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Abstract  1 

Soil erosion is the primary process driving land degradation. Using multiple scales of 2 

management to minimize soil erosion is crucial to achieve land degradation neutrality targets 3 

within the Sustainable Development Goals agenda. Land management (LM) influences both on-4 

site and off-site erosion on the event-scale and over the long-term. However, each LM differs in 5 

effectiveness depending on the temporal scale considered. In order to understand how LM 6 

effects internal and external catchment dynamics, we apply LandSoil, a physically based 7 

landscape evolution model, to evaluate 7 LM scenarios over long- (30 years) and short-terms 8 

(event scale). LM scenarios included changes in land use and/or landscape structure. Under 9 

current LM, mean surface soil erosion was ~ 0.69 ± 39·10-3 m over 30 years. In contrast, a 10 

single extreme event (435 mm/24h) in January resulted in ~ 0.62 ± 3·10-3 m loss and ~ 0.04 ± 11 

2·10-3 m if it occurred in October. Heterogeneous patterns of erosion and deposition developed 12 

after 30 years, whereas extreme events dominantly showed soil loss and high catchment 13 

connectivity. Effectiveness of LM in erosion mitigation and sediment trapping differed according 14 

to temporal and spatial scales for each scenario. We concluded that multiple temporal and 15 

spatial scales must be incorporated in order to adaptively manage land degradation and meet 16 

neutrality targets.  17 

 18 

Key words:  19 

Land degradation, Degradation neutrality, Soil erosion, Landscaping, Mitigation strategy 20 

 21 

1. Introduction  22 

 23 

Land degradation neutrality targets of the Sustainable Development Goals (SDG 15.3) contain 24 

time-specific measures to avoid, reduce and reverse land degradation at both national and 25 

subnational levels (The Global Mechanism of UNCCD, 2016). Soil erosion by water is a major 26 

land degradation process (Orr et al, 2017). Therefore, land management seeking to minimize 27 

soil erosion is crucial for maintaining food and water security, climate regulation, soil ecosystem 28 

services (Dominati et al., 2010; Koch et al., 2013; Lal, 2004; McBratney et al., 2014; 29 
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Montanarella et al., 2016; and achieving of multiple SDGs (Keesstra et al., 2016; Orr et al., 30 

2017).  31 

 32 

It is expected, that soil erosion and suspended sediment yield in rivers will increase beginning in 33 

the mid-21st century due to climate change (Raclot et al., 2018; Routschek et al., 2014a, 2014b, 34 

Bussi et al., 2016; Rodríguez-Blanco et al., 2016). The majority of soil loss occurs during high-35 

magnitude events of low frequency/recurrence, especially in Mediterranean environments where 36 

3-10 of the largest daily events can account for over 50% of total soil loss (González-Hidalogo 37 

et al., 2007, 2010). Due to climate change, the frequency of high-magnitude rainfall events 38 

increases (e.g., Serpa et al., 2015). Therefore, considering seasonal patterns of soil loss 39 

(Smetanová et al., 2018) alongside water and sediment connectivity, and evaluating economic 40 

effects of on- and off-site effects of land management are all essential for preventing land 41 

degradation (García-Ruiz et al, 2017; Raclot et al., 2018).  42 

 43 

Land use influences both soil erosion (sediment production) and sediment connectivity, while 44 

landscape structure can influence sediment transport and connectivity (Ciampalini et al., 2012; 45 

Coulthard & Van De Wiel, 2017; David et al, 2014; Follain et al., 2006; Fryirs, 2013). Modelling 46 

studies shown, that proper management can reduce the future effects of climate change on mid- 47 

and long-term soil erosion rates (Parroissien et al.2015; Rodriguez-Lloveras et al., 2016; 48 

Routschek et al., 2014a, 2014b). Modelling approaches successfully tested the effects of crop 49 

allocation, sediment trapping, and ditch optimisation techniques under mean or extreme rainfall 50 

events (David et al, 2014; Furlan et al., 2012; Gumiere et al., 2014; Levavasseur et al, 2016; 51 

Mullan et al., 2016; Nunes et al., 2013; Ronfort et al., 2011).  52 

 53 

However, in order to meet land degradation neutrality targets, it is crucial to focus land 54 

management simultaneously on the relevant spatial and temporal scales for erosional 55 

processes (Larson et al., 1997; Stroosnijder, 2005) and stakeholders’ scales of practice 56 

