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Biogeography of Soil Bacterial 
Networks along a Gradient of 
Cropping Intensity
Battle Karimi1, Samuel Dequiedt1, Sébastien Terrat1, Claudy Jolivet2, Dominique Arrouays2, 
Patrick Wincker3, Corinne Cruaud3, Antonio Bispo2,4, Nicolas Chemidlin Prévost-Bouré1 & 
Lionel Ranjard1

Although land use drives soil bacterial diversity and community structure, little information about the 
bacterial interaction networks is available. Here, we investigated bacterial co-occurrence networks in 
soils under different types of land use (forests, grasslands, crops and vineyards) by sampling 1798 sites 
in the French Soil Quality Monitoring Network covering all of France. An increase in bacterial richness 
was observed from forests to vineyards, whereas network complexity respectively decreased from 
16,430 links to 2,046. However, the ratio of positive to negative links within the bacterial networks 
ranged from 2.9 in forests to 5.5 in vineyards. Networks structure was centered on the most connected 
genera (called hub), which belonged to Bacteroidetes in forest and grassland soils, but to Actinobacteria 
in vineyard soils. Overall, our study revealed that soil perturbation due to intensive cropping reduces 
strongly the complexity of bacterial network although the richness is increased. Moreover, the 
hub genera within the bacterial community shifted from copiotrophic taxa in forest soils to more 
oligotrophic taxa in agricultural soils.

The response of soil bacterial communities to different environmental perturbations has been intensively investi-
gated during the last decade. Studies have highlighted the significant role of soil characteristics1–3, plant commu-
nities, climate2 and land use4 as drivers of the abundance, diversity and structure of soil microbial communities. 
However, the influence of these drivers on the number and intensity of interactions occurring between commu-
nity members remains little known, partly because microbes, and most of their interactions, cannot be directly 
observed or measured5. Biological relationships or interactions are essential to ecosystem functions as previ-
ously demonstrated and discussed with regard to macroorganisms, as exemplified by plant-pollinators systems6,7, 
mycorhizal interactions8 and the regulation of biotic invasions9. Recently, a new metric has been developed to 
determine and assess the relationships occurring in microbial communities. This approach, based on evalua-
tion of the co-abundance between taxa, highlights the positive and negative biological relationships, also known 
respectively as co-occurrence and co-exclusion10. Positive relationships in microbial communities can result from 
cooperative or co-dependence interactions, e.g. the facilitation of organic matter degradation, or the similarity 
of ecological niches between microorganisms. Negative relationships, in contrast, can be attributed to inhibitive 
or antagonistic interactions such as antibiosis or competition for resources11. Thus, the co-occurrence approach 
contributes to a comprehensive evaluation of putative microbial relationships, independently of our technical 
capacity to observe and identify them10.

Analyzing the microbial co-occurrence network in soil could thus provide a promising way to improve our 
understanding of soil microbial community regulation, functioning and stability10,12. However, the relation-
ships between the microbial interaction network and biological function have not been clearly demonstrated 
in complex ecosystems. The only examples to date have been obtained on simplified microbial ecosystems such 
as biofilms, where the co-occurrence and interaction of different bacterial species enhance the biofilm biomass, 
tolerance of the community to physical (e.g. desiccation), chemical (e.g. sodium dodecyl sulfate), and biological 
stress (e.g. antimicrobial agents), microbial virulence and the degradation of organic compounds and pollut-
ants13,14. Based on these demonstrations, it was assumed that, the diversity of microbial interactions in complex 
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ecosystems, such as soils, should affect biological functions at the ecosystem scale and that investigations of 
microbial network complexity might provide new insights into soil functioning and regulation15.

Recently, soil bacterial co-occurrence networks have been shown to be impacted by soil physico-chemical 
characteristics16,17 and climate18, to vary with age of the plant cover15 and to change with the soil land use19,20. 
Both studies by Morriën and Lupatini demonstrated that the least complex bacterial networks were found in 
cropped soils, i.e. those most disturbed by agricultural practices, as compared to pastured or forest soils. These 
studies provided the first proof of the sensitivity of microbial interactions networks to land management but were 
only carried out on a local spatial scale. Now large-scale demonstrations are needed to determine the genericity 
of these conclusions4. In this study, we investigated soil bacterial co-occurrence networks on the scale of France 
by clustering soils according to the main land uses encountered across this country (Fig. 1a). Data were obtained 
from the French Soil Quality Monitoring Network (RMQS), which represents the most intensive soil sampling 

