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Abstract

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a new family of endogenous lipids recently discovered. Several studies reported that some
FAHFAs have antidiabetic and anti-inflammatory effects. The objective of this study was to explore the impact of two FAHFAs, 9-PAHPA or 9-OAHPA, on the
metabolism of mice. C57BI/6] male mice, 6 weeks old, were divided into 3 groups of 10 mice each. One group received a control diet and the two others groups
received the control diet supplemented with 9-PAHPA or 9-OAHPA for 12 weeks. Mouse weight and body composition were monitored throughout the study.
Some days before euthanasia, energy expenditure, glucose tolerance and insulin sensitivity were also determined. After sacrifice, blood and organs were
collected for relevant molecular, biochemical and histological analyses. Although high intake of 9-PAHPA or 9-OAHPA increased basal metabolism, it had no
direct effect on body weight. Interestingly, the 9-PAHPA or 9-OAHPA intake increased insulin sensitivity but without modifying glucose tolerance. Nevertheless,
9-PAHPA intake induced a loss of glucose-stimulated insulin secretion. Surprisingly, both studied FAHFAs induced hepatic steatosis and fibrosis in some mice,
which were more marked with 9-PAHPA. Finally, a slight remodeling of white adipose tissue was also observed with 9-PAHPA intake. In conclusion, the long-
term high intake of 9-PAHPA or 9-OAHPA increased basal metabolism and insulin sensitivity in healthy mice. However, this effect, highly likely beneficial in a
diabetic state, was accompanied by manifest liver damage in certain mice that should deserve special attention in both healthy and pathological studies.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, a new class of endogenous bioactive lipids, branched fatty
acid esters of hydroxy fatty acids (FAHFAs), has been discovered [1].
FAHFAs are a combination of fatty acid (FA) and hydroxylated fatty acid
(HFA), and thus, a great diversity of FAHFASs structure exists regarding the
numerous types of naturally occurring FA and HFA. Major FAHFAs are a
combination of palmitic acid (PA), stearic acid (SA), oleic acid (OA) or
palmitoleic acid (PO) with their corresponding HFA providing, for
example, PAHPA, OAHPA, PAHOA, OAHOA, PAHSA and OAHSA [2]. It
was reported that palmitic acid esters of hydroxystearic acid (PAHSAs)
exert antidiabetic and anti-inflammatory effects [1,3], suggesting that it
could have a high therapeutic potential to prevent and/or treat type 2
diabetes. However, little if any is known regarding biological effects of
other types of FAHFAs. Recently, 9-PAHPA and 9-OAHPA, two FAHFAs

shown by Yore et al. [1] to be highly up-regulated in the adipose-specific
Glut4 overexpressing mice (AG40X), were synthesized by Balas et al. [4],
allowing to study both the biological activities of FAHFAs other than
PAHSAs and the influence of FA and HFA chains inside the FAHFA.
Regarding human dietary intake of FAHFAs, both PAHPA and OAHPA are
present in the diet, in yolk and meat but also in numerous plant foods,
with the highest abundancy in strawberry, radish, pineapple, apple and
oat [5].

The liver is a key metabolic organ which governs body energy
metabolism; it acts as a hub to metabolically connect to various
tissues, including skeletal muscle and white adipose tissue (WAT) [6].
In addition, the liver metabolic activity, particularly glucose produc-
tion, is tightly controlled by insulin [5]. Moreover, mitochondria play a
central role in cellular energy metabolism and in metabolic regulation
of liver pathophysiology [7]. Indeed, previous work from our team
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demonstrated that various aspects of mitochondrial activity were
modified by changes in diet lipid composition or by bioactive
molecules such as polyphenols and ubiquinone [8-11].

Therefore, the aim of this work was to determine whether dietary
intake of 9-PAHPA or 9-OAHPA may influence insulin sensitivity and
glucose metabolism in vivo and to study whether the potential
beneficial effects of these FAHFAs are sustained with long-term dietary
intake. In addition, the liver being a key metabolic organ tightly
controlled by insulin, this study also aimed to determine if 9-PAHPA or
9-OAHPA might affect liver metabolic activity. To address these
questions, healthy C57BI/6] mice were fed a control diet supplement-
ed or not with 9-PAHPA or 9-OAHPA for 12 weeks.

Our results show that the long-term high intake of 9-PAHPA or 9-
OAHPA increased basal metabolism and enhanced insulin sensitivity in
healthy mice. However, 9-PAHPA or 9-OAHPA intake promoted liver
steatosis and fibrosis in some mice, underlining the fact that a likely
beneficial effect of these FAHFAs in pathological situations can be harmful
in a situation of good health at least at this high dietary intake.

2. Materials and methods
2.1. FAHFAs synthesis

The synthesis of 9-PAHPA and 9-OAHPA was performed using our
previously reported procedure [4]. The molecular weight of 9-PAHPA
is 510.5 g/mol, and the molecular weight of 9-OAHPA is 537 g/mol.

