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Abstract:

The potential of multi-spectral images is growing rapidly in precision agriculture, and is currently
based on the use of multi-sensor cameras. However, their development usually concerns aerial
applications and their parameters are optimized for high altitudes acquisition by drone (UAV = 50
meters) to ensure surface coverage and reduce technical problems. With the recent emergence
of terrestrial robots (UGV), their use is diverted for nearby agronomic applications. Making it
possible to explore new agronomic applications, maximizing specific traits extraction (spectral
index, shape, texture ..) which requires high spatial resolution. The problem with these cameras
is that all sensors are not aligned and the manufacturers’ methods are not suitable for close-field
acquisition, resulting in offsets between spectral images and degrading the quality of extractable
informations. We therefore need a solution to accurately align images in such condition.

In this study we propose a two-steps method applied to the six-bands Airphen multi-sensor camera
with (i) affine correction using pre-calibrated matrix at different heights, the closest transformation
can be selected via internal GPS and (ii) perspective correction to refine the previous one, using
key-points matching between enhanced gradients of each spectral bands. Nine types of key-point
detection algorithms (ORB, GFTT, AGAST, FAST, AKAZE, KAZE, BRISK, SURF, MSER)
with three different modalities of parameters were evaluated on their speed and performances, we
also defined the best reference spectra on each of them. The results show that GFTT is the most
suitable methods for key-point extraction using our enhanced gradients, and the best spectral
reference was identified to be the band centered on 570 nm for this one. Without any treatment
the initial error is about 62 px, with our method, the remaining residual error is less than 1 px,
where the manufacturer’s involves distortions and loss of information with an estimated residual
error of approximately 12 px.

1 INTRODUCTION

Modern agriculture is changing towards a
system that is less dependent on pesticides
[Lechenet et al., 2014] (herbicides remain the
most difficult pesticides to reduce) and digital
tools are of great help in his matter. The develop-
ment of imaging and image processing have made
it possible to characterize an agricultural plot
[Sankaran et al., 2015] (crop health status or soil
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characteristics) using non-destructive agronomic
indices [Jin et al., 2013] replacing traditional de-
structive and time-consuming methods. In recent
years, the arrival of miniaturized multi-spectral
and hyper-spectral cameras on Unmanned Aerial
Vehicles (UAVs) has allowed spatio-temporal
field monitoring. These vision systems have been
developed for precise working conditions (flight
height 50 m). Although, very practical to use,
they are also used for proxy-sensing applications.
However, the algorithms offered by manufactur-
ers to co-register multiple single-band images
at different spectral range, are not optimal for
low heights. It thus requires a specific close-field
image registration.



Image registration is the process of transform-
ing different images of one scene into the same
coordinate system. The spatial relationships
between these images can be rigid (translations
and rotations), affine (shears for example),
homographic, or complex large deformation
models (due to the difference of depth between
ground and leafs) [Kamoun, 2019]. The main
difficulty is that multi-spectral cameras have low
spectral coverage between bands, resulting in a
loss of characteristics between them. Which is
caused by (i) plant leaves have different aspect
depending on the spectral bands (ii) there are
highly complex and self-similar structures in our
images [Douarre et al., 2019]. It therefore affects
the process of detecting common characteristics
between bands for image registration. There
are two types of registration, feature based
and intensity based [Zitovd and Flusser, 2003].
Feature based methods works by extracting point
of interest and use feature matching, in most
cases a brute-force matching is used, making
those techniques slow. Fortunately these features
can be filtered on the spatial properties to reduce
the matching cost. A GPGPU implementation
can also reduce the comparisons cost. Intensity-
based automatic image registration is an iterative
process, and the metrics used are sensitive to
determine the numbers of iteration, making such
method computationally expensive for precise
registration. Furthermore multi-spectral implies
different metrics for each registered bands which
is hard to achieve.

Different studies of images alignment using
multi-sensors camera can be found for acquisition
using UAV at medium (50 —200 m) and high
(200 — 1000 m) distance.  Some show good
performances (in term of number of key-points)
of feature based [Dantas Dias Junior et al., 2019,
Vakalopoulou and Karantzalos, 2014] with
strong enhancement of feature descriptor for
matching performances. Other prefer to use in-
tensity based registration [Douarre et al., 2019]
on better convergence metrics [Chen et al., 2018]
(in term of correlation), which is slower and
not necessarily robust against light variability
and their optimization can also fall into a local
minimum, resulting in a non-optimal registration
[Vioix, 2004].