Figure 1.  Characterization of soil samples: (a) Map of the 1717 sampling sites used to compute the network 
replicates and classification for the four land uses encountered in France. (b–d) Distribution of the RMQS soils 
in the USDA soil texture triangle for each land use respectively. Color legend from red to blue indicates soil pH 
and the circle size represents the relative amount of organic carbon in the soil.
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system on a wide spatial scale, due to its extensive area covered (5.5 105 km2) and the high sampling resolution 
(about 2200 sites distributed along a systematic grid)4. The four land uses ranged from natural or semi-natural 
sites (forest and grassland) to agricultural sites (crops and vineyards), representing a gradient of cropping inten-
sity, which integrated management of the plant cover and the degree of soil disturbance resulting from agricul-
tural practices such as tillage, fertilization and pesticides inputs21 (see details in Material and Methods section). 
Previous studies based on RMQS data had revealed a lower microbial biomass but a higher bacterial taxonomic 
richness in vineyards and crop system than in forest and grassland soils3,22. Since these two microbial parameters 
were differently impacted by the land uses, investigating other microbial community parameters, such as the 
co-occurrence network, is a major concern to understand more comprehensively the response of microbial com-
munities to the soil perturbations. Here, we evaluated and compared the structure of bacterial networks at the 
genus level by quantifying the complexity, the cohesion and the proportion of positive to negative relationships 
between land uses. We also identified the hub taxa for the bacterial network in each land use and related the eco-
logical attributes of these taxa to the environmental and management context.

Results
Comparison of network structures between land uses.  Graphically, the networks were composed of 
nodes and connections (the links). The connections were the significant correlations between the nodes, which 
corresponded to the genera occurring in the soils under the respective land use. The connection could be posi-
tive (green color) or negative (red color). The more the node was connected, the nearer it was to the heart of the 
network. Visual comparison of the networks for each land use revealed a significant shift in structure ranging 
from a highly connected, tightly closed structure for forests to a sparse, open structure for vineyards (Fig. 2). The 
bacterial networks in forest soils formed a dense cluster. In grassland soils, the cluster seemed to split into two 
parts with several long chains extending from the clusters. In soils under crop systems, one of clusters split into 
several large satellites which remained connected. In vineyards soils, many of the links seemed to be lost and the 
satellites were smaller and less inter-connected. Statistical comparisons of the network structures between the 
land uses confirmed a highly significant decreasing gradient in network complexity with forest > grassland > crop 

Figure 2.  Visualization of the most complex network among the 100 replicates for the 4 types of land use. 
The red edges represent the negative links and the green edges represent the positive links. The most complex 
network was the one with the most links, the highest connectance and the highest average degree.
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system > vineyards soils (Table 1). The number of links and the connectance were progressively reduced by 87% 
from forests to vineyards. Similarly, the average degree of the networks and the average path length decreased 
from forest to vineyards by 94% and 42%, respectively. In addition, the average number of links by genus was 16.2 
in forest soils, 5.8 in grassland soils, 4.1 in crop system soils and only 2.0 in vineyards soils. A significant decrease 
in the number of positive and negative links was also observed from forest to vineyards (a loss of 85% and 92%, 
respectively). However, the greater decrease of negative links in vineyards, as compared to forests, led to a higher 
positive to negative ratio for vineyards. The positive to negative ratio increased from 2.9 in forest soils to 5.5 in 
vineyards soils.

To investigate the assumption that network structure and complexity was directly related to community diver-
sity, the richness, the Shannon index and the Shannon evenness in genera and in OTUs were also compared 
between land uses (Table 1). For both genus and OTU level, a significant increasing gradient (of about 25%, 
p-value < 0.001) was recorded along the cropping intensity gradient, the lowest richness occurring in forest soils 
(285 genera and 1083 OTUs on average) and the greatest richness in crop systems and especially in vineyards (360 
genera and 1324 OTUs on average). The Shannon indices followed the same gradient as the richness, when the 
Shannon evenness’ did not differ significantly between land use.

Identification of hub genera.  The hub genera are those genera which exhibit the most links within a net-
work, in other words the highest degree. Here, the hub genera were identified by statistically comparing the 
degrees obtained from the 100 replicates of network per land use, using a non-parametric pairwise test. The 
main hubs, their average degrees based on the 100 replicates and their rank within each land use are provided in 
Table 2. The quantitative analysis of these hubs highlighted a decrease of 80% in the degree (the number of links 
of the genera) from forests to vineyards. In forest, the primary hub was Pirellula with 337.7 links, whereas in 
grassland and crop systems, the primary hub was Acidicaldus with 183.9 links and 161.7 links, respectively, and 
Bradyrhizobium in vineyards with 73.9 links. Pirellula was also found among the 20 main hubs in grassland and 
vineyards soils whereas Acidicaldus was the third hub in vineyards and Bradyrhizobium was also among the 20 
main hubs under crop systems. Interestingly, some of the major hubs were highly specific to a single type of land 
use, e.g. Flavobacterium found exclusively in forest soils and Bradyrhizobium found exclusively in cropped soils.