(Smetanová, et al, 2018). This requires providing of multi-foci, multi-scale solution. For example, 57 

a management reducing sheet and gully erosion during high-magnitude events of low 58 
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frequency/recurrence, and in long-term. Simultaneously, an effective management should 59 

reflect differing priorities of stakeholders operating in the same region. For example, the spatial 60 

scale of interests and mind-sets of a vineyards farmer and watershed manager might likely differ 61 

between understanding internal catchment dynamics on individual field scales (farmer) versus 62 

external catchment dynamics (e.g., sediment export to reservoirs). Furthermore, farmers 63 

establishing vineyards are interested in soil productivity over timescales that plants achieve 64 

highest productivity (10-30 years), while watershed managers might focus on reducing or 65 

preventing flash floods (single events). Understanding how land management effects on soil 66 

erosion contrast on temporal and spatial scales can help define targets for land management 67 

decisions aimed at reducing land degradation. 68 

 69 

The objective of this study is to compare the internal and external catchment soil erosion 70 

dynamics for different land management scenarios over short-term (event scale) and long-term 71 

(30 years) scales, in order to answer the question: “Should management strategies for land 72 

degradation be tailored for specific spatial and temporal scales to achieve land degradation 73 

neutral management?” 74 

 75 

2. Materials and Methods 76 

2.1 Study site 77 

 78 

The Roujan catchment (0.91 km2), located in south France (43°30′N, 3°19′E) has been 79 

monitored for rainfall in the three meteorological stations equipped with tipping bucket rain 80 

gauges, and for continuous runoff and sediment concentration at parcel, mid- and whole 81 

catchment since 1992. It was described comprehensively by David et al. (2014). It belongs to a 82 

sub-humid Mediterranean climate (Peel et al., 2017) with mean annual rainfall 634 mm and a 83 

dry summer period, with maximum runoff and sediment yield from October to February. 84 

Elevation ranges 50m and slopes are 2–20% (David et al., 2014). Miocene marine and 85 

lacustrine sedimentary rocks with calcaric Regosols and Calcisols cover most of the catchment. 86 

Land use is dominated by vineyards (62%) followed by cereal and alfalfa production, and 87 
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scrubland (Guix-Hébrard et al., 2007). Chemical weeding in vineyards is performed using 88 

herbicide application alongside mechanical weeding by shallow (0.05–0.10 m) tillage with a 89 

duck foot cultivator in spring and autumn (Biarnès and Colin, 2006; Coulouma et al., 2006). 90 

Wheat and barley are rotated in the fields with annual crops. Fields are treated biannually in the 91 

post-harvest period (summer–autumn) with a disc-and-chisel plough down to depths of 7 to 12 92 

cm. Landscape structure is characterised by 140 fields (0.6 ± 0.5 ha) with grass, bare soil or 93 

vegetated compacted soil strips along field borders, and an 11-km network of ditches (David et 94 

al. 2014). Current land use and landscape structures represent baseline land use scenario 95 

(Figure 1).  96 

 97 

2.3. LandSoil model 98 

LandSoil model was previously developed and calibrated in Roujan catchment (Ciampalini et al. 99 

2012), and since then applied in variety of environments (e.g., Ciampalini et al.2011; Chartin et 100 

al, 2011; Lacoste et al., 2016). LandSoil is a spatial raster-based model for simulating water and 101 

tillage soil erosion as well as evolution of topography at plot to catchment scale. After modelling 102 

each event, LandSoil recalculates the elevation raster. Soil surface properties control water 103 

infiltration, runoff, and sediment concentration for each grid-cell and rainfall event (David et al., 104 

2014; Leonard and Andrieux, 1998). Runoff in each grid cell is combination of input from 105 

upstream/upslope cells and runoff generated within the cell. Runoff flows in the flow line 106 

direction, or, if flow lines are interrupted, along liner landscape elements (roads, ditches, field 107 

boundaries, and tillage rows). The model uses a modified single-flow runoff model (Jenson and 108 

Domingue, 1988; Souchère et al., 1998) under eight possible flow directions. Both contour and 109 

downslope tillage were modelled in different fields with tillage transport coefficients spanning 110 