Traditional approach to multi-spectral im-
age registration is to designate one channel

as the target channel and register all the
others on the selected one. Currently, only
[Dantas Dias Junior et al., 2019] show a method
for selecting the best reference, but there is no
study who as defined the best spectral reference
in agronomic scene. In all cases NIR (850 nm) or
middle range spectral reference are convention-
ally used without studying the others on precision
agriculture. In addition those studies mainly
propose features matching without large methods
comparison [Dantas Dias Junior et al., 2019](less
than 4) of their performance (time/precision),
without showing the importance of the spectral
reference and the interest of normalized gradients
transformation (like in Intensity-based methods).

However, despite the growing use of UGVs
and multi-spectal imaging, the domain is not
very well sourced, and no study has been found
under agricultural and external conditions in
near field of view (less than 10 meter) for
multi-spectral registration.

Thus, this study propose a benchmark of pop-
ular feature extractors inside normalized gradi-
ents transformation and the best spectral refer-
ence was defined for each of them. Moreover a
pre-affine registration is used to filter the feature
matching, evaluated at different spatial resolu-
tions. So this study shows the importance of the
selection of the reference and the features extrac-
tor on normalized gradients in such registration.

2 MATERIAL AND METHOD

2.1 Material
2.1.1 Camera

The multi-spectral imagery is provided by
the six-band multi-spectral camera Airphen
developed by HiPhen. Airphen is a scientific
multi-spectral camera developed by agronomists
for agricultural applications. It can be embedded
in different types of platforms such as UAV,
phenotyping robots, etc.

Airphen is highly configurable (bands, fields
of view), lightweight and compact. The camera
was configured using interferential filter centered
at 450/570/675/710/730/850 nm with FWHM !

1Full Width at Half Maximum



of 10 nm, the position of each band is referenced
on figure 1. The focal lens is 8 mm for all wave-
length. The raw resolution for each spectral band
is 1280 x 960 px with 12 bit of precision. Fi-
nally the camera also provides an internal GPS
antenna that can be used to get the distance from
the ground.

Figure 1: Disposition of each band on the Airphen
multi-sensors camera

2.1.2 Datasets

Two datasets were taken at different heights with
images of a chessboard (use for calibration) and
of an agronomic scene. We used a metallic gantry
for positioning the camera at different heights.
The size of the gantry is 3 x5 x4 m. Due to the
size of the chessboard (57 x 57 cm with 14 x 14
square of 4 c¢cm), the limited focus of the camera
and the gantry height, we have bounded the
acquisition heights from 1.6 to 5 m with 20 cm
steps, which represents 18 acquisitions.

The first dataset is for the calibration. A
chessboard is taken at different heights The sec-
ond one is for the alignment verification under
real conditions. One shot of an agronomic scene
is taken at different heights with a maximum bias
set at 10 cm.

2.2 Methods

Alignment is refined in two stages, with (i) affine
registration approximately estimated and (ii) per-
spective registration for the refinement and preci-
sion. As example the figure 2 shows each correc-
tion step, where the first line is for the (i) affine
correction (section 2.2.1), the second is for (ii)
perspective correction. More precisely the second
step is per-channel pre-processed where feature
detectors are used to detect key-points (section
2.2.2). Each channel key-points are associated to
compute the perspective correction through ho-
mography, to the chosen spectral band (section
2.2.2). These steps are explained on specific sub-
sections.

step 1 roughly corrected
-— e

/ raw images ; / approximate height ;

T
¥
v I—| affine correction
/ roughly corrected / Il\
1
Chessboard Datas

step 2 fully corrected

keypoint extract
matching & filtering
selected keypoint

% I—| perspective correction |

fully corrected

Figure 2: Each step of the alignment procedure, with
(step 1) roughly corrected from affine correction and
(step 2) enhancement via key-points and perspective

2.2.1 Affine Correction

We make the assumption that closer we take the
snapshot, the bigger the distance between each
spectral band is. On the other hand, at a dis-
tance superior or equals to 5 m, the initial affine
correction become stable. A calibration is used
to build a linear model based on that assump-
tion, which will allow the affine correction to work
at any height. The main purpose of this step is
to reduce the offset between each spectral band,
which allows the similarity between key-points to
be spatially delimited within a few pixels, making
feature matching more effective.