2.2. Animals and diets

Thirty 6-week-old male C57BL/6] mice (Charles River, L'Arbresle,
France), weighing about 22 g, were housed (5 per cage) under conditions
of constant temperature (20°C-22°C), humidity (45%-50%) and a
standard dark cycle (20:00-08:00 h). The mice were randomized,
according to their initial weight, into 3 groups of 10 animals and fed for
12 weeks one of the three following semipurified diets: (1) control diet,
(2) control diet+9-PAHPA and (3) control diet-+9-OAHPA.

The detailed composition of the control diet is given in the
Supplementary Table 1. The control diet contains 5% lipids as a mixture
of rapeseed oil, high oleic sunflower oil, sunflower oil and linseed oil (oil
mixture of Carrefour). The lipid fraction of the control diet was composed
of 12.2% saturated fatty acids, 60.6% monounsaturated fatty acids and
27.3% polyunsaturated fatty acids (Supplementary Table 2). The 9-PAHPA

or the 9-OAHPA was incorporated into the diet after dissolution in the oil
mixture of Carrefour, and the final content of each FAHFA was set at 300
yumol/kg diet. For a mouse of 25 g that eats 2.5 g diet per day, this
corresponds to a FAHFA intake of about 30 umol/day/kg b.w. of mice (or
about 15 mg/day/kg). FAHFAs content was quantified in the three
experimental diets (Supplementary Table 3). No 9-PAHPA and 9-OAHPA
was found in the control diet. The administered dosage of the studied
FAHFAs was based on the work of Yore et al. (2014) [1]. It is also in good
agreement with the conditions recently published by Paluchova et al.
(2020) [12]. Throughout the study, mice were given free access to food
and tap water. Mice body weight was followed weekly, and food
consumption was determined every 2 days (week) or 3 days (weekend).
Our institution guidelines for the care and use of laboratory animals were
observed, and all experimental procedures were approved by the local
ethical committee in Montpellier, France (Reference APAFIS#12759-
2017121912214385). A detailed scheme of the study design is provided in
Fig. 1.

2.3. Body composition analysis

Mice whole-body composition (fat and lean masses) was mea-
sured every 2 weeks throughout the study by an EchoMRI-700 whole-
body composition analyzer (Echo Medical Systems, Houston, TX, USA)
according to the manufacturer's instructions.

2.4. Metabolic analyses

Mice oxygen consumption and carbon dioxide production were
measured using a Comprehensive Lab Animal Monitoring System
(Columbus Instruments, Columbus, OH, USA). Mice were housed in
individual cage inside a controlled cabinet. The environmental enclosure
allows precise control over the temperature and light/dark cycle. Male
mice were acclimatized individually in metabolic cages with ad libitum
access to standard control and water for 24 h, prior to a 24-h period of
automated recordings. Sample air from individual cages was passed
through sensors to determine O, and CO, content. Sensors were
calibrated before each experiment against commercial gas mixtures of
accurately determined composition (20.5% O,, 0.5% CO, and 79% N5). For
each mouse, volume of oxygen (VO,) and volume of carbon dioxide
(VCO,) were measured 111 times in about 24 h. The respiratory exchange
ratio (RER) was calculated as the VCO2/VO, ratio [13].

z Control diet
10 mice 3>
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Fig. 1. Design of the study.Thirty 6-week-old male C57BL/6 were fed for 12 weeks a control diet, a control diet+9-PAHPA or a control diet+9-OAHPA. Whole-body composition was
measured every 2 weeks using an EchoMRI-700 analyzer. Mice oxygen consumption and carbon dioxide production were measured using a Comprehensive Lab Animal Monitoring
System the last weeks of the study. Oral glucose tolerance test and insulin tolerance test were performed the last weeks of the study. At the end of the study, blood was collected from
retro-orbital sinus. After cervical dislocation, the liver, WAT and pancreas were removed, rinsed and frozen into liquid nitrogen until analyses.



2.5. Oral glucose tolerance test and insulin tolerance test

Following an overnight fasting, mice were administrated glucose
(2 g/kg) by oral gavage, and blood samples were collected from the tail
vein at the indicated times for glucose and insulin determination.
Insulin tolerance was also assessed after 2-h fasting by administration
of human insulin (0.75 U/kg) and blood glucose monitoring. Glycemia
was measured using an OneTouch Verio glucometer (Lifescan). Insulin
was measured using an ultrasensitive mouse insulin enzyme-linked
immunosorbent assay (ELISA) kit (Crystal Chem).