Discussion
Global network structure changes between land uses.  Visual analysis of the bacterial networks 
showed changes in the bacterial networks along the gradient of cropping intensity (Fig. 2). The soil bacterial 
networks seemed to progressively split and to shift from a single block with highly connected structure in forest 
soils to an open structure, full of small slightly inter-connected satellites in vineyards soils. This network structure 
in vineyards soils suggested an increasing isolation of several bacterial genera, which interacted little with the rest 
of the community. This particular evolution in network structure has not been described in previous studies of 
the impact of land uses or soil parameters. This might be explained by the lack of network visualization19,20 or the 
partial representation of networks23,24.

Regarding network metrics, the number of links and the connectance quantify the direct relationships and 
the network complexity. The average path length includes the indirect relationships, sometimes producing long 
chains with several intermediaries and translates the network cohesion. Finally, the positive to negative ratio 

Community metrics

Forest Grassland Crop system Vineyards

Mean sd Diff. Mean sd Diff. Mean sd Diff. Mean sd Differences

Diversity

Richness in OTUs 1,083.3 224.0 c 1,238.1 157.1 b 1,305.9 167.9 a 1,342.8 152.3 a

Shannon’s index for 
OTUs 5.27 0.39 c 5.41 0.32 b 5.50 0.31 a 5.57 0.23 a

Eveness for OTUs 0.18 0.04 ns 0.18 0.04 ns 0.19 0.04 ns 0.19 0.03 ns

Richness in genera 284.6 54.1 c 333.4 32.0 b 360.2 28.4 a 359.5 24.6 a

Shannon’s index for 
genera 4.04 0.31 c 4.19 0.21 b 4.25 0.2 a 4.26 0.12 ab

Eveness for genera 0.21 0.03 ns 0.2 0.03 ns 0.2 0.03 ns 0.2 0.02 ns

Co-occurrence network

Number of links 16,430.8 3,109.3 a 5,846.4 2,208.0 b 4,122.6 1,138.8 c 2,046.7 281.3 d

Number of positive 
links 12,042.4 2174.9 a 4,539.5 1,917.4 b 3,101.2 697.3 c 1,794.0 172.2 d

Number of negative 
links 4,388.4 1,123.6 a 1,306.8 486.5 b 1,021.4 475.8 c 342.7 115.3 d

Positive:Negative links 2.9 0.7 c 3.7 1.8 b 3.5 1.2 b 5.5 1.7 a

Connectance 0.008 0.002 a 0.003 0.001 b 0.002 0.0005 c 0.001 0.0001 d

Average path length 0.139 0.007 a 0.129 0.019 b 0.116 0.016 c 0.080 0.009 d

Average degree 16.2 3.1 a 5.8 2.2 b 4.1 1.1 c 1.0 0.3 d

Table 1.  Community metrics for the 4 land uses: 6 indices of bacterial diversity and 7 indices of bacterial 
network. Different letters indicate a significant statistical difference between land uses, based on a parametric 
variance analysis followed by a Tukey HSD post-hoc comparison (n = 100 for each land use). Letters indicate 
differences of values between land uses. They are provided by Tukey-HSD pairwise comparison.
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indicates the balance between facilitative and inhibitive relationships within the network11. In our study, all these 
metrics revealed a significant shift in bacterial network structure along the gradient of cropping intensity. The 
progressive decrease in the number of links, the connectance and the average path length observed from forest 
to vineyards soils, demonstrated a loss of network complexity and cohesion as agricultural practices were inten-
sified, and soils disturbed. Surprisingly, this result contrasted with the significant increase in bacterial richness 
observed across RMQS soils, where the sequence was: forests < grasslands < crop systems = vineyards3 (Table 1). 
Theoretically, the presence of more taxa within a community would imply more potential interactions. Despite 
the increased number of potential links, the most taxa-rich communities may not necessarily exhibit the most 
complex interaction networks19. This has already been observed in the case of soil disturbance. In Karimi et al., 
transplanting of samples from rural conditions to urban and industrial sites led to the loss of 40% of the links 
after 8 months, without any decrease of the microbial diversity25. Similarly, in another study16, the contamination 
of a forest soil used as a tailings dump decreased the number of links in the bacterial co-occurrence network by 
25% compared to the pristine soil while the bacterial richness was increased by 20%. Interestingly, our results 
confirmed that the pool of taxa and the biotic relationships within the community responded independently to 
environmental perturbation15.