Calibration : Based on that previous assump-
tion a calibration is run over the chessboard
dataset. We detect the chessboard using the
opencv calibration toolbox [Bouguet, 2001] on
each spectral image (normalized by I = (I —
min(/))/max(I) where I is the spectral image) at
different heights (from 1.6 m to 5 m). We use the
function findChessboardCorners how attempts to
determine whether the input image is a view of
the chessboard pattern and locate the internal
chessboard corners. The detected coordinates are
roughly approximated. To determine their posi-
tions accurately we use the function cornerSubPix

as explained in the documentation 2.

2https://docs.opencv.org/2.4/modules/calib3d/
doc/camera_ calibration and_3d_ reconstruction.
html
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Linear model : Using all the points detected for
each spectral band, we calculate the centroid grid
(each point average). The affine transform from
each spectral band to this centroid grid is esti-
mated. Theoretically, the rotation and the scale
(A,B,C,D) do not depend on the distance to the
ground, but the translation (X,Y) does. Thus
a Levenberg-Marquardt curve fitting algorithm
with linear least squares regression [Moré, 1978|
can be used to fit an equation for each spec-
tral band against X and Y independently to the
centroid grid. We adjust the following curve
t = oh® 4 Ph* 4+ Oh +y where h is the height, ¢ is
the resulted translation and factors a,f3,0,y are
the model parameters.

Correction : Based on the model estimated on
the chessboard dataset, we transpose them to the
agronomic dataset. To make the affine matrix
correction, we used the rotation and scale fac-
tors at the most accurate height (1.6 m where
the spatial resolution of the chessboard is higher),
because it does not theoretically depend on the
height. For the translation part, the curve model
is applied for each spectral band at the given
height provided by the user. Each spectral band
is warped using the corresponding affine transfor-
mation. Finally, all spectral bands are cropped
to the minimal bounding box (minimal and max-
imal translation of each affine matrix). This first
correction is an approximation. It provides some
spatial properties that we will use on the second
stage.

2.2.2 Perspective correction

Each spectral band has different properties and
values by nature but we can extract the corre-
sponding similarity by transforming each spectral
band into its absolute derivative, to find similari-
ties in gradient break among them. As we can see
in figure 3 gradients can have opposite direction
depending on the spectral bands, making the ab-
solute derivative an important step for matching
between different spectral band.

Visible NIR

Figure 3: Gradient orientation in spectral band
[Rabatel and Labbe, 2016]. Orientation of the gra-
dient is not the same depending to the spectral band.

The affine correction attempts to help the fea-
ture matching by adding properties of epipolar
lines (close). Thus, the matching of extracted fea-
tures can be spatially bounded, (i) we know that
the maximum translation is limited to a distance
of a few pixels (less than 10px thanks to affine
correction), and (ii) the angle between the initial
and the matched one is limited to [—1,1] degree.

Computing the gradient : To compute the gra-
dient of the image with a minimal impact of
the light distribution (shadow, reflectance, spec-
ular, ...), each spectral band is normalized using
Gaussian blur [Sage and Unser, 2003], the ker-
nel size is defined by next odd(image width®*)
(19 in our case) and the final normalized im-
ages are defined by I/(G+ 1) %255 where [ is
the spectral band and G is the Gaussian blur
of those spectral bands. This first step mini-
mizes the impact of the noise on the gradient and
smooth the signal in case of high reflectance. Us-
ing this normalized image, the gradient Iy.qq(x,y)
is computed with the sum of absolute Sharr fil-
ter [Seitz, 2010] for horizontal S, and vertical S,
derivative, noted Igqa(x,y) = 5|Sx| + 3ISy[.  Fi-
nally, all gradients I, (x,y) are normalized us-
ing CLAHE [Zuiderveld, 1994] to locally improve
their intensity and increase the number of key-
points detected.