2.6. Sampling and routine biochemical analyses

Four to 5 days after the OGTT or the ITT, blood from 12-h fasted
mice was collected from the retro-orbital sinus and distributed into
heparinized tubes. Blood tubes were centrifuged at 1000g for 10 min at
4°C; plasma was collected and stored at —80°C until analysis.
Erythrocytes were washed with saline solution, hemolyzed and stored
at —80°C until analysis. After cervical dislocation of mice, liver, WAT
and pancreas were removed, rinsed with 0.9% NaCl, weighed and kept
at —80°C until analysis.

Plasma levels of glucose, total cholesterol, triglycerides and free fatty
acids as well as enzymatic activity of alanine aminotransferase (ALT) were
measured at the ANEXPLO/CREFRE analysis platform (CHU RANGUEIL-BP
84225, France). Plasma levels of insulin, leptin and IL-6 were quantified
with ELISA kits (Merck Millipore, Darmstadt, Germany; Crystal Chem,
Zaandam, Netherlands; Abcam, Paris, France, respectively). Total
glucagon-like peptide-1 (GLP-1) plasma concentration was measured
by chemiluminescence using commercially available ELISA kit (Mercodia
AB, Sweden).

2.7. Liver neutral lipids and histology

To assess liver neutral lipids, liver samples were homogenized in
NaCl (9 g/L) and Triton X-100 (0.1%), and free fatty acids, triglycerides
and total cholesterol levels were quantified on the tissue homogenate
by enzymatic methods (Wako-NEFA-C kit, Oxoid, Dardilly, France;
Cholesterol CHOD-PAP SOBIODA kit and triglycerides LQ SOBIODA Kkit,
Sobioda 38330 Montbonnot-Saint-Martin, France) [14].

After euthanasia by cervical dislocation, liver samples were
collected, freshly frozen in Tissue-Tek (Microm Microtech) and then
stored at —80°C, whereas pancreas were collected, fixed in 4%
formaldehyde and then paraffin embedded. For liver, 10-um sections
were stained with Oil Red O or Sirius Red. For Oil Red O staining, the
sections were fixed in PBS, 4% PFA at room temperature (RT) 5 min,
washed in H,0O, incubated with 60% isopropanol 5 min and then
incubated in oil Red O solution (0.6%) 7 min. Then, sections were
briefly washed with 60% isopropanol, incubated with Harris' hema-
toxylin for 30 s, washed in H,O 3 min and mounted. For Sirius Red
staining, the sections were fixed in PBS, 4% PFA at RT 5 min, washed in
H,0 and incubated in 0.01% Sirius Red F3B 1 h. Then, sections were
washed twice in acidified water, dehydrated thrice in 100% ethanol,
then cleared in xylene and mounted. For pancreas, 5-pum sections were
stained by hematoxylin and eosin. For the morphometric analysis,
liver and pancreatic sections were scanned using a NanoZoomer
(Hamamatsu Photonics, Japan) with a 20x objective. The surface of
islets was assessed using NDP.View 2 software (Hamamatsu Photon-
ics). The degree of liver fibrosis was evaluated and scored using Image |
software as described [15].

2.8. Liver oxidative stress status
2.8.1. Long-established oxidative stress parameters

A part of liver was homogenized in phosphate buffer (50 mM, pH 7)
1 g for 9 ml buffer using a Polytron homogenizer. The liver

thiobarbituric acid reactive substances (TBARS) and total glutathione
(GSH) levels were measured in homogenate according to the methods
of Sunderman [16] and Griffith [17], respectively. The remaining
homogenate was centrifuged at 1000g for 10 min at 4°C, and the
supernatant was used for the other analyses of oxidative stress.
Protein oxidation was assessed by measurement of thiol groups [18].
Catalase activity was measured according to the method of Beers and
Sizer [19]. Glutathione peroxidase (GPx) was measured according to
the method of Flohe and Gunzler [20]. Total superoxide dismutase
(SOD) was measured according to the method of Marklund [21].

2.8.2. Isoprostanoid metabolites measurement

To measure oxidative damage to lipids, the liver isoprostanoids
levels were measured based on micro-LC-MS/MS technique [22].
Briefly, after lipid extraction with Folch mixture, the extracts were
mixed with a cocktail of internal standards, and an alkaline hydrolysis
was performed. The metabolites were concentrated thanks to a solid
phase extraction step conduced on weak-anion exchange materials.
The metabolites were then analyzed by micro-LC-MS/MS. Mass
spectrometry analysis was performed in an AB Sciex QTRAP5500
(Sciex Applied Biosystems). The ionization source was electrospray in
negative mode. Detection of the fragmentation ion products from each
deprotonated molecule was performed in the multiple reaction
monitoring modes. Metabolites quantification was done, using Multi-
Quant 3.0 software, by measuring the ratio of area under the specific
metabolite peak/area under the internal standard peak and compared
to the ratio of area under the metabolite calibration peak/area under
the internal standard peak.