111–139 kg m−1 (David et al., 2014).  111 

 112 

2.4. Numerical experiment scheme 113 

 114 

We considered two temporal dynamics (Figure 2):  115 

(i) Long-term - 30 years. This period refers to long-term erosion rates over the timescale 116 
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that a new vineyard will reach peak productivity.  117 

(ii) Single extreme rainfall event – maximum measured daily rainfall event. Events were 118 

modelled for January and October in order to consider variability in soil surface 119 

properties (David et al., 2014) that arise during periods when large erosion events 120 

usually occur (Smetanová et al., 2018).   121 

We considered two spatial dynamics:  122 

(i) Internal catchment dynamics – represented by fine spatial resolution modelling (1-meter 123 

grid) to simulate erosion and deposition patterns over the entire catchment. It related to 124 

spatial scale of farmers. 125 

(ii) External catchment dynamics – represented by sediment export at the catchment outlet. 126 

It related to sediment input to river system, and management scale of watershed 127 

managers and policy makers. 128 

We applied seven predictive land use scenarios that combine narrative and modelling methods 129 

developed by David et al. (2014). Three narratives were (i) stationary production (B - “baseline”, 130 

corresponding to current land mangement), (ii) more intensive production (I - “intensified”), and 131 

(iii) less intensive production (E - “extensified”) than stationary production. These narratives 132 

were transformed into seven scenarios (BLUS, ILU; ILS; ILUS; ELU, ELS, ELUS) by modifying 133 

the baseline land use and / or landscape structure by allocation rules for of land use (LU) and 134 

landscape structure (LS) as described in Figure 3. 135 

 136 

2.5. Model inputs 137 

 138 

Elevation and soil surface topography 139 

LIDAR-based digital elevation model derived at 2-m resolution (David et al., 2014) represented 140 

initial input topography for all scenarios. Elevation was recalculated after every/each event by 141 

subtracting the depth of eroded soil or adding the height of deposited sediment in each raster 142 

cell. Soil erosion rates and sediment export (in Mg·km-2, where 1 Mg·km-2 corresponds to 0.01 143 

tonnes per hectare) at the catchment outlet were recalculated at the end of each simulation 144 

period based on equations provided by David et al. (2014).  145 
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 146 

Rainfall dataset 147 

Long-term rainfall series were based on 10-years extension of empirical rainfall event 148 

measurements in the Roujan catchment between 1992-2012 (David et al., 2014; Figure 4). The 149 

total rainfall depth (mm), maximum intensity over 6 min (mm h−1) and rainfall duration (h) were 150 

considered for each event, separated by at least a 6-hour dry period.  151 

An event with return period >100 years was represented by extreme event measured in 152 

Perpignan (120km from Roujan) on 26 October, 1915 (Cosadney and Robison, 2000; Meteo 153 

France, 2018). Rainfall depth was 435 mm over 24 hours, but no measurement of rainfall 154 

intensity was available. Rainfall intensity was estimated using the Montana law, with results 155 

suggest that the Montana coefficient value exceeded the maximum intensity class for the 156 

LandSoil model. Therefore, the maximum rainfall intensity class (>40 mm h−1) was applied 157 

based on calibration from Ciampalini et al. (2012). Model parameters and soil conditions are 158 

described in additional detail by David et al. (2014).  159 

 160 

Tillage Dataset 161 

Modelled tillage events occurred in fields with annual crops and in vineyards with mechanical 162 

weeding. We simulated tillage twice a year in April or May and October. The exact day of a 163 

tillage simulation was determined by cumulative rainfall depth (40 mm) since the last tillage 164 

event.  165 

 166 

3. Results 167 

3.1 Temporal dynamics: Long-term vs. extreme event soil erosion  168 

 169 

Under current land use and landscape structure conditions (BLUS), mean soil loss was 0.69 ± 170 

38.97·10-3 m across the catchment over the 30-year simulation period (Table 1). Mean soil loss 171 

here is the mean of all raster-cell values after 30 years of simulation. Each raster-cell value 172 

represented cumulative elevation change after 30 years of simulation. Soil export at the outlet 173 

(i.e., external catchment dynamics) under BLUS scenario was 9.02·10-2 Mg·km-2. Soil export at 174 
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catchment outlet varied from 4.74 (ELUS) to 119.20·10-2 Mg·km-2 (ILUS). 175 