The observed decrease in network complexity and cohesion supports the hypothesis that cropping may 
enhance the isolation of bacterial taxa, as previously suggested by visual observation. Isolation can be enhanced 
in three ways. Firstly, it can result from the loss of microbial biomass and therefore of cells. This hypothesis 
has been supported by the decreasing microbial molecular biomass in crop systems and vineyards compared 
to forest and grassland22. If the total number of cells in soil is reduced, the probability of each cell encountering 
another and interacting, whether directly or indirectly, may be also reduced. Secondly, isolation can be caused 
by the stimulated metabolic independence of microorganisms in agricultural soils. Soil disturbance, produced 
by agricultural practices (such as tillage), is known to increase soil bacterial diversity and to preferentially stim-
ulate some opportunistic and/or pathogenic populations26. These populations are self-sufficient and do not need 
to interact with others to be metabolically efficient and increase their fitness, which can therefore lead to even 
greater isolation of other bacterial populations. Finally, the isolation can be related to the weak spatial connectiv-
ity occurring between soil ecological niches in disturbed soils27. At the microscale, the structure of tilled soils is 
more homogeneous, and the pores are less connected than in soils under minimum or without tillage28. This can 
further induce the physical isolation of bacterial taxa in disturbed soils29. As microbial co-occurrence networks 
translate both the biotic interactions and niche-sharing30, the lower level of microbial networks cohesion (found 
in crop systems and vineyards) might be associated with the less spatially-structured distribution of ecological 
niches in such soils due to their frequent disturbance by tillage or fertilization. Altogether, these results suggest 
that forest and grassland soils represent a mosaic of connected ecological niches that are fully complete and 
shared by non-opportunistic bacterial genera when the soil structure and trophic resources are non-limiting31,32 
(Fig. 2a,b). On the contrary, agricultural soils, especially vineyards, would consist of a mosaic of habitats with 
weakly-connected, partially-filled niches where the bacterial genera tend to be spatially and metabolically iso-
lated by an altered soil structure and limited trophic resources33,34 (Fig. 2c,d). Unlike the other metrics, the ratio 
between positive and negative links increased from forest soils to vineyards soils. Although both positive and neg-
ative relationships decreased, the negative ones decreased more rapidly. This suggests that inhibition, rather than 
cooperation between bacteria taxa, was more affected by the cropping intensity. The weak availability of the soil 
organic matter in agricultural soils (Fig. 1) represented harsh conditions which could lead to selection of the most 
adapted taxa. Taxa with ecological attributes such as oligotrophy, ability to degrade recalcitrant matter or anaero-
bic metabolism, would be able to share this soil habitat30,35 and thus to maintain some of the positive relationships 
at the scale of bacterial network30. This supports the concept of resource-driven co-occurrence patterns36.

Top Hub Genera
Phylum-level 
classification of genus

Forest Grassland Crop system Vineyards

Mean Differences Mean Differences Mean Differences Mean Differences

Flavobacterium Bacteroidetes 367.4 ab (2)

Blastochloris Alphaproteobacteria 361.0 abcd (4) 161.1 abcd (6)

Terrimonas Bacteroidetes 366.8 abc (3) 170.6 ab (2) 133.2 bc (4)

Pirellula Planctomycetes 377.7 a (1) 136.6 efg (14) 43.8 gh (11)

Geothrix Acidobacteria 358.5 abcd (5) 155.0 bcde (7) 128.2 bcd (6) 42.6 gh (12)

Stella Alphaproteobacteria 342.4 bcd (16) 170.2 ab (3) 151.0 ab (2) 63.9 abc (4)

Acidicaldus Alphaproteobacteria 183.9 a (1) 161.7 a (1) 73.2 ab (3)

Isosphaera Planctomycetes 162.7 abc (5) 149.9 ab (3) 53.7 cdef (7)

Frigoribacterium Actinobacteria 144.7 cdefg (11) 128.9 bcd (5) 58.5 cde (6)

Catenulispora Actinobacteria 126.2 g (18) 106.7 defg (16) 75.7 a (2)

Bradyrhizobium Alphaproteobacteria 112.8 cdefg (12) 73.9 a (1)