2.9. Liver mitochondrial enzymatic activities

The different mitochondrial respiratory complex activities were
determined as previously described [23]. Complex I activity was
measured spectrophotometrically at 600 nm during 45 s by following
the reduction of 2,6-dichloroindophenol by electrons accepted from
decylubiquinol, itself reduced after oxidation of NADH by complex I
[24]. Complex II (CII) activity was measured spectrophotometrically at
600 nm by following the reduction of 2,6-dichloroindophenol by the
succinate during 120 s [23]. Complex Il + III (CII 4 CIII) activities
were measured spectrophotometrically by following the oxidation of
oxidation of cytochrome ¢ at 550 nm during 90 s [25]. Cytochrome c
oxidase (COX) activity was measured spectrophotometrically by
following the oxidation of reduced cytochrome c at 550 nm during
30 s [26]. In addition, mitochondrial 3-hydroxyacyl-CoA dehydroge-
nase (B-HAD), a marker of last step of mitochondrial 3-oxidation
activity, was determined spectrophotometrically according to the
procedure described by Clayton et al. [27].

2.10. Protein isolation and Western blotting analysis

Frozen liver samples were homogenized using an Ultra Turax
homogenizer in an ice-cold extraction buffer containing 20 mM Tris—
HCL, 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, 0.1% SDS, 1 mM
PMSF, 10 uM leupeptin and 1 uM pepstatin. Proteins (50 pg) were
separated with 6%-15% SDS-PAGE and then transferred to a
nitrocellulose membrane (120 min, 100 V). Membranes were blocked
in 5% fat-free milk for 1 h at room temperature. Then, membranes
were incubated overnight with primary antibody against ChREBP,
GLK, GLUT2, IL-6, PEPCK and TNF-« in blocking buffer (Supplementary
Table 4). After washes in TBS/Tween under gentle agitation,
membranes were incubated for 1 h with horseradish-peroxidase-
labeled antibody. After further washes, blots were treated with
enhanced chemiluminescence detection reagents (ECL, ThermoScien-
tific, F67403 Illkirch cedex, France). 3-Actin or a-tubulin was used as



loading references, and blot intensities were measured using Image
Lab Software 5.2.1 (Bio-Rad Laboratories, Inc., France).

2.11. Liver real-time quantitative real-time quantitative polymerase
chain reaction (RT-qPCR) analysis

RT-qPCR was used to measure target genes mRNA expression in
liver. Total RNA was extracted with Trizol reagent (Invitrogen Life
Technologies, Cergy Pontoise, France). Reverse transcription reaction
was performed with 2 pg total RNA. cDNA was synthesized with the
use of SuperScript I Reverse Transcriptase for first-strand cDNA
synthesis (Invitrogen Life Technologies, Cergy Pontoise, France) and
Oligo (dT) primers. The mRNA expressions of target genes were
determined by RT-qPCR using IQTM SYBR Green Supermix (Biorad,
Hercules, CA, USA) with a MiniOpticon detection system (Biorad,
Hercules, CA, USA). Results were normalized with the gene encoding
RPS9 used as the reference. The primer sequences used for RT-PCR are
given in the Supplementary Table 5.

2.12. WAT RT-qPCR analysis

RT-qPCR was applied to measure key inflammation genes mRNA
expression in the adipose tissue. RNA from WAT was extracted with
Trizol reagent (Invitrogen Life Technologies, Cergy Pontoise, France).
Reverse transcription reaction was performed with 1 pg total RNA.
cDNA was synthesized with the use of moloney murine leukemia virus
reverse transcriptase for first-strand cDNA synthesis and random
primers. The mRNA expressions of target genes were determined by
RT-qPCR. RT-qPCR analysis was performed using SYBR Green
Mastermix (Eurogentec, liege, Belgium) with an Mx3005P Real-Time
PCR System (Stratagene, La Jolla, CA, USA). Results were normalized
with the gene encoding 18S. The primer sequences used for RT-PCR are
given in the Supplementary Table 5.

2.13. WAT lipidomic analysis

2.13.1. Sample extraction

Extraction of WAT metabolites was carried out using a biphasic
solvent system of cold methanol, methyl tert-butyl ether (MTBE) and
water [28] with some modifications. WAT samples (20 mg) were
homogenized with 275 pl MeOH and 275 pl 10% MeOH both containing
internal standards for 1.5 min using a grinder (MM400, Retsch, Germany).
Then, 1 ml of MTBE with internal standard was added, and the tubes were
shaken for 1 min and centrifuged at 16,000 rpm for 5 min.

For profiling of high-abundant TAG, 10 pl of upper organic phase
was collected, resuspended using a chloroform/MeOH/IPA (1:2:4)
mixture, shaken for 30 s and centrifuged at 16,000 rpm for 2 min, and
extract was further 100-times diluted with methanol containing CUDA
internal standard. For profiling of minor-lipid species in positive and
negative ion mode, 100 pl of upper organic phase was collected,
resuspended using 80% MeOH with CUDA internal standard, shaken
for 30 s, centrifuged at 16,000 rpm for 2 min and used for LC-MS
analysis. The LC-MS systems consisted of a Vanquish UHPLC System
(Thermo Fisher Scientific, Bremen, Germany) coupled to a QExactive
Plus mass spectrometer (Thermo Fisher Scientific, Bremen, Germany).