Erosional responses to single extreme rainfall events differed from long-term (30 years) 176 

cumulative soil loss and were different for January and October. Mean soil loss in single 177 

extreme rainfall event was 0.60 ± 2.72·10-3 m in January, and 0.00 ± 1.55·10-3 m in October 178 

under BLUS scenario. Sediment export (external dynamics) was 16.4x higher in January than in 179 

October. Similar patterns were observed in other scenarios, where mean soil loss for extreme 180 

events were 1.3x (ILU) to 20x (ELS) higher in January relative to October.  181 

Comparing mean soil loss of long-term and extreme events (Table 1) under BLUS scenario 182 

showed that 8.3±14-times more soil was eroded after thirty years than by a single extreme 183 

event in January.  184 

Sediment exported by a single event in January or October is only reached as the cumulative 185 

effect of many erosion events under normal rainfall conditions. This comparison could be called 186 

‘equal erosion delivery’, which refers to the duration required for continuous “normal” erosion to 187 

match the quantity of sediment delivered by an extreme event. In BLUS, sediment exported in 188 

January was reached after ~27 years, while sediment exported during October was matched 189 

after ~2 years. Sediment exported in all January extreme events was reached in ~21-26 years 190 

under extensified land use scenarios, but dropped drastically to~2-4 years if October extreme 191 

events were considered. Under ILU and ILUS, soil loss by both extreme events were more 192 

similar than by all remaining scenarios. Under long-term rainfall conditions, an equivalent 193 

amount of sediment export was reached in 6-7 years.  194 

 195 

3.2 Internal catchment dynamics  196 

 197 

Long-term rainfall conditions under current land use and landscape structure (BLUS) led to soil 198 

redistribution within the catchment (Figure 5B). Soil loss ranged from 0.01 to 0.3 m in vineyards 199 

with chemical weeding, with less than 0.01 m loss in scrubland and no tillage annual crop fields. 200 

In vineyards with mechanical weeding and in fields with tilled annual crops, erosion ranged from 201 

0.01 to 0.3 m and deposition >0.01 m occurred. Rills created in parcels with no tillage and 202 

scrubland were infilled by shallow deposition (<0.01 m). Zero net erosion or deposition (<10-12m) 203 
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was observed on or along linear landscape structures (e.g., roads, field borders).  204 

 205 

In contrast to previous results, during an extreme event in January (Figure 5C), net soil loss was 206 

0.01 to 0.3 m in all land uses excluding scrubland, where a series of long rills with depths < 207 

0.01 m, were created. Rills deeper than 0.3 m were formed along some recent and/or historical 208 

linear landscape structures. Deposition > 0.1 m only took place on some of the vegetated strips. 209 

During an extreme event in October, mean soil loss was lower than that from extreme events in 210 

January (Table 1). Furthermore, the rill network within scrubland and along field borders was 211 

less dense and generally, shorter rills infilled with less than 0.01 m sediment (Figure 5D). “Equal 212 

erosion delivery” duration was ~27-years for an extreme event in January. However, soil 213 

redistribution patterns were completely different (Figure 5E). Sediment exported during an 214 

extreme rainfall event in October was reached after ~2 years of long-term rainfall conditions 215 

(Figure 5F), but contrary to extreme rainfall in October (Figure 5D) nearly zero erosion or 216 

deposition occurred within most of the parcels under normal rainfall conditions.  217 

 218 

For other scenarios, the relation between long-term and extreme event internal catchment 219 

dynamics was similar to those in BLUS (Supplementary Info 1). Normal rainfall simulations led 220 

to heterogeneous soil redistribution patterns with areas of both erosion and deposition after 30 221 

years, while nearly zero net soil erosion over the majority of the catchment during extreme 222 

events.  223 

Differences in internal catchment dynamics for each temporal scale are shown using an 224 

example of upper (terraced) slopes divided to two parcels (Figure 6). The upper parcel was 225 

divided to one (ILS) or more (BLUS, ELS) fields with mechanical weeding. Chemical weeding 226 

was applied in ILU and ILUS scenarios, while scrubland covered the parcel in ELU and ELUS 227 

(Figure 6A). The lower parcel was covered by scrubland in all scenarios, but the field border 228 

cover varied (Figure 6A). Under scenarios of intensified land use (ILU and ILUS), 0.01-0.3 m of 229 

soil was removed from surface in vineyards with mechanical weeding. Furthermore, deep rills 230 