Table 2.  Hub genera for the 4 land uses: the table summarizes the specific hubs for each land use and indicates 
the average degree of the genera for each of the land uses, the statistical difference with the other genera in the 
respective land use (given by a Kruskal-Wallis pairwise test) and, in parenthesis, the ranking of each genus 
among the most connected genera for the land use. Letters indicate differences of degree between nodes within 
each land use. They are provided by Pairwise Kruskal-Wallis Rank Test corrected by Bonferroni method.
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Shift in hubs networks along the gradient of cropping intensity.  The hubs represent the most con-
nected taxa within a network36,37. Most hub genera identified in our study (Table 2) were consistent with a recent 
review of microbial keystone taxa in different ecosystems based on 37 studies published between 2011 and 201736. 
Rhizobiales (like Blastochloris genus in our study) and Terrimonas genus have previously been recorded as hub/
keystone taxa in forest and woodlands. In grasslands, bacteria belonging the phyla Bacteroidetes, Planctomycetes, 
Acidobacteria and Actinobacteria were also identified as hubs. And in agricultural soils, Rhodospirillales 
(Stella and Acidicaldus here), Rhizobiales (Bradyrhizobium here) and Actinomycetales (Frigoribacterium and 
Catenulispora here) were keystone taxa. Due to their high level of connectivity with other community members, 
these taxa could have a key role in the soil bacterial community of these land uses36.

Given the known ecological attributes of the bacterial hubs identified here, the progressive shift of these hubs 
along the gradient of cropping intensity might be partly due to the soil trophic level. In cropped soils (vineyards 
and crop systems), demonstrated to be the poorest of the RMQS soils in terms of organic carbon and nutri-
ent contents32, the major contribution of Bradyrhizobium, Acidicaldus and Isosphaera to the network may be 
explained by their oligotrophic nature38–40. Rhizobia, such as Bradyrhizobium, are also known to develop highly 
specific symbioses with their host plant41, which might enhance their co-occurrence with other bacterial popu-
lations associated with the rhizosphere. Conversely, Bacteroidetes genera (Flavobacterium and Terrimonas) were 
the hubs of bacterial networks in forest and grassland soils, the richest of the RMQS soils in terms of organic 
matter content32. The bacterial phylum Bacteroidetes is known to be copiotrophic and more abundant in forest 
soils and therefore to interact strongly with other taxa42,43. However, few ecological data concerning the biotic 
interactions and ecological attributes of most of these genera are currently available, which therefore limits our 
ability to draw conclusions.

Interestingly, our results also revealed that Flavobacterium and Terrimonas were, at the same time, net-
work hubs and two of the most abundant genera in forest soils43. Even if the most connected taxa might also be 
expected to be the most abundant, this hypothesis was not corroborated for the other land uses. The respective 
hub genera in grassland, crop system and vineyards soils had previously been shown to be only slightly abundant 
in these soils43. The identification of both abundant and hub taxa provides complementary information about 
the bacterial community ecology. It also reinforces the need to investigate different parameters describing soil 
microbial communities11 so as to better predict their responses to the changing environment and propose the 
most appropriate soil management practices.

Robustness and limitation of the sampling and analytical strategies.  This work is based on the 
most intensive, without a priori, soil sampling survey (about two thousand soil samples) focusing on a nation-wide 
scale. The sampling design covered the major environmental variability across a 550,000 km2 area4, thus preclud-
ing the bias associated with a priori samplings. This enable us to construct robust networks with a reasonable 
number of repetitions to verify our assumption concerning the effect of the cropping intensity. Compared to other 
studies based on 3 to 20 samples, our sampling design provides a cornerstone for robust analysis and conclusions 
about soil bacterial biogeography. The observed variability in network structure and metrics, (computed from 100 
replicates) within each land use, was probably due to the variability in pedoclimatic conditions, i.e. the interact-
ing soil characteristics, and/or agricultural practices recorded for each land use4. Nevertheless, according to the 
multi-dimensional plots (Fig. 1 and Supplementary Fig. 1), the environmental heterogeneity was similar for all 
four land uses. Moreover, as the local environment determined the microbial biomass1, the bacterial diversity3 
and the distribution of taxa43, the network structure could also be influenced by the local spatial effect. In our sub 
sampling, the 30 sites covered an area ranging from 200,000 km2 to 550,000 km2 across a territory of 551,500 km2. 
However, the area covered had no impact on the network structure, whatever the land use (Supplementary Fig. 2 
and Supplementary Table 1). The networks based on sites located closer together were not different from the others, 
which confirmed that the local environmental filters did not affect the bacterial network. We therefore assumed 
that the results obtained for the bacterial co-occurrence networks were only due to the different land uses and to 
the cropping intensities that they represent.

