks 

The same approach as in section 3.3 can be used to set up a virtual farm-field network to track 

innovations among farmers' practices (Colbach and Cordeau, 2018). The main difference lies in the 

analysis of the simulated data: instead of linking species parameters to cropping system performance, 

the idea is to determine which combinations of crops and techniques allow reaching performance goals. 

Classification and regression trees as those used to build DECIFLORSYS (section 3.2) are useful, but 

instead of classifying cropping systems according to their performance, the trees were used to 

specifically track those systems that reach these performances goals, here to minimise both yield loss 

and herbicide use intensity. The other difference lies in the source of analysed cropping systems. Here, 

we explored cropping systems that existed in reality and are thus feasible from a socio-economic point 

of view. 

 

This analysis demonstrated the importance of crop diversity for reconciling low yield loss and low 

herbicide use (Table 4). Three "winning" types of strategies could be identified among the investigated 

farmers' cropping systems, which differed in terms of rotation, tillage strategy etc. Strategy S1 consisted 

of maize monocultures, relying heavily on herbicides as well as mechanical weeding to limit yield loss. 

Strategy S2 was based on rotations that were diverse in time (lasting for at least 4 years) and in space 

(with crop mixtures or cover crops during summer fallow), combining both spring and winter crops. 

Crops were either long-lasting winter crops (e.g. oilseed rape), or shorter winter and spring crops 

preceded by cover crops. This diversity, combined with frequent tillage, particularly in summer, and 

occasional mouldboard ploughing allowed reducing herbicide intensity. Strategy S3 went even further 

in terms of crop diversification in the rotations, reducing winter crop frequency even more and adding 

temporary grassland to the mix. Annual crop cover was shorter (which also meant fewer fallow cover 

crops), leaving more time for superficial tillage as well as more mouldboard ploughing. No minimum 

herbicide or mechanical weeding was required. 

 

This case study demonstrated not only how a weed dynamics model can be used to investigate the effects 

of crop diversity in cropping systems on crop production and weed impacts, but also the key role of crop 

diversity for managing weeds, particularly when aiming to reconcile multiple goals.  

 

3.4.2 Ex ante evaluation of innovations proposed by experts and policies 

The FLORSYS model can also be used to evaluate prospective cropping systems that are designed by 

experts or stakeholders (section 3.5) or expected to result from policy changes ( 

Table 5,  

Table 6.C and D). The simulation plan is the same as for the previous studies (i.e. over several decades, 

repetitions with several weather series, see section 3.3.1). What changes are the origin of the inputs and, 

to a lesser degree, the methods for analysing the simulated data. 

 

FLORSYS can complement cropping system trials, both to evaluate prototypes imagined by experts to 

identify the best candidates to test in fields, and to extrapolate systems that are implemented in trials. In 
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the latter case, long-term simulations allow assessing the carryover effect of crop rotations (section 

2.2.3) faster and longer than in fields, the weather repetitions allow increasing the genericity of the 

results, particularly when they are associated with different initial weed floras or pedoclimate, and the 

multiple simulation outputs allow assessing weed functions that are difficult or impossible to monitor 

in fields. The example of  

Table 5, for instance, shows that the system with the highest yield used nearly no herbicides (IWM ~0 

herbicides) but presented a high crop diversity in terms of species and cultivar richness, sowing seasons 

(including both winter and spring crops) and cover crops. A high species/cultivar number and cover-

crop frequency was though not enough to ensure production if it were not accompanied by tillage and 

alternating sowing seasons (IWM simplified). This is consistent with results from a meta-analysis on 

crop diversification effects (Weisberger et al., 2019). Moreover, crop diversity did not ensure weed 

benefits, as demonstrated by the low weed-based bee-food offer in the IWM ~0 herbicides system. 

 

The necessity of looking at weed impacts over time even when focusing on annual practices is 

demonstrated by another study that investigated the effects of wheat sowing strategies on weed 

infestation at a 10-year scale (Colbach et al., 2014b). Techniques simply changing the sowing pattern 

(e.g. density, interrow width, row orientation) only had an immediate effect at the annual scale. But 

increasing crop diversity during one single year had repercussions during several years, both positive 

(associating wheat with faba bean reduced yield loss for up to 10 years) and negative (introducing a 

cover crop before wheat increased weed infestation in later crops because it left no time for false seed 

bed techniques). 

 

FLORSYS also allows assessing larger spatial scales, for instance to assess annual crop diversity in a 

field cluster or the effect of introducing semi-natural habitats (section 2.3.3). Case studies demonstrated 

that spatial diversity can compensate for uniformity in individual fields. For instance, including 

permanent grass strips in a field cluster solely cultivated by maize monoculture in Aquitaine (South-

Western France) increased weed-based biodiversity more than shifting the whole cluster to a diverse 

rotation including one legume and one winter crop, and this without adverse effect on crop production 

(Colbach et al., 2018). Most importantly, FLORSYS can assess prospective scenarios such as those 

resulting from planned policy changes, allowing policy makers to check whether goals are actually 

reached (e.g. do permanent grass strips promote biodiversity?) and that there are no unexpected side-

effects (e.g. do new cultivars adversely affect biodiversity?). 