(0.01-0.3 m) in scrublands were infilled with transported material after 30 years (Figure 6B). 231 

During extreme events in January (Figure 6C), the scrubland rill network was much less dense 232 
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compared to long-term simulations. However, during extreme event in January some of the 233 

partly infilled rills cut into adjacent field borders and continued eroding. Additionally, exclusively 234 

soil erosion occurred downhill of the scrubland field border during extreme events in January. 235 

Substituting vegetated pathways with bare soil (Figure 6A-ILS) increased connectivity between 236 

parcels and concentration of overland flow from upper parcel in lower parcels under long-term 237 

rainfall conditions (Figure 6B-ILS). During extreme events (Figure 6C, 6D –ILS) erosion <0.01 m 238 

occurred along some rills in scrubland. Under ILS, equal erosion delivery was attained after 17 239 

years in comparison to January extreme event. Soil redistribution after 17 and 30-years under 240 

ILS was similar. For ILU and ILUS, equal erosion delivery was 7 and 6 years. Again the soil 241 

erosion pattern of equal soil erosion delivery was similar to long-term soil redistribution pattern 242 

(Figure 6E –ILU and ILUS).  243 

Under ELU overland flow generated in upper parcel (scrubland, Figure 6A-ELU) caused less 244 

intensive erosion on-site than vineyards parcels in stationary and more intensive production 245 

scenarios in 30 years (Figure 6B). Furthermore, scrubland led to rill formation and their infilling 246 

in lower parcel after 30 years (Figure 6B-ELU). In ELUS, combined land use and landscape 247 

structure changes helped protect rill incision (Figure 6B ELUS), but as Figure 6B ELS shows, 248 

change of landscape structure alone was not sufficient to prevent rill erosion. Under extreme 249 

events, erosion was low along scrubland field borders, and downslope rills emerged only under 250 

ELS. During the year when sediment export from long-term rainfall conditions equalled extreme 251 

events, soil redistribution patterns was more related to long-term precipitation patterns (Figure 252 

6, Supplementary Info 1).   253 

 254 

3.3 External catchment dynamics  255 

Sediment export is referred to external catchment dynamics, and is reported in section 3.1, 256 

Table 1. In scenarios with intensified land use (ILU, ILUS), total sediment export over long-term 257 

conditions was over 10-fold higher than BLUS, over 4-fold higher than ILS. Total sediment 258 

export under extreme event in January was in ILU and ILUS over 2.6-fold higher than BLUS, 259 

and over 1.6-fold higher than ILS. For scenarios with less intensive production than BLUS, long-260 

term sediment export at catchment outlet by 10% (ELU), 40% (ELS) and 50% (ELUS) in 261 
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comparison with BLUS sediment export.  262 

 263 

Sediment export under all scenarios was increasingly stable over the first four years of model 264 

simulations, followed by sudden increases in the fifth year triggered by rainfall (Figure 7). The 265 

sediment export response to natural rainfall conditions differed between the modelled scenarios. 266 

Intensified scenarios responded with higher sediment production (i.e., erosion) and transport. 267 

Soil export in ILUS more than doubled, and increased ~1.5-fold in ILU and ILS (Figure 7B). On 268 

the contrary, ELU exhibited increased sediment export than ELS. Threshold behaviours with 269 

different magnitudes of sediment response existed for all scenarios in several years (e.g., year 270 

16, year 24).  271 

Figure 7B compares sediment export by extreme events in January with long-term sediment 272 

export. Intensified scenarios reached the sediment export of BLUS within first 4 to 10 years (for 273 

ILUS and ILS, respectively).  274 

 275 

4. Discussion  276 

 277 

4.1 Land management optimisation: understanding the impact on differing temporal scales  278 

 279 

Comparing scenarios over different time scales showed that both external and internal 280 

catchment dynamics differed for long-term and extreme-event rainfall conditions. Mean and 281 

variability of soil loss were greater after long-term rainfall events than extreme rainfall 282 

conditions. However, sediment export at the catchment outlet from a single extreme event (in 283 