Key-points Extractor : A key-point is a point
of interest. It defines what is important and dis-
tinctive in an image. Different types of key-point
extractors are available and the following are
tested :

(ORB) Oriented FAST and Rotated BRIEF
[Rublee et al., 2011], (AKAZE) Fast explicit
diffusion for accelerated features in nonlinear
scale spaces [Alcantarilla and Solutions, 2011],
(KAZE) A novel multi-scale 2D feature de-
tection and description algorithm in nonlinear
scale spaces [Ordonez et al., 2018], (BRISK)
Binary robust invariant scalable key-points
[Leutenegger et al., 2011], (AGAST) Adaptive
and generic corner detection based on the
accelerated segment test [Mair et al., 2010],
(MSER) maximally stable extremal re-
gions  [Donoser and Bischof, 2006],  (SURF)
Speed-Up Robust Features [Bay et al., 2006],
(FAST) FAST Algorithm for Corner Detection
[Trajkovié and Hedley, 1998] and (GFTT) Good
Features To Track [Shi et al., 1994].



These algorithms are largely described across
multiple studies [Dantas Dias Junior et al., 2019,
Tareen and Saleem, 2018, Zhang et al., 2016,
Ali et al., 2016], they are all available and easily
usable in OpenCV. Thus we have studied them
by varying the most influential parameters for
each of them with three modalities, the table 1
in appendix shows all modalities.

Table 1: list of algorithms with 3 modalities of their
parameters
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Key-point detection : We use one of the key-
point extractors mentioned above between each
spectral band gradients (all extractors are eval-
uated). For each detected key-point, we extract
a descriptor using ORB features. We match all
detected key-points to a reference spectral band
(all bands are evaluated). All matches are fil-
tered by distance, position and angle, to elimi-
nate a majority of false positives along the epipo-
lar line. Finally we use the function findHomog-
raphy between the key-points detected/filtered

with RANSAC [Fischler and Bolles, 1981], to de-
termine the best subset of matches to calculate
the perspective correction.

Correction The perspective correction be-
tween each spectral band to the reference is es-
timated and applied. Finally, all spectral bands
are cropped to the minimum bounding box, which
is obtained by applying a perspective transforma-
tion to each corner of the image.

3 RESULTS AND DISCUSSION

Firstly the results will focus on affine correc-
tions and then on the effects of the perspective
correction. Figure 4 shows a closeup inside at
1.6 m (4a) raw images acquisition, (4c & 4d) reg-
istred image of each correction steps and (4b) the
manufacturer results.

(a) raw image (b) manufacturer’s

(d) fully corrected

(c) roughly corrected
Figure 4: Example of each correction and the manu-
facturers results

3.1 Affine correction

The affine correction model is based on the cal-
ibration dataset (where the chessboard are ac-
quired). The 6 coefficients (A,B,C,D,X,Y) of the
affine matrix were studied according to the height
of the camera in order to see their stability. It ap-
pears that the translation part (X,Y), depends on
the distance to the field (appendix figure 5) ac-
cording to the initial assumption. On this part
the linear model is used to estimate the affine
correction from an approximated height.



Affine matrix factor X Affine matrix factor Y

50 4

25 — 450

0 O,W — 570

— 675
-10 4 —254 —— 710
— 730
204 /,/‘«,_# 50 o ememememe—ee—eeeee—s | — g50
w0l 75 ] W
2 3 4 5 2 3 4 5
height in meter height in meter

translation in pixel

Figure 5: Affine matrix value by height

Rotation and scale do not depend on the
ground distance (figure 6) according to the the-
ory. These factors (A,B,C,D) are quite stable and
close to identity, as expected (accuracy depends
on the spatial resolution of the board). As result,
single calibration can be used for this part of the
matrix, and the most accurate are used (i.e where
the chessboard has the best spatial resolution).
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Figure 6: Affine matrix value by height

After the affine correction, the remaining
residual distances have been extracted, it is com-
puted using the detected, filtered and matched
key-point to the reference spectral band, figure 9
(up) shows an example using 570 nm as reference
before the perspective correction. The remaining
distance between each spectral band to the refer-
ence varies according to the distance between the
real height and the nearest selected (through lin-
ear model). Remember that a bias of +/- 10cm
was initially set to show the error in the worst
case, so the difference of errors between each of
them are due to the difference of sensors position
in the array to the reference and the provided
approximate height.