 

3.4.3 Optimize rotations with an algorithmic approach 

In the previous approach, the tested cropping systems were designed by experts. While there is often no 

match for experts when it comes to optimizing a given management technique in a given location 

considering short-term effects, they simply cannot juggle with all the relevant techniques, particularly 

when considering multiple criteria in the long-term. So, the tested systems are often limited by the 

expertise and the imagination of the experts. An alternative is to assess randomly constructed cropping 

systems, as during the development of the decision support system (section 3.2). However, the number 

of candidate systems is so huge that the search for the optimal system is difficult.  

 

To overcome this problem, models can be combined with optimization algorithms to identify a series of 

solutions answering to a set of constraints and objectives (Press et al., 2007; Venter, 2010). This 

approach can tailor both crop trait combinations and crop rotations to stakeholders' needs, using an 

iterative loop: (1) determine the optimization objectives (e.g. maximize both yield and weed-based bee 

food offer), (2) change inputs (either crop parameters or cropping system components), using an 

optimization algorithm, and simulate the resulting scenario with FLORSYS, (3) compare the simulated 

performance with the fixed objectives to check whether the change in inputs led to an improved 

performance, (4) return to step 2 and continue until objectives are achieved.  

 

The different optimization algorithms (genetic algorithm, Goldberg, 1989; Firefly algorithm, Yang and 

He, 2013) differ in the way they change the inputs to move towards the goal. When antagonist objectives 

are considered (e.g. maximizing both yield and biodiversity), a Pareto front is constructed, which is a 

set of "Pareto-optimal" solutions (Craven, 1986): for each point of the Pareto front, it is impossible to 
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increase one indicator without deteriorating at least another indicator. Once the set of solutions has been 

obtained, the stakeholders can choose a compromise according to their constraints. 

 

The example of Figure 7 aims to identify three-year rotations that reconcile production with weed-based 

bee-food offer in one production situation and focusing on cereal-based rotations. Here, cereal 

monocultures maximised yield to the detriment of biodiversity (bottom right of Figure 7) whereas 

legume-based rotations tended to improve biodiversity (top left). The rotations with the highest number 

of different crop species were found toward the center of the figure, i.e. they presented both medium 

biodiversity and medium production. This study also demonstrated that a given rotation can result in a 

very different performance, depending on crop management. For instance, mouldboard ploughing 

increased production to the detriment of biodiversity in some rotations (WWB, wheat/wheat/barley) 

whereas the opposite occurred in other cases (OWB: oilseed rape/wheat/barley). 

 

 

3.5 Implicate stakeholders in crop diversification 
 

3.5.1 The limits of research 

The present case studies illustrate part of the enormous amount of knowledge already produced by 

scientists on crop diversification in the particular case of weed management, and methodologies on how 

to produce knowledge and management rules for particular production situations and goals. However, 

innovations proposed by scientists are often disregarded by farmers because they are incompatible with 

farming constraints (Meynard et al., 2018) or with farmers' risk perception and management (Wilson et 

al., 2008). Crop advisors can also be reticent to promote the necessary changes (Pasquier and Angevin, 

2017). In this context, models are invaluable teaching tools to propagate knowledge and promote 

innovations via training sessions, participatory workshops and role-playing games (Martin et al., 2011; 

Hossard et al., 2013; Meylan et al., 2013; Sausse et al., 2013). This is particularly true of easy-to-use 

models (like the one developed in section 3.2), which allow stakeholders to directly and immediately 

see the consequences of changes in their practices in their particular production situation. 

 

3.5.2 Participatory workshops including stakeholders 

We combined cropping-system prototyping and model simulations to make use of the knowledge 

synthesized by FLORSYS and DECIFLORSYS (Van Inghelandt, 2018; Van Inghelandt et al., 2019). 

Workshops were run with farmers, using facilitation methods (e.g. board games) to foster interaction 

among famers during the prototyping (Lefèvre et al., 2014; Berthet et al., 2016). We split workshops 

into several steps. First, the general context was determined by identifying the farmers' constraints and 

objectives, among which possible and acceptable diversification crops, and a reference cropping system 

(in this case, an oilseed rape – cereal rotation heavily infested by autumnal grass weeds) which served 

as a baseline to evaluate the future prototypes. Then, crop-diverse prototypes were designed by several 

farmer groups, using the facilitation tool MISSION ECOPHYT’EAU® (composed of a game board and 

cards, http://www.agriculture-durable.org/ressources/mission-ecophyteau/), the DECIFLORSYS decision 

trees (see example of Figure 6) and ranking tables to stimulate discussions and the proposal of 

prototypes. These were immediately assessed with the DECIFLORSYS predictor, leading in turn to 

alternative proposals. During a recess of several days, the prototypes were simulated with the FLORSYS 

research model to fine-tune management techniques in terms of dates and options and to identify the 

biophysical reasons for the simulated performance. These simulation results were presented to the 

farmers during the final workshop day, and based on the participants' reaction, a further round of 

prototypes was proposed and tested with the DECIFLORSYS predictor. 