January) accounted for 89% (BLUS) of long-term sediment export. Within-catchment and within-284 

parcels erosional hotspots formed over the 30 year simulations. Hotspots’ spatial distribution 285 

differed for each land use scenario, while landscape structure influenced within-catchment (dis-) 286 

connectivity. Soil redistribution within parcels was strongly influenced by erosion from tillage 287 

(David et al, 2014), which temporarily influences soil properties and micro-landforms (e.g., 288 

infilling rills, creating tillage rows) and thus, hydrology and associated sediment connectivity 289 

along hillslopes. 290 
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During extreme events, most of the catchment was connected. Soil erosion removed up to 0.01-291 

m from almost the entire catchment independent of land use or landscape structure (except for 292 

scrubland and some of the filed borders, grass strips, pathways). Land uses or landscape 293 

structures sometimes acted as barriers or buffers under normal rainfall conditions, but were less 294 

effective in damping overland flow and sediment trapping. Yet, effects of single extreme rainfall 295 

events differed for October and January depending on soil-vegetation properties in the 296 

respective month. In October, transport-limited deposition took place in some pathways, 297 

whereas only transport and zero net erosion or deposition took place in January. Antecedent 298 

conditions such as previous rainfall or tillage influenced sensitivity of sediment response to 299 

seasonal changes in soil hydrological properties, demonstrated previously by monitoring studies 300 

(e.g., Biddocu et al., 2017; Inoubli et al., 2017; Raclot et al., 2009, Smetanova et al., under 301 

revision).  302 

 303 

4.2 Land management optimisation: understanding effects of management measures under 304 

different scenarios  305 

 306 

We discuss the effect of land management on land-degradation based on area-specific 307 

sediment budgets for both long-term and extreme events (Figure 8).  308 

Chemical weeding led to erosion when applied on vineyards in all scenarios and timescales. 309 

Mechanical weeding, was also a net source of sediment under extreme rainfall conditions in 310 

January, but over 30 years, had nearly neutral sediment budget. According to David et al. 311 

(2014), mechanical weeding caused three-times less sediment erosion compared to chemical 312 

weeding over 100 years. However, extensive mechanical weeding in ELU without using 313 

extensive landscape structures (such as in ELS) increased sediment export more than both 314 

current land use and extensive landscape structure in ELS (Table 1). This confirms that land 315 

use and landscape structure management must be used in combination to effectively decrease 316 

both sediment production (i.e., erosion) from farmers’ fields and sediment exported from the 317 

catchment to river system.  318 

Grass strips and vegetated strips were the most effective management strategies for trapping 319 
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sediment at both temporal scales (and in 100 years as in David et al., 2014), but the sediment 320 

trapped was highest for extreme events. Total area and spatial distribution of vegetated strips 321 

was identical under BLUS; ILU and ILUS, but sediment trapping in vegetated strips decreased 322 

with decreasing sediment production. Sediment trapping efficiency of vegetated strips differed 323 

with (i) amount of sediment produced, (ii) spatial redistribution of landscape elements and land 324 

uses, and (iii) single (process) versus cumulative events (long-term processes). Trapping 325 

efficiency was directly linked to sediment connectivity during extreme events and over the long-326 

term. This confirm previous findings that both sediment connectivity and sediment trapping 327 

efficiency are dependent on spatial distribution of management (Collin et al., 2012; Gumiere et 328 

al., 2011; Mekonnen et al., 2015; Ramos et al., 2010). Using a raster-based approach allowed 329 

us to assess sediment production and transport at individual parcel scale at both temporal 330 

scales (example in Figure 6). However, we did not calculate soil loss and effectiveness of 331 

measures for each farmer at different time scales, which is possible and recommended for 332 

supporting decision-making schemes (Souchère et al., 2010). At the catchment scale, soil 333 

surface properties drove sediment export regardless of land use (David et al., 2014). Therefore, 334 

management techniques aimed at the soil surface can reduce soil erosion. Such approaches 335 

include straw mulch or intercropping, and are known to decrease soil erosion under long-term 336 

and extreme rainfall conditions (Biddocu et al., 2014, 2016, 2017; Blavet et al., 2009; Cerdà et 337 

al., 2016; Gómez et al., 2009, 2014; Kosmas et al., 1997; Prosdocimi et al., 2016; Raclot et al., 338 

2009; Ramos et al., 2007; Rodrigo-Comino et al., 2016; Ruiz-Colmenro et al., 2011). 339 