Our molecular analytical strategy is known to be highly robust44, although numerous biases inherent in ampli-
con library preparation such as DNA extraction45, amplification46, sequencing and inference of the patterns of 
organism abundance from library data pertaining to relative abundance, are also well-known47. Analyses were 
conducted in a consistent manner to remove errors due to sequencing and chimeras, and the datasets were rar-
efied to the same sampling depth (i.e. 10,000 reads per sample), so that relative changes in microbial taxonomic 
composition levels could be compared across samples, even if the biodiversity sampling was not exhaustive47. 
Nevertheless, the comparison of our results with those from other studies is mainly limited by our choice of 16S 
rRNA primers, which were designed to specifically target both bacteria and archaea diversity. The results obtained 
by using these primers were able to reveal taxonomic groups (for example Holophaga)43, rarely detected in pre-
vious soil studies. In addition to using these different primers, we also chose a finer but more time-consuming 
method of taxonomic assignment than the approach currently used in QIIME: Instead of assigning the seed 
sequence of each OTU, all reads in the dataset were individually assigned. This led to changes in relative abun-
dance of the taxonomic groups within the community, probably in the actual structure of the co-occurrence 
network and finally the revelation of hub genera, probably underestimated in other studies.

Conclusions
Altogether our study demonstrated that soil bacterial co-occurrence networks are different between land use 
types and are strongly shaped by the cropping intensity. We hypothesized that changes in the bacterial network 
would occur mainly in response to shifts in the heterogeneity and connectivity of the mosaic of microbial habitats 
as well as to the availability of C-substrates. Beyond the classical information obtained from bacterial richness 
or whole taxonomic composition, co-occurrence network analysis provides complementary insights into biotic 
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interactions and niche connectivity, which could have repercussions on community stability48 and soil function-
ing49. Further investigations must now be focused on the dynamics of these networks to evaluate their response 
to environmental perturbations and also on the fungal community to obtain an overview of the soil microbial 
network.

Material and Methods
Sampling Design.  Soil samples were obtained from the French Soil Quality Monitoring Network (“Réseau 
de Mesures de la Qualité des Sols”, RMQS) which is a soil monitoring network based on a 16 km regular grid 
across the 550 000 km2 French territory1,3. The soil profile, site environment, climatic factors, location, vegetation 
and land management for the 2173 RMQS monitoring sites have already been described. All samples were col-
lected between 2002 and 2009. All sites have been geo-positioned with a precision of <0.5 m and the soil profile, 
site environment, climatic factors, vegetation and land use described1. In the middle of each 16 × 16 km square, 25 
individual core samples were taken from the topsoil (0–30 cm) using an unaligned sampling design within an area 
of 20 × 20 m. These core samples were bulked to obtain a composite sample for each RMQS site. The soil samples 
were gently air-dried, sieved to 2 mm and then stored at −40 °C before analysis. Physico-chemical parameters 
were measured for each composite soil, e.g. particle-size distribution, pH water, organic C, N, C/N ratio, soluble 
P contents, calcareous, cation exchange capacity (CEC) or exchangeable cations (Ca, Mg). Physical and chem-
ical analyses are available for 2,131 soils and were performed by the Soil Analysis Laboratory of INRA (Arras, 
France, http://www.lille.inra.fr/las). Available climatic data for the RMQS were monthly rainfall, evapotranspira-
tion and temperature at each node of a 12 × 12 km² grid, averaged for the 1992–2004 period. These climatic data 
were obtained by interpolating observational data using the SAFRAN model. The RMQS site-specific data were 
linked to the climatic data by finding the closest node within the 12 × 12 km² climatic grid for each RMQS site. 
Land cover was recorded according to the coarse level of the CORINE Land Cover classification (IFEN, http://
www.statistiques.developpement-durable.gouv.fr/donnees-ligne/li/2539/0/base-donnees-geographique-corine-
land-cover-clc.html), which consists of a rough descriptive classification into five classes: forest, croplands, grass-
lands, perennial crops (corresponding to vineyards and orchards) and others. All these data were available in the 
DONESOL database1,32.