3.2 Perspective correction

The figures 7 shows the numbers of key-points
after filtering and homographic association (min-

imum of all matches) as well as the computa-
tion time and performance ratio (matches/time)
for each method. The performance ratio is used
to compare methods between them, bigger he is,
greater is the method (balanced between time and
accuracy ), making lower of them unsuitable.
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Figure 7: features extractor performances after filter-
ing and homography association

All these methods offer interesting results, the
choice of method depends on application needs
between computation time and accuracy, three
methods stand out in all of there modality:

e GFTT shows the best overall performance
in both computation time and number of
matches

e FAST and AGASTI1 are quite suitable too,
with acceptable computation time and greater
matches performances.



The other ones did not show improvement in
term of time or matches (especially compared
to GFTT), some of them show a small number
of matches which can be too small to ensure
the precision. Increasing the number of key-
points matched allows a slightly higher accuracy
[Dantas Dias Junior et al., 2019]. For example,
switching from SURF (30 results) to FAST (130
results) reduces the final residual distances from
~ 1.2 to = 0.9 px but increases the calculation
time from = 5 to &~ 8 seconds.

All methods show that the best spectral band
is 710 nm (in red), with an exception for SURF
and GFTT which is 570 nm. The figure 8 shows
the minimum number of matches between each
reference spectrum and all the others, for each rel-
evant methods and modalities (KAZE, AGAST,
FAST GFTT). Choosing the right spectral ref-
erence is important, as we can see, no correspon-
dence is found in some cases between 675-850 nm,
but correspondences are found between 675-710
nm and 710-850 nm, making the 710 nm more
appropriate, the same behavior can be observed
for the other bands and 570 nm as the more ap-
propriate one. This is visible on the figure for all
methods, 570 nm and 710 nm have the best min-
imum number of matches where all the other are
quite small.
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Figure 8: key-point extractor performances

Residues of the perspective correction show
that we have correctly registered each spectral
band, the figure 9 (down) shows the residual

distance at different ground distances. In com-
parison the affine correction error are between
[1.0 — 4.8] px where the combination of affine
and perspective correction the residual error are
between [0.7 —1.0] px. On average the per-
spective correction enhance the residual error by
(3.5—-0.9)/3.5 = 74%.

Affine error at different height
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Figure 9: (up) The mean distance of detected key-
point before perspective correction with 570 nm as
spectral reference (down) Perspective re-projection
error with GFTT using the first modality and 570
nm as reference

3.3  General discussion

Even if the relief of the scene is not taken into
account due to the used deformation model, in
our case, with flat ground, no difference arise.
However, more complex deformation models
[Lombaert et al., 2012, Bookstein, 1989] could be
used to improve the remaining error. But could
also, in some case, create large angular defor-
mations caused by the proximity of key-points,
of course, it’s possible to filter these key-points,
which would also reduce the overall accuracy.

Further research can be performed on each pa-
rameter of the feature extractors, for those who
need specific performance (time/precision), we in-
vite anyone to download the dataset and test var-
ious combinations. Otherwise feature matching
can be optimized, at this stage, we use brute-
force matching with post filtering, but a different
implementation that fulfill our spatial properties
should greatly enhance the number of matches by
reducing false positives.



4 CONCLUSION

In this work, the application of different
techniques for multi-spectral image registration
was explored using the Airphen camera. We
have tested nine type of key-points extractor
(ORB, GFTT, AGAST, FAST, AKAZE, KAZE,
BRISK, SURF, MSER) at different heights and
the number of control points obtained. As seen
in the method, the most suitable method is the
GFTT (regardless of modalities 1, 2 or 3) with
a significant number of matches 150 — 450 and
a reasonable calculation time 1.17 s to 3.55 s
depending on the modality.

Furthermore, the best spectral reference was
defined for each method, for example 570 nm for
GFTT. We have observed a residual error of less
than 1 px, supposedly caused by the difference of
sensors nature (spectral range, lens).
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