 

3.5.3 Going beyond local prototypes 

In addition to the prototypes and their performance as predicted by our tools, the simulation-based 

workshops contributed to evacuate some misconceptions that farmers had, in particular on the role of 

crop diversity and its effect on weed dynamics (Table 7). Among the major lessons of the workshops 

for farmers were the need to evaluate rotations at a multiannual scale, to consider the effect of weather 

on the success of management techniques. The latter was achieved by repeating cropping systems with 
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different weather series, which allows running frequency analyses to determine the probability of 

success of a cropping practice (e.g., the probability that delayed winter wheat sowing reduces the 

emergence of autumnal grass weeds in the crop, Colbach et al., 2014a) or to link this probability to 

weather variables (e.g., delaying the first tillage operation until at least 50 mm rainfall post-harvest 

optimises false seed bed effects , Colbach and Mézière, 2013). The major conclusion of workshops for 

the research team was the farmers' need for biophysical explanations of cropping system performance, 

which the DECIFLORSYS decision support system cannot provide. 

 

 

4 Strengths and limits of using mechanistic weed dynamics models 
to address ecological intensification  

 

As illustrated in Figure 1, models such as FLORSYS and the associated simulation methodology cover 

the key steps to investigate and promote the benefits of ecological intensification, as demonstrated here 

with crop diversification. The case studies demonstrated that, generally, (1) crop diversification inside 

fields and in landscapes is essential to regulate crop pests such as weeds with few or no herbicides, 

(2) while a judicious choice of crop traits is essential, it is useless without a well-reasoned cropping 

system, (3) many conclusions in terms of crop diversification only have a local validity ( 

Table 6), which proves the need for flexible rules and the usefulness of models such as FLORSYS and 

optimization algorithms to establish these rules. 

 

But, all the advantages of model-based approaches are subject to the model's prediction quality. 

Checking the model's predictions against independent field observations is even more crucial for a 

mechanistic model aggregating data and models from different scales, teams and disciplines, to make 

sure that the new entity produces consistent results. When we did that for FLORSYS (section 2.5), it 

pointed to a major drawback of complex mechanistic models, i.e. the difficulty to find adequate data for 

evaluating the model and its many submodels.  

 

The possibility of continuous evolution allowed by mechanistic model structures is crucial, particularly 

in a context of input reduction and climate change. Even without considering the many other pests and 

organisms implicated in ecological intensification, many plant-plant interactions are still disregarded in 

FLORSYS. Including perennial weeds will be essential to assess no-till systems (Armengot et al., 2016), 

plant-plant competition for water (Moreau et al., 2018) must be considered to assess drought-resistant 

crops in rotations and mixtures, and plant-microbe interactions may affect competitive relationships 

among plants, e.g. for nitrogen (Moreau et al., 2019). Allelopathy is another avenue that is often 

proposed for biological regulations of weeds (Sturm et al., 2018) but as yet, there is no evidence that it 

is actually relevant for weed control in field conditions where it is very difficult to discriminate from 

competition effects. Furthermore, even though the FLORSYS plant structure concept was initially based 

on a tree model (Chave, 1999), the model will not be adequate to tackle agroforestry systems (Malézieux 

et al., 2009) without major changes as the spatio-temporal "grain" and shape of trees is too different 

from that of weeds. 

 

Mechanistic models such as FLORSYS are efficient in predicting the effect of cropping systems on the 

agroecosystem functioning but ecological intensification must be beyond biophysical processes (Figure 

1). Though section 3 illustrates how we bridged the gap between biophysical and decision processes, 

we never went beyond the cropping system scale. But, including novel crops into rotation often means 

a major upheaval for the farmers who must learn to manage the new crop and have to find a buyer for 

its production, which can be a major obstacle to diversifying rotations (Meynard et al., 2018). 

Methodologies based on FLORSYS-like models can only partially contribute to lifting such lock-ins, by 

amplifying the diversity in conventional crops, using different varieties, intercropping, or management 

techniques promoting biological weed regulation. But, fundamentally, such socio-technical lock-ins can 

only be tackled by designing agrifood systems, including production chains and advice (Meynard et al., 

2017).  
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7 Illustrations 

 

 

 

Figure 1. Avenues of research explored with the help of a weed dynamics model to investigate ecological 

intensification (adapted from Doré et al., 2011). Numbers refer to the sections of the present paper 
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Table 1. Key issues to model crop diversification and main solutions to address these in a weed dynamics 

model such as FLORSYS 

What should be 

modelled/simulated 

How does FLORSYS tackle this Section 

A. Model structure 

All cultural techniques Inputs include detailed multiannual lists of operations 2.1 