Management strategies can be either (i) permanently incorporated in land use scenarios, or (ii) 340 

used in conjunction with others (e.g., geotextiles, mobile sediment trapping barriers) as ad-hoc 341 

measures during extreme events (Sherrif et al., 2016).  342 

 343 

4.3 Pathways for applicable optimisation for land-degradation neutral management  344 

 345 

Our results suggest that using multiple temporal, spatial and management scales to evaluate 346 

soil erosion and connectivity can significantly improve existing modelling approaches (Bussi et 347 

al., 2016; Collin et al., 2012; David et al., 2014; Gumiere et al., 2014; Mullan et al., 2016; Nunes 348 
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et al., 2013; Paroissien et al, 2015; Ramos et al., 2015; Rodriguez-Lloveras et al., 2016; Ronfort 349 

et al., 2011; Routschek et al., 2014). Our approach includes temporally- and spatially-adjusted 350 

measures that are applicable for meeting soil erosion and land degradation neutrality targets 351 

(The Global Mechanism of UNCCD, 2016). We demonstrate that proposing land degradation 352 

neutrality measures in agricultural catchments is extremely complex due to (i) natural variability 353 

of catchment responses to normal rainfall conditions and extreme events, and (ii) variability in 354 

cumulative response depending on the spatial distribution of selected measures. Furthermore, 355 

we showed that (iii) the same sediment export (sediment yield) values represented different 356 

patterns of soil erosion and deposition within a catchment. The complexity of applying measures 357 

to reduce land degradation is reinforced by differing interests and management aims of each 358 

stakeholder (e.g., farmer or watershed manager; Smetanová et al., 2018). Therefore, modelling 359 

approaches applied on differing spatial and temporal scales are valuable aid for participative 360 

decision making on best practice management (Hewett et al., 2018, Keesstra et al., 2018).  361 

 362 

5. CONCLUSION 363 

 364 

Our research proved, that tailoring specific management strategies for specific spatial and 365 

temporal scales might be suitable in order to achieve land degradation neutral management. 366 

Our research contributions included the following in regards to attaining land degradation 367 

neutrality goals:  368 

1. Managing changes to land use or cover won’t appropriately serve land degradation 369 

neutrality targets at the catchment scale (sub-national level). It is essential to include 370 

landscape structure change and connectivity management into land use scenarios.  371 

2. Internal and external catchment dynamics differ for long-term and extreme events, and 372 

therefore multiple temporal, spatial, and management scales must be compared and 373 

incorporated in to planning adaptive management for land degradation. Optimally, this 374 

will span from farm- to catchment-scales, as well as sub-national levels.  375 

3. Modelling approaches such as LandSoil enable comparison of management efficiency 376 

for both long- and extreme event-scales. Additionally, the model improves selection of 377 
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timely and adaptive management scenarios best serving land degradation neutrality 378 

targets (SDGs 15.3) 379 

 380 

We suggest that holistic land degradation neutrality management can be selected by using 381 

multi-scale consideration based on models incorporated in participative decision making. Using 382 

such inputs will bring multiple co-benefits fostering life on land, including avoiding, reducing and 383 

reversing land degradation processes. 384 
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Figure description:  

 

Figure 1. Study area (A), land use (B), and landscape structures (C) 

 

Figure 2: Flowchart of numerical experiment in LandSoil. Model inputs were digital elevation model, 

dynamic soil properties, seven land management scenarios, and rainfall. Two temporal (long-term, 

single event) and two spatial dynamics (internal and external) were considered. Red triangle indicates 

management priorities of a farmer, inverted red triangle priorities of a watershed manager. Outputs 

related to internal (v) and external (inverted v) catchment dynamics were produced for each scenario.  

 

Figure 3. Land management allocation matrix.  

 

Figure 4. The full 30 years of precipitation data plotted over time. First 20 years (red frame) are 

empirically measured rainfall events in Roujan (1992-2012), while the last 10 years are extension of 

the empirical dataset. The red star represents the amount of rainfall during the extreme event (435 

mm/24h) measured in Perpignan in 1915. 