2.13.2. Lipidomics

Lipids were separated on an Acquity UPLC BEH C18 column
(50%x2.1 mm; 1.7 um) coupled to an Acquity UPLC BEH C18 VanGuard
precolumn (5x2.1 mm; 1.7 um) (Waters, Milford, MA, USA). The
column was maintained at 65°C at a flow-rate of 0.6 ml/min. For LC-
ESI(+)-MS analysis, the mobile phase consisted of (A) 60:40 (v/v)
acetonitrile:water with ammonium formate (10 mM) and formic acid
(0.1%) and (B) 90:10:0.1 (v/v/v) isopropanol:acetonitrile:water with
ammonium formate (10 mM) and formic acid (0.1%). For LC-ESI(—)-

MS analysis, the composition of the solvent mixtures was the same
with the exception of the addition of ammonium acetate (10 mM) and
acetic acid (0.1%) as mobile-phase modifier. Separation was conduct-
ed under the following gradient for LC-ESI(+)-MS: 0 min 15% (B); 0-1
min 30% (B); 1-1.3 min from 30% to 48% (B); 1.3-5.5 min from 48% to
82% (B); 5.5-5.8 min from 82% to 99% (B); 5.8-6 min 99% (B); 6-6.1
min from 99% to 15% (B); 6.1-7.5 min 15% (B). For LC-ESI(—)-MS, the
following gradient was used: 0 min 15% (B); 0-1 min 30% (B); 1-1.3
min from 30% to 48% (B); 1.3-4.8 min from 48% to 76% (B); 4.8-4.9 min
from 76% to 99% (B); 4.9-5.3 min 99% (B); 5.3-5.4 min from 99% to 15%
(B); 5.4-6.8 min 15% (B). A sample volume of 0.5-5 pl was used for
injection based on extract type. Sample temperature was maintained
at 4°C. The source and MS parameters were sheath gas pressure, 60
arbitrary units; aux gas flow, 25 arbitrary units; sweep gas flow, 2
arbitrary units; capillary temperature, 300°C; aux gas heater temper-
ature, 370 °C. For general lipidomics profiling, the mass spectrometer
was operated under following conditions: MS1 mass range, m/z
200-1700; MST1 resolving power, 35,000 FWHM (m/z 200); number of
data-dependent scans per cycle, 3; MS/MS resolving power, 17,500
FWHM (m/z 200). For ESI(+), spray voltage of 3.6 kV and normalized
collision energy of 20% were used, while for ESI(—), spray voltage of
—3.0kV and normalized collision energy of 10%, 20% and 30% were set
up. LC-MS and LC-MS/MS data were processed through the software
MS-DIAL v. 2.52 [29]. Metabolites were annotated using an in-house
retention time-m/z library and using MS/MS libraries available from
public sources (MassBank, MoNA).

2.14. Statistical analysis

Results were expressed as means4S.D. All the groups were tested
for the effects of FAHFAs intake by a one-way analysis of variance
(ANOVA) test followed up by a Fisher's least significant difference test.
In some case, Student’s t test was also performed. Correlations were
performed with the Kendall method. The limit of statistical signifi-
cance was set at P<.05. The means with different letters were
significantly different. Statistical analyses were performed using the
StatView program (SAS Institute, Cary, NC, USA).

3. Results

3.1. 9-PAHPA and 9-OAHPA had no effect on food intake, body weight
and circulating lipids but increased basal metabolism

Taking into account a mice food intake of about 2.5 g/day, the daily
intake of 9-PAHPA or 9-OAHPA correspond to about 0.37 mg FAHFA/
day/mouse. The long-term high intake of 9-PAHPA or 9-OAHPA had no
effect on body weight, fat and lean mass, food intake and plasma leptin
levels (Fig. 2A). Moreover, plasma triglycerides, cholesterol and free
fatty acids levels were not affected (Fig. 2B). Serum IL-6 level, a blood
marker of inflammation, tended to increase (P=.0854) in the 9-
PAHPA mice compared to the control and 9-OAHPA mice (Supple-
mentary fig. 1).

In order to investigate the basal metabolism, oxygen consumption and
carbon dioxide production were measured using CLAM system. We found
that oxygen consumption reflecting the basal metabolism was increased
with both 9-PAHPA and 9-OAHPA (respectively, +8% with 9-PAHPA and
+17% with 9-OAHPA, P<.001) (Fig. 2C). Moreover, analysis of RER
revealed that 9-OAHPA but not 9-PAHPA favored the oxidation of
carbohydrates, which was reflected by a higher RER value (Fig. 2D).