Large domain of validity, 

Variability due to 

pedoclimate 

Mechanistic structure including the key processes for 

temperate arable farming and whose parameters do not 

change with location. Effects of cultural techniques are 

decomposed into individual processes which depend on 

soil & plant state variables, plant processes depend on 

weather and soil state variables 

2.1 

Multispecies Generic plant structure, species parameters can be 

estimated from easily accessible species traits 

2.3.1 

Facilitate the addition of 

new species 

Species parameters can be estimated from easily 

accessible species traits 

2.4 

Crop patterns in landscapes Spatially-explicit field clusters including semi-natural 

habitats, with weed dispersal among fields/habitats 

2.3.3 

B. Key processes 

Emergence in different 

seasons (rotation), 

difference in timing in crop 

mixtures 

Seasonal dormancy determines seed readiness to 

germinate, base temperature and water potential determine 

timing and germination speed, seed size determines ability 

to emerge in compact soil or when deeply buried 

2.2.1 

Plant-plant interactions in 

heterogeneous canopies 

3D individual-based canopy with generic plant structure, 

overlapping leaf distribution determines light absorption 

and shading, overlapping root systems determine 

competition for soil resources, plant growth and 

morphology result from resource uptake and response to 

stresses (shading, nitrogen deficiency) 

2.2.2, 

2.3.2 

Multiannual carry over 

effect in rotations 

Weed seed bank with dormancy and mortality processes, 

crop volunteers arising from lost crop seeds, soil water 

and nitrogen dynamics 

2.2.3 

C. Model outputs 

Tailor to stake-holders' 

needs 

Detailed outputs for diagnosis of cropping-system 

performance, translate detailed outputs into indicators of 

crop production and weed impacts 

3.1 

Support farmers  Metamodel FLORSYS in decision trees to redesign 

cropping systems and random forests to rapidly evaluate 

their multi-performance 

3.2 
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Figure 2. General representation of the (1) research model FLORSYS (blue rectangle) which simulates 

crop growth and weed dynamics from a detailed description of cropping system, weather and soil inputs 

based on a mechanistic representation of biophysical processes at a daily time step and in 3D, and then 

aggregates these data into indicators of weed benefits and detriments (Gardarin et al., 2012; Munier-

Jolain et al., 2013; Colbach et al., 2014b; Mézière et al., 2015), and the (2) metamodel DECIFLORSYS 

(purple boxes and arrows) which directly estimates weed impacts from aggregated cropping system 

inputs based on machine learning (Colas, 2018; Colas et al., 2020) (Nathalie Colbach © 2018). 
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Figure 3. Processes leading to plant emergence and establishment as summarized in FLORSYS (Gardarin 

et al., 2012; Colbach et al., 2014b; Perthame et al., 2018). Once weed plants mature, weed seeds 

(d=dormant) are shed onto soil surface where they can be eaten by predators (A). Tillage operations and, 

to a lesser degree, weather and fauna bury seeds at different depths, depending on the tool, its options 

and soil structure, and seeds die (dark grey) over time due to age, diseases etc (B). Crop seeds are sown, 

usually close to soil surface, and sometimes comprising unwanted seeds (in red, from other cultivars, 

crop or weed species) (C). Once the soil is moist and warm enough for the species, non-dormant seeds 

germinate but deeply buried seeds and those on soil surface germinate badly, the latter because they 

have trouble absorbing water due to insufficient soil-seed contact, the former because of insufficient O2, 

excessive CO2 or soil weight (D). Shoots grow toward soil surface, from the reserves inside the seed; 

once outside the soil, photosynthesis kicks in (E). Seedlings die without emerging if the soil dries after 

germination and the root is too short to reach deeper moisture layers (F), if the seed is buried too deeply 

and the seed reserve are insufficient to reach the soil surface (G), or if soil clods block shoot growth (H). 

(Nathalie Colbach 2018 ©) 
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Table 2. Typology of shading responses identified in 25 weed species and 30 crop species and varieties from garden-plot experiments, using FLORSYS parameters 

driving plant-plant competition for light (based on Colbach et al., 2020b) 

Plant state variable Unit 

Morphology 

resulting from 

parameter values 

Average relative variation when shading 

increases from 0 to 75%§ 

Reason for response to shading 

Crops Weeds 

Cereal 

(8) # 

Legume 

(17) 

Other 

(5)$ 

Poaceae 

(6) 

Dicots 

(19) & Low High 

Specific Leaf Area SLA 

(plant leaf area vs plant leaf 

biomass) 

cm²/g 
  

1.38 1.31 1.73 1.46 1.52 
Increase light interception area with thinner 

larger leaves 

Leaf biomass ratio LBR 

(plant leaf biomass vs total 

plant above-ground biomass) 

g/g 

  