Characterization of the gradient of cropping intensity.  The gradient of cropping intensity was com-
posed of four land uses that were characterized by the management and turnover of the plant cover, the duration 
of the management plan, and the frequency and intensity of interventions which disturbed the soil: (i) The “for-
est” land use grouped together broad-leaved forests, coniferous forests, poplar grove and mixed forests, which 
could be natural or planted. The management plans were often established over 10 to 150 years with few pertur-
bations until the wood cutting. These forest soils are not tilled, and few engines pass over them. There is no ferti-
lization and no pesticide input. Turnover of the plant cover is on the scale of decades. (ii) The “grassland” land use 
grouped together 6 to 10-years old seeded grassland, >10-years seeded or natural grassland, unproductive per-
manent grasslands and meadows. Some of these grasslands may be seasonally pastured. Tillage is rare. In France, 
less than 30% of grasslands receive organic manure and 40% on average receive low doses of mineral fertilizer 
(50 kgN/ha on average). Only 6% of grasslands receive pesticides (data from the Ministry of Agriculture, 2011). 
Turnover of the plant cover exceeds 6 years. (iii) The “crop system” land use grouped together annual crops in 
monoculture, annual crops associated with permanent crops, complex cultivation patterns, market gardening and 
ornamental horticulture, or fallow land. These systems are strongly managed to ensure satisfactory yields. During 
the year, the different interventions concern soil tillage, seedling, fertilization and pesticides applications. Even if 
the frequency and intensity of interventions can vary considerably across the crop systems, they take place every 
year. Turnover of the plant cover is annual. (iv) The “vineyards” land use grouped together vineyards, orchards 
and others perennial tree crops. Like the crop systems, the annual interventions concern soil tillage, fertilization 
and pesticides applications. However, the frequency and intensity of pesticides input are greater than for annual 
crop systems due to the perennial implantation of the vines and trees.

Overall, the forest soils are the least disturbed and the vineyards soils are the most disturbed by the agricul-
tural practice and interventions over time. These agricultural practices have also affected the soil nutrient status 
by determining the amount and the quality of organic matter. Thus, these land uses ranged from natural or 
semi-natural sites (forest and grassland) to agricultural sites (crop and vineyards). All soil samples were therefore 
classified according to the land use of the site: 492 forest soil samples, 464 grassland soil samples, 740 cropped soil 
samples and 36 vineyard or orchard soil samples.

Molecular characterization of bacterial communities.  The analysis of these 2173 samples required the 
rigorous standardization of the range of different molecular tools involved in soil DNA extraction and sequencing 
technology. The following protocols were applied.

Soil DNA extraction and purification.  Microbial DNA was extracted and purified from 1 g of each of the 
2173 composite soils (composed of a bulk of 25 individual core soils) sampled at each RMQS site, using the 
previously-described GnS-GII procedure45. Crude DNA extracts were quantified by agarose gel electrophoresis 
stained with ethidium bromide, using calf thymus DNA as standard curve1. Crude DNA was then purified using 
a MinElute gel extraction kit (Qiagen, France) and quantified using a QuantiFluor staining kit (Promega, USA), 
prior to further investigations.

PCR amplification and pyrosequencing of 16S rRNA gene sequences.  A 16S rRNA gene fragment targeting the V3-V4 
regions to characterize bacterial diversity was amplified using the primers F479 (5′-CAGCMGCYGCNGTAANAC-3′) 
and R888 (5′-CCGYCAATTCMTTTRAGT-3′) with the method described previously45. From the 2173 DNA soil 
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samples, 2132 soil samples were successfully amplified. The PCR products were then purified using a MinElute PCR 
purification kit (Qiagen) and quantified using the QuantiFluor staining kit (Promega, USA). A second PCR of 7 cycles 
was then run twice for each sample under similar PCR conditions, with purified PCR products as matrix (7.5 ng of 
DNA were used for a 25 µl mix of PCR) and dedicated fusion primers (‘F479/AdaptorB’, ‘R888/MID/AdaptorA’) inte-
grating the required adaptors, keys and multiplex identifiers at the 5′ extremities. All duplicated PCR products were 
then pooled, purified using a MinElute PCR purification kit (Qiagen), and quantified using the QuantiFluor staining 
kit (Promega, USA). For all libraries, equal amounts from 30 samples were pooled, and then cleaned to remove excess 
nucleotides, salts and enzymes using the Agencourt AMPure XP system (Beckman Coulter Genomics). 100 µl of TE 
buffer (Roche) was used for the elution. Pyrosequencing was then carried out on a GS FLX Titanium (Roche 454 
Sequencing System) by Genoscope (Evry, France).