3.2. 9-PAHPA and 9-OAHPA had no effect on glucose tolerance but
improved insulin sensitivity

In both fasting and fed conditions, 9-PAHPA and 9-OAHPA intake had
no impact on blood glycemia (Fig. 3A) or on glucose tolerance (Fig. 3B).
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However, insulin sensitivity was markedly increased by the intake of both
9-PAHPA and 9-OAHPA, and it was even necessary to stop the insulin
tolerance test and reinject glucose 30 min after glucose gavage to the 9-
PAHPA- or 9-OAHPA-supplemented mice. Indeed, their glycemia levels
became so low that these were under the limit of detection of glucometer
(Fig. 3C).

The more surprising observation was that plasma insulin levels did
not respond to feeding in the 9-PAHPA-supplemented mice, whereas,
as expected, they were significantly increased in the control and in 9-
OAHPA mice (Fig. 3D). However, insulin levels were significantly
higher in 9-PAHPA mice during fasting compared to control and 9-
OAHPA mice (ANOVA, P=.0314) (Fig. 3D). Fasting level of plasma
total GLP-1, an incretin with proven effects in promoting insulin
secretion, was not significantly increased in 9-PAHPA or 9-OAHPA
mice by comparison to control mice (Fig. 3E). However, plasma total
GLP-1 was positively correlated to fasted plasma insulin level (P=
.0394, r=0.308) (Fig. 3F).

3.3. 9-PAHPA or 9-OAHPA intake induced liver alterations in some mice

During mice sacrifice and organs collection, we observed in 3 out of
10 mice fed with 9-PAHPA-supplemented diet and in 1 out of 10 mice
fed with 9-OAHPA-supplemented diet a strong alteration of liver
appearance (Fig. 4A). However, 9-PAHPA and 9-OAHPA intake had no
effect on liver weight compared to control mice (Fig. 4B). In addition,
liver content of triglycerides, cholesterol and total lipids was not
modified compared to controls, whereas that of free fatty acid was
slightly increased only in 9-PAHPA mice (Fig. 4C). Therefore, Oil Red O
staining was performed to compare fat accumulation in mice liver. If
overall there was no difference among the groups in agreement with
previous results of liver lipid content, the livers that were visually
strongly altered with 9-PAHPA and 9-OAHPA intake showed an overt
accumulation of Oil Red O, suggesting hepatic steatosis in the
concerned mice (Fig. 4D). In attempt to explain this high liver lipid
content in some mice, we have investigated the gene and/or protein

expression of major players in hepatic de novo lipogenesis, namely,
PPARa, PPARYy, ACC and FAS. Although the obtained results (Supple-
mentary Fig. 2) did not reveal any significant difference among the
three studied groups, we however observed a significant correlation
between some of these parameters, in particular p-ACC protein
abundance, and the hepatic fibrosis index (Supplementary Fig. 3).
Fibrosis was then investigated using Sirius Red staining (Fig. 5A).
Fibrosis percentage in liver was increased almost fourfold with 9-
PAHPA and about twofold with 9-OAHPA compared to the control
mice (Fig. 5B). As observed for Oil Red O staining, the livers that were
visually strongly altered with 9-PAHPA and 9-OAHPA intakes
presented more important fibrosis. Regarding liver alteration, we
showed that plasma ALT activity, a biochemical marker of liver
damage, was increased almost threefold with 9-PAHPA and twofold
with 9-OAHPA (Fig. 5C). We then studied direct markers of fibrosis
using Q-PCR. The expression of MMP2, a metalloproteinase implicated
in complex extracellular matrix degradation [30], was significantly
increased with 9-PAHPA intake (threefold) but not with 9-OAHPA
intake, while gene expression of CoL1A [31], characteristic of liver
fibrosis, was nonsignificantly increased (Fig. 5D). As liver fibrosis is
often associated to inflammation, we studied specific inflammation
markers such as CD68 and MCP-1. However, their expression was not
modified by 9-PAHPA or 9-OAHPA intake (Fig. 5E). This result
prompted us to study the expression of two major proinflammatory
cytokines, TNFo and IL-6, at the protein levels. While liver IL-6 protein
expression was unchanged whatever the diet (Fig. 5F), the high intake
of both 9-PAHPA and 9-OAHPA significantly decreased liver TNF-a
protein expression (Fig. 5G). Interestingly, TNF-a protein expression
was inversely correlated to CoL1A (r=-—0.394, P=.0048) (Fig. 5H).