1.05 0.97 0.86 1.10 1.00 

Either increase light interception area by 

increasing leaf biomass to the detriment of 

stem biomass, or increase stem biomass to 

increase stem length and reach the light 

Specific (allometric) plant 

height HM (height per unit 

above-ground biomass) 

cm/g 

  

1.39 1.23 1.49 1.71 1.41 Reach the light by increasing plant height 

Specific (allometric) plant 

width WM (width per unit 

above-ground biomass) 

cm/g 

  

1.16 1.20 1.20 1.21 1.29 
Avoid shade cast by neighbour by growing 

laterally 

Median relative leaf height 

(relative plant height below 

which 50% of leaf area are 

located) 

cm/cm 

  

1.04 1.00 0.98 1.04 1.00 
Reach the light by moving leaf area toward 

the top 

§ For a given plant on day d, each plant variable Vpd is calculated as 𝑉𝑝𝑑 = 𝐕𝟎ss 𝑒µ_𝑉𝑠𝑠∙𝑆𝐼𝑝𝑑 where V0ss is the potential value of the variable in unshaded conditions, 

µ_Vss is the species shading response at the given stage, and SIpd is the cumulated shading intensity since plant emergence. SIpd is 1-incident light for plant p on 

day relative to incident light above the canopy, weighted by the number of days since emergence (details in section B.3.1 online); in experiments, it is measured 

as the incident light in sunny conditions vs below a shading net (Munier-Jolain et al., 2014); in simulations, it is predicted from the voxelized 3D light submodel 

(Figure 4). The values of these columns are µ_Vmean ∙ 0.75, using values averaged over all species and stages, for crops and weeds, respectively. 
# Number between brackets are number of species. 
$ Brassicaceae, Asteraceae, Boraginaceae 
& Amaranthaceae, Apiaceae, Asteraceae, Brassicaceae, Caryophyllaceae, Cucurbitaceae, Euphorbiaceae, Geraniaceae, Malvaceae, Plantaginaceae, 

Polygonaceae, Rubiaceae, Solanaceae  
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Figure 4. Illustration of a wheat ( )-field bean ( ) mixture a few days after emergence, sown into the surviving plants of a broadcast cover crop mixture 

(Phacelia tanacetifolia , Helianthus annuus , Guizotia abyssinica , Trifolium alexandrinum , Sorghum bicolor ) simulated with FLORSYS (Munier-

Jolain et al., 2013; Colbach et al., 2018; Pointurier et al.). Each plant is represented as a cylinder above a cone (A) and placed on a field sample (B). The 

canopy is represented in 3D, locating leaf area in voxels (C). Each day, light trickles down successive voxel layers vertically and laterally, depending on 

incident PAR, leaf area and solar angle which varies with latitude, season and hour (D). The area with lower light availability marked with a blue ellipse on 

Figure D is the result of shade cast by a tall plant (linked to the ellipse by the blue arrow) located south of the transect marked by the red line on Figure B 

(Nathalie Colbach 2018 ©) 
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Figure 5. Principle of functional relationships for estimating model parameters from easily accessible 

traits and other characteristics, illustrated with an example of the maximal shoot length (hypocotyl or 

epicotyl with first leaf, depending on the species) during pre-emergent growth in darkness in the soil 

(Gardarin et al., 2010). (1) For each model parameter, identify one or several easily available traits (or 

other characteristics) that have a biological link with the model parameter. (2) Identify a range of species 

that are potentially contrasting in terms of parameter and trait values and measure parameter and trait 

values experimentally. (3) Fit a predictive function (which can depend on several traits) to the data and 

introduce it into the model. (4) To add a new species to the model, measure the trait and let the model 

estimate the parameter. Abbreviations refer to EPPO codes for species (https://gd.eppo.int/) (Nathalie 

Colbach © 2018) 
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Figure 6: Decision tree for crop diversification, identifying cropping system rules for reaching a series of 13 weed impact profiles based on a multivariate regression tree linking 

weed impact indicators simulated by FLORSYS to combinations of cropping system variables (blue: rotation, green: sowing/harvest, brown: tillage, black: weed control), based 

on 4350 cropping systems resulting from a random combination of cultural techniques from 20 French regions. Indicator values were rescaled to [0,1], averaged over 30 years 

and 10 weather repetitions, and coloured from white (minimum) to green (maximum) for biodiversity, from white to red (maximum) for harmfulness to crop production. 