 

Figure 5. Internal catchment dynamics under current land use and landscape structure (BLUS) 

A: Land use and landscape structure, B-F: Erosion and deposition: (B) after 30 years of normal rainfall 

conditions, (C) after an extreme event in January, (D) after an extreme event in October. (E) internal 

catchment dynamics in year (indicated by number) when sediment export by the long-term rainfall 

series matches that of an extreme event in January, and (F) same as E, but for an extreme event in 

October. An elevation change legend (bottom right) shows deposition as positive, erosion as negative, 

and anything <10-12m and > -10-12m as “no erosion, no deposition”. 

 

Figure 6. Internal catchment dynamics in one selected catchment segment 

Land use and landscape structure(A), and erosion and deposition on different time scales (B-F) under 

different scenarios (indicated by rows) are shown in the selected catchment segment (locator figure, 

left bottom). Time scales: (B) 30 years under normal rainfall conditions, (C) an extreme event in 

January, and (D) an extreme event in October. In columns E and F, internal catchment dynamics are 

shown for the year when catchment outlet sediment export under long-term rainfall series met that of 



an extreme event (E) in January and (F) in October.  

Baseline scenario (B) represents steady production under current land use (LU) and landscape 

structure (S). More intensive (I) production than steady production is represented by ILU, ILS, ILUS 

scenario, less intensive (E) production by ELU, ELS, ELUS. 

An elevation change legend (bottom right) shows deposition as positive, erosion as negative, and 

anything <10-12m and > -10-12m) as “no erosion, no deposition”. 

 

Figure 7. External catchment dynamics  

 

(A) Area specific sediment yield at the catchment outlet (10-2 Mg·km-2) over 30 years. (B) Comparison 

between sediment delivery over long-term (30 years) and extreme events in January (arrow). Baseline 

scenario (B) represents steady production under current land use (LU) and landscape structure (S). 

More intensive (I) production than steady production is represented by ILU, ILS, ILUS scenario, less 

intensive € production by ELU, ELS, ELUS. 

 

Figure 8. Land management effect on land degradation under different scenarios and temporal scales. 

Area-specific sediment budget within landscape management (10-2 Mg·km-2) is plotted for long-term 

(30 years, x-axis), and an extreme event in January (y-axis). Erosion is plotted in red and orange, 

deposition in green and blue.  
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allocation of BLUS is plotted in Figure 5A (BLUS), and remaining scenarios in Supplementary Info 1.1A-1.6A.
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Table 1. Mean soil loss for the catchment and soil export at catchment outlet under each scenario 

 
Long-term erosion 

 Extreme event in 

January  October 

Mean soil 
loss* 

Soil export at outlet  
Mean soil 

loss* 
Soil export at outlet 

Equal 
** 

 
Mean soil 

loss* 
Soil export at outlet 

Equal 
** 

10-3m Mg 
10-2 

Mg·km-2 
 10-3m Mg 

10-2 

Mg·km-2 
years  10-3m Mg 

10-2 

Mg·km-2 
years 

             
BLUS 0.69±38.97 856.11 9.02  0.62±2.71 762.10 8.03 26.7  0.04±1.55 46.16 0.49 1.6 
ILU 7.05±80.47 8700.59 91.70  1.62±4.39 1996.81 21.05 6.9  1.18±4.38 1456.43 15.35 5.0 
ILS 1.73±35.69 2135.83 22.51  0.99±2.16 1216.83 12.82 17.1  0.09±0.74 112.82 1.19 1.6 

ILUS 9.17±52.68 11309.58 119.20  1.89±3.44 2334.57 24.60 6.2  1.17±3.26 1445.42 15.23 3.8 
ELU 0.62±25.16 769.80 8.11  0.50±2.01 614.55 6.48 23.9  0.07±1.16 88.06 0.93 3.4 
ELS 0.38±35.01 469.59 4.95  0.33±3.10 412.83 4.35 26.4  0.03±1.38 36.87 0.39 2.4 

ELUS 0.36±19.43 449.81 4.74  0.26±2.47 318.81 3.36 21.3  0.05±1.35 57.60 0.61 3.8 

*- mean calculated based on raster cells, ± indicates standard deviation. Mean soil loss is also referred to as internal catchment 
dynamics in the text. Soil export is also referred to as external catchment dynamics in the text. **- number of years in which 
catchment outlet sediment export over long-term rainfall matched that of extreme events; BLUS-steady production - baseline 
land use and landscape structure. I-more intensive production than B. E-less intensive production than B; 10-2 Mg·km-2 equals 

t/ha 

 