3.4. 9-PAHPA and 9-OAHPA intake had no effect on liver mitochondrial
activity and oxidative stress

Because mitochondrial dysfunction and oxidative stress are
interconnected and generally known to be involved in the



development of steatohepatitis and fibrosis [32], we investigated
these parameters in the mice liver. The enzymatic activities of
mitochondrial respiratory chain complexes were not modified by 9-
PAHPA and 9-OAHPA, as well as the PB-oxidation (Fig. 6A-B).
Moreover, the activities of antioxidant enzymes (SOD, MnSOD,
catalase and GPx) were not changed either (Fig. 6C). In line with
these observations, 9-PAHPA and 9-OAHPA intake had no effect on
biochemical markers of oxidized proteins (SH groups and GSSG/GSH)
or oxidized lipids (TBARS, phytoprostanes, isoprostanes and neuro-
prostanes) (Fig. 6D-E).

3.5. High intake of 9-PAHPA slightly altered lipid composition of WAT

Although the fat content of the mice was not changed regardless of
the diet (Fig. 2A), the lipidomic analysis of WAT revealed that WAT
from 9-PAHPA mice was redesigned and mildly enriched in saturated
fatty acids compared to control and 9-OAHPA mice. However, this was

Fasted state : effect of FAHFA NS

A .
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observed only in half the mice of this group (Fig. 7A). The WAT mRNA
expression of major proinflammatory cytokines (TNFa and IL-6) and
chemokines (MCP-1 and RANTES) were not modified whatever the
diet (Fig. 7B).

4. Discussion

In the present study, we have investigated for the first time the
effect of 9-PAHPA and 9-OAHPA on basal metabolism, insulin
sensitivity and glucose tolerance and liver metabolism in control-
diet-fed mice. This study is a long-term high intake of 9-PAHPA and 9-
OAHPA that lasted 12 weeks. The administered dosage of our FAHFAs
was based on the work of Yore et al. (2014) [1]. It is also in good
agreement with the conditions recently published by Paluchova et al.
(2019) [12]. We have to outline that these high dosages of FAHFAs
applied in the present work cannot be taken up through normal
dietary. We studied such high dosages in healthy mice because these
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dosages were investigated in different pathological situations;
therefore, it seemed relevant to study their effects at these dosages
in healthy mice as well [1,2,12,33].

4.1. 9-PAHPA and 9-OAHPA increased basal metabolic rate in healthy
mice

Our data show for the first time that basal metabolic rate, measured by
the rate of oxygen consumption, was increased with both 9-PAHPA and 9-
OAHPA intakes but without impact on body weight. No comparison can
be made with other types of FAHFAs, as this parameter has never been
previously measured following the intake of other FAHFAs.

Our results also show that food intake and adiposity were not
altered by 12-week intake of 9-PAHPA or 9-OAHPA. In fact, their
dietary intake had no effect on food consumption, body weight or fat
mass of mice. This is rather a surprising result because given the effect
of 9-PAHPA and 9-OAHPA on basal metabolism, we would have
expected a reduction in the weight of mice that eat less. This may
suggest that 9-PAHPA and 9-OAHPA could modulate nutrient
intestinal absorption. In addition, plasma leptin levels, an anorexigenic
hormone mediator of long-term regulation of energy balance [34], was
not modified whatever the diet. Circulating lipid levels also remained
unchanged. In accordance, Syed et al. [35] observed no effect on all
these parameters in mice gavaged for 18 weeks with two structurally
different FAHFAs: the 5-PAHSA and 9-PAHSA. These observations
show that 9-PAHPA, 9-OAHPA, 5-PAHSA and 9-PAHSA have no effect
on food consumption and body fat mass accumulation in control-diet-
fed mice. Regarding the numerous different types of FAHFAs that may
exist, depending of the FA and HFA structure and the esterification
position, this cannot be extrapolated to all FAHFAs and needs to be
investigated for each individual FAHFA.

4.2. 9-PAHPA and 9-0OAHPA increased insulin sensitivity in healthy mice

The glucose and insulin tolerance tests are useful tools to
investigate glucose metabolism. Our study demonstrates that long-
term high intake of 9-PAHPA or 9-OAHPA markedly increased insulin
sensitivity. In accordance with this observation, experiments per-

formed using metabolic cages showed that, compared to control
animals, mice supplemented with 9-OAHPA used glucose preferen-
tially, as evidenced by the increase in the RER. In addition, the lack of
increased RER in animals supplemented with 9-PAHPA could probably
be explained by the fact that these mice no longer secrete insulin in
response to glucose. However, since we did not find any alterations in
the morphology and density of the islets of Langerhans in pancreas
suggesting an attack of this tissue (Supplementary Fig. 4), we
hypothesize that this loss of insulin secretion in response to glucose
is probably an adaptation at the P-cell level that has been
implemented in these mice to counteract the negative effects of
insulin in the liver due to their hypersensitivity to the hormone.