Uncoloured cells show standard-error including weather effects and variability among systems in a branch. Cross-validation error of the tree was 0.106. The tree can be read 

top-down to get an idea of the performance of a proposed combination of management practices, or bottom-up to identify the practices corresponding to a target performance 

(based on data and methods from Colas, 2018; Colas et al., 2020) (Floriane Colas  2019) 
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Bee food 2.86  +/- 0.48 2.01  +/- 0.65 1.34  +/- 0.74 1.79  +/- 0.63 2.24  +/- 0.52 2.63  +/- 0.32 1.24  +/- 0.43 1.52  +/- 0.75 2.23  +/- 0.58 2.23  +/- 0.61 2.37  +/- 0.6 2.06  +/- 0.67 2.85  +/- 0.67

Harvest pollution 3.56  +/- 0.64 3.15  +/- 1.28 1.5  +/- 1.17 2.77  +/- 1.27 3.85  +/- 0.97 3.77  +/- 0.47 1.77  +/- 0.77 2.14  +/- 1.5 3.66  +/- 1.22 3.89  +/- 1.32 3.7  +/- 1.28 3.02  +/- 1.34 4.26  +/- 1.23

Yield loss 68  +/- 15 53  +/- 28 19  +/- 27 49  +/- 27 69  +/- 20 74  +/- 12 18  +/- 14 34  +/- 31 63  +/- 24 69  +/- 29 65  +/- 28 56  +/- 28 74  +/- 23
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Table 3. The main crop parameters driving potential production and weed impact. Pearson correlation coefficients between parameters and annual potential 

production as well weed impacts simulated with FLORSYS on 272 cropping systems  30 years  10 weather repetitions. Only correlations exceeding 0.35 were 

kept; blank cells and missing parameters point to lower correlations. Only years with annual grain production were kept for the analysis (based on data and 

methods from Colbach et al., 2019) 

 

Crop parameter Unit 

Potential 

grain yield 

(T/ha) 

Grain 

yield loss 

(T/T) 

Weed seed 

production 

(seeds/m²) 

Habitat requirements   
  

   Base temperature °C -0.43   
   Base water potential MPa -0.82   
   Minimum & optimum temperature for photosynthesis °C   0.36 

Potential plant morphology (unshaded conditions)      
Specific leaf area SLA, before reproduction  cm²/g -0.49   
Specific leaf area SLA, flowering-maturity cm²/g -0.80 -0.45  
Specific plant height HM, after emergence cm/g   0.35 

Specific plant width WM, during vegetative phase & reproduction cm/g -0.82 -0.44  
Leaf biomass ratio LBR, flowering- maturity g/g -0.77   
Relative median leaf area height RLH, during reproduction m²/m² 0.77   

Maximum plant height cm -0.57   
Maximum plant width cm -0.51   
Response to shading      

Ability to increase HM, after emergence No unit -0.82 -0.36  
Ability to increase HM, during reproduction No unit -0.73   
Ability to increase relative leaf area height RLH, after emergence No unit -0.57   
Ability to increase SLA, before reproduction No unit -0.78 -0.37  
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Table 4. Typology of surveyed farmers' cropping systems established based on their simulated 

performance in terms of reduced weed harmfulness and herbicide use intensity. Main management 

practices of the three best strategies identified with classification and regression trees (Breiman et al., 

1984; rpart() function of R Core Team, 2016) among 272 existing cropping systems collected in 7 

regions from France and Spain and simulated with FLORSYS over 30 years and with 10 weather 

repetitions. Empty cells indicate that there was the systems of a strategy type had nothing in common 

for this technique (based on data and methods from Colbach and Cordeau, 2018) 

 

Strategy S1 S2 S3 

Simulated yield loss < 10% < 20% < 20% 

 and and and 

Surveyed herbicide use intensity (TFI) < 0.8 < 0.8 < 1.2 

Simulated risk of failure$ 0% 0% 0% 

Rotation % winter crops 0% 25-75% 15%-64% 

% spring crops 100% (maize) 25-75% > 36% 

% temporary grassland 0% < 20% > 20% 

Number of crops & cultivars 1 > 4  

Duration of crop cover (/year) < 6 months > 8.3 months < 8 months 

Tillage Superficial tillage/year < 3.4 > 3.4 >  3.4 

In summer /year (April-Sept) < 2.4 > 2.4 > 2 

1st tillage (since harvest) > 24 days < 24 days  

Ploughing frequency < 1 year /2 < 1 year/2  

Ploughing frequency Oct-March  > 1 year/ 5 > 1 year /3 

Herbicides 1st herbicide (since sowing) < 5 months < 5 months 

Dosage (% full dose) 31-58% <58%  

Products per year 1.3-3 1.3-2.1  

Variable among years No Yes  

% Systemic > 82% < 82% < 83% 

Root-entering < 12% < 12%  

Mechanical 

weeding 

Operations per year 0.25-1.6 0.25-1.6  

Variable among years Yes Yes  
$ Failure = yield loss > 40% or TFI > 1.6 in average over rotation 
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Table 5. Weed impact on biodiversity and crop production on a cropping system trial extrapolated over 

time and tested with different weather series. Weed-impact indicator values simulated with FLORSYS 

and averaged over 30 years and 10 weather repetitions. In each column, cells were coloured from green 

(the best performance) to red (the worst performance) for crop diversity, weed benefits and crop 

production, and vice-versa for weed detriments. Numbers of a given column followed by the same letter 

were not significantly different at p=0.05 (least significant difference test) (based on data from Colbach 

et al., 2016; Colbach, 2018) 