Bioinformatics sequence analysis.  Bioinformatic analyses were done using the GnS-PIPE pipeline developed by 
the GenoSol platform (INRA, Dijon, France) (availability: https://doi.org/10.5281/zenodo.1123425) and previ-
ously detailed3,43. After sequencing, 49,794,516 raw reads were obtained for the 2132 soil samples. After the dif-
ferent preprocessing and filtering steps (detailed previously3), 32 634 692 high-quality reads (range of sequencing 
depth: 48 reads to 49 926 reads by sample) were kept. The number of high-quality reads for each sample was then 
“rarefied” (i.e. 10 000 high-quality reads for each sample) by random selection to allow efficient comparison of 
the datasets and avoid biased community comparisons and rarefaction curves. Thus, 1798 soil samples were kept 
for subsequent analyses, encompassing a total of 17 980 000 reads. A final post-processing step was then applied 
to this global dataset, as already described regarding for microbial richness across France3, to filter the potentially 
artefactual reads. Briefly, the 17 980 000 reads from all samples were firstly aligned and clustered at 95% of simi-
larity into OTUs. Thereafter, all OTUs that occurred only once in the overall dataset and contained only a single 
read, were removed. This post-processing step reduced the number of total OTUs from 184 812 to 83 917 (more 
than 50% lost), but the number of reads only from 17 980 000 to 17 866 981 (less than 1% lost). The number of 
deleted reads by sample was 62 ± 60 on average (minimum: 10, maximum: 1093). Finally, all kept reads were then 
compared with the dedicated reference database derived from SILVA to independently determine the composi-
tion of each soil community at the genus level (procedure, database and programs available online: https://doi.
org/10.5281/zenodo.1065438 and https://doi.org/10.5281/zenodo.1064170). The final dataset was composed of 
1798 samples with 10 000 sequences per sample distributed among 1355 genera43. Unknown sequences repre-
sented an average of 11% by sample at the genus level. All raw data sets are publicly available in the EBI database 
system (in the Short Read Archive) under project accession no PRJEB21351.

Statistical and co-occurrence network analyses.  Comparing the bacterial networks between the four 
land uses required: i) standardization of the number of soils used to compute the network by land use to avoid 
a sampling size effect and ii) network replicates which integrated the natural heterogeneity of the soils within 
each land use. As vineyards provided only 36 soil samples on the territory scale, we standardized the sampling 
size at 30 sites per network for all land uses, drawn from the respective pool of soils. Thus, the minimum number 
of combinations (1 947 792) ensured that each network was computed from a unique combination of sites. The 
number of replicates used to evaluate the range of variation within and between land uses was set at 100. The 30 
samples were drawn independently for each of the 100 network replicates. Numerical sampling of the sites was 
monitored. Among the 1732 sites classified as forest, grassland, crop system or vineyards, 1717 were sampled at 
least once. This replication procedure ensures that more than 99% of the available sites were sampled, standard-
ized analysis of all four land uses, while being representative of French soils in general.

Then, for each replicate, network computation was based on a contingency matrix which provided the relative 
abundances of 1355 bacterial genera for the 30 randomly-selected soil samples. The Spearman correlation coef-
ficient for each pair of genera was used as a similarity index to estimate taxa co-occurrence50. A correlation was 
considered as robust and non-random if the p-value was below 0.05 after correction using the False-Discovery 
Rate method51. By choosing this threshold, only correlations with a coefficient above 0.50 were kept. The positive 
and negative correlations were respectively interpreted as co-occurrence (facilitation) and co-exclusion (antago-
nistic) relationships. To describe the topology of the resulting networks, a set of metrics were calculated, namely 
the number of links, the number of positive links, the number of negative links, the ratio between the positive 
and negative links, the connectance defined as the proportion of potential links which are significantly observed, 
the average path length and the average degree (for more details, see11). Due to the homoscedasticity between 
land-use and the Gaussian distribution of the model residuals, these metrics were then compared between the 
four land uses by applying a parametric analysis of variance and a Tukey HSD post-hoc comparison. The degree 
(defined as the number of edges of each node) of the 20 most connected genera was recorded for all 100 replicates 
of all four land uses and then statistically compared within each land use by applying a pairwise Kruskal-Wallis 
rank test corrected by the Bonferroni method. The genera with the highest average degree were then considered 
as hub genera.

In addition, the bacterial diversity was evaluated for each land use at the taxonomic level of OTUs and gen-
era. Three indices were computed: a- the richness N0 which corresponds to the number of taxa, b- the Shannon 
entropy index H = −Σi (Pi*log Pi), where Pi is the probability of finding the taxon i and c- the Shannon eveness 
E = exp(H)/N0. These indices were compared between the four land uses by applying a parametric analysis of 
variance and a Tukey HSD post-hoc comparison.

Data Availability
All raw data sets are publicly available in the EBI database system (in the Short Read Archive) under project  
accession no PRJEB21351.
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