Modelling crop-weed canopies as a tool to optimise crop diversification in agroecological cropping systems

Nathalie Colbach, Floriane Colas, Stéphane Cordeau, Thibault Maillot, Wilfried Queyrel, Jean Villerd, Delphine Moreau

To cite this version:
Nathalie Colbach, Floriane Colas, Stéphane Cordeau, Thibault Maillot, Wilfried Queyrel, et al.. Modelling crop-weed canopies as a tool to optimise crop diversification in agroecological cropping systems. The Second International Crop Modelling Symposium (iCROPM2020), Feb 2020, Montpellier, France. hal-02511874

HAL Id: hal-02511874
https://institut-agro-dijon.hal.science/hal-02511874
Submitted on 19 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modelling crop-weed canopies as a tool to optimise crop diversification in agroecological cropping systems

N. Colbach, F. Colas, S. Cordeau, T. Maillot, W. Queyrel, J. Villerd, D. Moreau
Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon
Nathalie.Colbach@inrae.fr

Aim Evaluate crop diversification and promote agroecological weed management
Method Mechanistic modelling to synthesize knowledge and simulate plant-plant interactions in agroecosystems

Key modelling points
- Emergence = f(ecological needs, season)
- Plant-plant competition for resources
- Soil legacy for future crops

A tool to investigate & promote diversification
- Prototypes
- Virtual experiments
- Participatory workshops

Crop traits to regulate weed harmffulness
- Investigate traits
- Investigate practices
- Occupy space before other plants
- Escape shading by neighbours

Diversifying crops allows to reduce herbicide use intensity

<table>
<thead>
<tr>
<th>System</th>
<th>Crop diversity</th>
<th>Cover crop (%)</th>
<th>Plough</th>
<th>Mechanical weeding</th>
<th>Herbicides (TFI)</th>
<th>Yield (1000 MJ/ha)</th>
<th>Weed loss</th>
<th>Bee-food offer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>4 Species & varieties / 12 years</td>
<td>100%</td>
<td>8%</td>
<td>Yes</td>
<td>No</td>
<td>1.6</td>
<td>63</td>
<td>50.9</td>
</tr>
<tr>
<td>IWM simplified</td>
<td>18</td>
<td>77%</td>
<td>39%</td>
<td>No</td>
<td>No</td>
<td>1.7</td>
<td>51</td>
<td>58.4</td>
</tr>
<tr>
<td>IWM medium</td>
<td>10</td>
<td>63%</td>
<td>8%</td>
<td>Yes</td>
<td>No</td>
<td>0.8</td>
<td>54</td>
<td>55.3</td>
</tr>
<tr>
<td>IWM complete</td>
<td>8</td>
<td>55%</td>
<td>0%</td>
<td>Yes</td>
<td>Yes</td>
<td>0.7</td>
<td>67</td>
<td>40.9</td>
</tr>
<tr>
<td>IWM ~ 0 herbicide</td>
<td>12</td>
<td>63%</td>
<td>16%</td>
<td>Yes</td>
<td>Yes</td>
<td>0.1</td>
<td>69</td>
<td>50.5</td>
</tr>
</tbody>
</table>

Systems with the highest crop diversification = highest yield and lowest herbicide use
Diversifying crops is not enough to promote weed-based biodiversity (e.g. bee food)
Diversifying crops is not enough to control weeds and ensure crop production

What next...
- Participatory workshops
- Easier use by farmers & advisors

Ergonomic tools