 

Cropping system§ 

Crop diversity over 12 years Herbi-

cide 

use 

(TFI) 

Yield 

(MJ/ha) 

Weed impact 

Number of 

species and 

cultivars 

% 

winter 

crops 

% years 

with cover 

crops 

Yield loss 

(%) 

Bee food 

(no unit) 

Reference 4 100% 8% 1.6 63563 C 50.9 D 2.30 B 

IWM simplified 18 77% 39% 1.7 51067 ED 58.4 C 2.42 B 

IWM intermediate  10 63% 8% 0.8 54443 D 55.3 DC 2.74 A 

IWM complete 8 55% 0% 0.7 67402 BC 40.9 FE 2.05 DC 

IWM ~0 herbicides 12 63% 16% 0.1 69077 BC 50.5 D 2.10 C 
§ IWM (integrated weed management) scenarios were simplified (no plough, little tillage, no mechanical 

weeding, herbicides), intermediate (plough, tillage, no mechanical weeding, herbicides), complete 

(plough, tillage, mechanical weeding, herbicides), ~0 herbicides (plough, tillage, mechanical weeding, 

no herbicides) 
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Table 6. Case studies using FLORSYS to investigate different issues relative to crop diversity, with key conclusions. 

 

Topic: evaluate 

the effect of… 

Method: compare cropping-system scenarios  Key conclusions Reference 

Based on Differing in terms of …   

A. Identify multiperformant ideotypes 

Crop and cultivar 

traits 

Existing crops 

and farmers' 

practices 

Crop and cultivar traits, production 

situation, farming system, crop diversity, 

management practices 

Ideotypes aiming to maximise yield potential are 

not the same that efficiently compete with weeds 

for light  

Table 3 

B. Track crop-diverse solutions in farming practices 

Farmers' 

herbicide use 

intensity 

Existing 

farmers' 

practices 

Production situation, farming system, crop 

diversity, all management practices 

There are contrasting crop-diverse strategies that 

reconcile reduced herbicide use with low weed-

caused yield loss 

Table 4 

C. Ex ante evaluation of innovations proposed by experts  

Integrated weed 

management 

Cropping 

system trial 

Crop diversity, intensity of tillage, 

mechanical weeding and herbicides 

(Burgundy, basic rotation of oilseed rape 

and winter cereals) 

Crop diversification (different crops/cultivars, 

alternating sowing seasons, cover crops) can 

compensate for reduced herbicide use but does not 

guarantee weed benefits 

 

Table 5 

Wheat sowing 

patterns 

Experts Cover crop, interrow width, sowing date, 

sowing density, mix with field bean 

(Burgundy, oilseed rape - winter cereals 

rotation) 

Crop mixture during one single year reduces yield 

loss for up to 10 years; cover crops can increase 

weed infestation in later years if they hinder false 

seed bed techniques 

(Colbach et al., 

2014b) 

Prototypes  Farmers Crop diversity, tillage, mechanical weeding 

(Champagne crayeuse, oilseed rape - cereals 

rotation) 

Crop diversification reduces weed-borne yield 

loss, rotations including multiannual crops perform 

better than those with crop mixtures 

(Van Inghelandt, 

2018) 

Annual crop 

diversity 

Experts Annual crop diversity in a field cluster 

(South-West France, maize-based rotations) 

Crop diversity increases weed benefits for 

biodiversity and weed harmfulness for production 

(Colbach et al., 2018) 

D. Ex ante evaluation of innovations resulting from actual or potential policy changes 

New maize 

cultivar submitted 

to regulatory 

body 

Agricultural 

statistics, crop 

advisors 

Crop diversity, maize cultivars, changes in 

management practices accompanying the 

new cultivars (South-West France, maize-

based rotations) 

Simplified rotations and simplified tillage increase 

weed impacts, cover crops reduce them 

(Bürger et al., 2015; 

Colbach et al., 2017a; 

Colbach et al., 2017b) 

Permanent grass 

strips required by 

farming policy 

Experts Crop diversity and permanent grass strips in 

field cluster (South-West France, maize-

based rotations) 

10% grass strips can compensate for monocultures 

and are better than diverse rotations to reconcile 

production and biodiversity 

(Colbach et al., 2018) 

E. Algorithm-based optimization to meet contrasting objectives 

3-year cereal-

based rotation 

Algorithm Rotation and management strategy 

(Burgundy, cereal-based rotations) 

Wheat monocultures maximise production to the 

detriment of biodiversity, the most diverse 

rotations result in medium production and medium 

biodiversity 

Figure 7 

Simulation plans consisted of running each cropping system over 10-30 years, and repeating it with 10 weather series. Weed-caused yield loss was the relative difference in 

grain yield in simulations with vs without weeds. 
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Table 7. Contribution of weed dynamics models to promote crop diversification. Case study of participatory workshops from Champagne region using the 

FLORSYS research model and the DECIFLORSYS decision-support system to make integrated weed management strategies benefit from crop diversification 