Despite increased insulin sensitivity in 9-PAHPA and 9-OAHPA
mice, glucose tolerance was not changed by any diet probably because
glucose tolerance is already satisfactory in healthy mice. Regarding
molecular glucose metabolism in the liver, the protein expression of
Glut-2 (involved in glucose transport), GLK (a major component of the
hepatic glucose-sensing system), PEPCK (a key molecule of gluconeo-
genesis) and ChREBP (a key player in the induction of genes of de novo
fatty acid synthesis in response to glucose) remained unchanged after
9-PAHPA or 9-OAHPA intake (Supplementary Fig. 5), which indicates
that glucose metabolism itself was not affected by the intake of these
FAHFAs.

4.3. 9-PAHPA and 9-OAHPA intake induced liver steatosis and fibrosis in
some healthy mice

Visual observation of liver after euthanasia of mice revealed severe
alterations of some livers in the groups supplemented with 9-PAHPA
or 9-OAHPA. Histological analysis revealed steatosis and fibrosis in
these same livers. Increased hepatic de novo lipogenesis is a significant
pathway contributing to nonalcoholic fatty liver disease [36], and it is
likely that both FAHFAs have insulin-sensitized the liver of some mice
so much that de novo lipogenesis promoted steatosis/fibrosis.
Although the gene/protein expression analysis of some major players
in hepatic de novo lipogenesis, namely, PPARa, PPARY, ACC and FAS,
did not reveal significant differences among the three studied groups,
it is not excluded that posttranslation protein modifications may be
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involved in the alteration of de novo lipogenesis. Nevertheless,
histological observations were supported by the gene expression
analysis of some liver fibrosis markers linked to matrix degradation
[37]. Plasma ALT levels, a biochemical marker of liver damage,
confirmed also liver alterations with 9-PAHPA and 9-OAHPA as ALT
levels were increased almost threefold with 9-PAHPA and twofold
with 9-OAHPA.

In attempt to understand the origin of the liver fibrosis observed in
some mice fed with the FAHFA-supplemented diet, we then explored
various markers of inflammation. However, neither protein expres-
sion of IL-6 nor gene expression of IL-6, TNF-o, MCP-1 and CD-68 was
increased whatever the diet. Even more surprisingly, protein expres-
sion of TNF-a was significantly decreased in mice liver fed the 9-
PAHPA or 9-OAHPA and was inversely correlated to gene expression of
one liver fibrosis marker. TNF-a is a multifunctional cytokine that
plays important roles in diverse cellular events such as cell survival,
proliferation, differentiation and cell death [38], and anti-TNF-a may
exert some undesirable effects on liver [39-41].

Liver free fatty acid accumulation, inflammation, oxidative stress
and mitochondrial dysfunction generally lead to steatosis and
progressively switch it to steatohepatitis [32]. However, free fatty
acids rather than triglycerides are responsible for liver injury via
increased oxidative stress [42]. To explore whether the accumulation

of free fatty acids induced oxidative stress, various markers of
oxidative stress were investigated as oxidized lipids (isoprostanoids
and TBARs), oxidized protein (thiols and glutathione) and antioxidant
enzyme activity. Surprisingly, none of these parameters was signifi-
cantly modified regardless of the diet. Mitochondria are known to be
one of the main ROS generation sites within the cell, and mitochon-
drial ROS production is closely associated with the respiratory chain
complexes activity [23]. Moreover, mitochondria are postulated to
play a central role in the progression of liver diseases [43]. However,
the enzymatic activity of mitochondrial respiratory chain complexes
was not modified whatever the diet.

4.4. 9-PAHPA and 9-OAHPA had slight effect on WAT

The WAT lipidomic analysis revealed that 9-PAHPA intake induced
amild enrichment in saturated fats in the WAT of some mice. The mild
enrichment in saturated fats of the WAT may be resulting either from
the absorption of palmitate as a nutrient fatty acid or from the higher
bioavailability of PAHPA. While hepatic de novo lipogenesis is thought
to contribute to metabolic disease [44], WAT de novo lipogenesis is
good, promoting “healthy” adipocyte [45]. In accordance, there was no
increase of proinflammatory markers in this tissue.
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5. Conclusion

This work demonstrates that long-term high intake of 9-PAHPA
or 9-OAHPA, incorporated into a control diet, has some positive
effects in healthy mice, namely, an increase in basal metabolic rate
and in insulin sensitivity. However, 9-PAHPA intake and to a lesser
extent 9-OAHPA intake induced liver steatosis and fibrosis in some
mice. It is likely that both FAHFAs have insulin-sensitized the healthy
liver so much that de novo lipogenesis promoted steatosis/fibrosis.
This work highlights the fact that long-term high intake of some
FAHFAs, because of their high insulin-sensitizing effect, can induce
unexpected adverse metabolic effects in healthy mice. The results
obtained in the present study are encouraging concerning the effects
of these FAHFAs in pathological situations as diabetes. It should be
emphasized that the studied FAHFAs cannot be taken up in the
concentrations used in this study through normal diet. In vivo dose-
response studies should be considered to determine the safe intake
of 9-PAHPA and 9-OAHPA.
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