(based on data from Van Inghelandt, 2018) 

Model Use in workshops Farmers' reaction Take-home message for farmers 

Decision tree, ranking 

table (DECIFLORSYS) 

Ranking of cropping system 

components, discriminating various 

effects related to each technique 

Surprised at low rank of crop 

choice variables 

Crop effects consist of direct effects related to 

competition and indirect effects due associated 

management techniques, which are often more 

influential 

Random-forest 

predictor 

(DECIFLORSYS) 

Instantaneous evaluation of prototypes, 

with two distinct farmers' groups 

Tested variants of initially 

proposed prototypes, 

"played" with different, even 

unusual, crops 

Contrasting diversification solutions (e.g. cash crop 

mixtures vs multiannual crops) can be proposed for a 

same problem, depending on the participants' risk 

adversity 

FLORSYS Impact of diversified rotations on weed 

flora composition and long-term 

dynamics 

Interested in long-term 

evaluation, surprised by 

weed shifts in diversified 

rotations 

Crop diversification results in weed shifts, not in weed 

extinction; include new crops to anticipate and avoid 

the advent of problematic weeds; solutions are farm-

specific 

FLORSYS Assess performance of individual crops 

in rotation 

Surprised at bad 

performance of alternative 

crops (e.g. legumes) 

Need to evaluate performance at rotation scale as 

diversification crops can have lower yields but their 

carryover effect can improve the performance of later 

crops because of reduced weed seed production 

FLORSYS Assess effect of including cover crops Surprised at bad 

performance of the following 

cash crops 

Weather hazards can jeopardize cover-crop 

establishment whose success needs monitoring and 

adapted tactical decisions; cover crops can increase 

long-term weed infestation if they hinder false seed bed 

techniques 

FLORSYS Fine-tune systems in terms of crop 

succession and management techniques 

(precise dates and options) and 

understand reasons of performance 

 The new crop rotation must be accompanied with 

consistent management practices, notably tillage dates 

with respect to soil moisture to optimise false seed bed 

techniques 
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B. Rotation Fallow management$ Herbicides 

on cash  

crops& 

Mechanical  

weeding 

Cropping  

system§ 

Species 

(number) 

Legumes 

(%) 

Cereals 

(%) 

Residue  

shredding Plough 

Superficial  

tillage& Roll Glyphosate 

LWW_p 2 33 66 1 year/3 1 year/3 1/year 2 years/3 None 1.33/year None 

FWW_p 2 33 66 1 year/3 1 year/3 1.33/year 2 years/3 None 1.33/year 3 year/3 

LWO_p 3 33 33 1 year/3 1 year/3 1.33/year 3 years/3 1 year/3 1.33/year None 

WWB 2 0 100 None None 1.67/year 1 year/3 1 year/3 2.66/year None 

WBB_p 2 0 100 None 1 year/3 4.33/year None 2 years/3 2.66/year 2 year/3 

FWO_p 3 33 33 1 year/3 1 year/3 2.66/year 2 years/3 None 1.67/year 3 year/3 

OWB_p 3 0 66 None 1 year/3 4/year 1 year/3 1 year/3 2.33/year 2 year/3 

OBW 3 0 66 None None 3/year 1 year/3 1 year/3 3/year None 

OBW_p 3 0 66 None 1 year/3 4.33/year 1 year/3 2 years/3 2.33/year 2 year/3 

WWB_p 2 0 100 1 year/3 1 year/3 2/year 1 year/3 1 year/3 2.66/year None 

OWB 3 0 66 None None 2/year None 1 year/3 3/year None 

PWB 3 33 66 None None 3.66/year None 2 years/3 2.66/year None 

WWB_ph+ 2 0 100 None 1 year/3 3.66/year 2 years/3 3 years/3 3.33/year None 

WWB_h+ 2 0 100 None None 3.66/year None 1 year/3 3.33/year None 
§ W=winter wheat, B=winter barley, T=triticale, O=oilseed rape, L=lucerne, P=peas, F=faba bean; h+ indicates a high intensity 

of herbicide use; p indicates the use of mouldboard ploughing. $ None of the seletected systems included cover crops. & Number 

of operations averaged over rotation 

Figure 7: Cropping systems based on a 3-year rotation aiming to reconcile crop production with weed-

based bee-food offer (based on data and methods from Maillot et al., 2019).  

A. Pareto front built with a genetic algorithm from a data base of management strategies (consisting of 

crops and the associated management techniques) from Burgundy comprising wheat, barley, triticale, 

oilseed rape, lucerne, pea, faba bean, maize, soybean, sorghum, sugar beet and sunflower. Each data 

point is one cropping system. When running the genetic algorithm, the same system may be tested 

several times and a given system can occur several times in the figure, with a variation in results resulting 

from stochastic processes in FLORSYS. 

B. Synthetic description of the optimal cropping systems ranked according to increasing crop 

production. 
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