

Landscaping compromises for land degradation neutrality: The case of soil erosion in a Mediterranean agricultural landscape

Anna Smetanova, Stéphane Follain, Mélodie David, Rossano Ciampalini,

Damien Raclot, Armand Crabit, Yves Le Bissonnais

▶ To cite this version:

Anna Smetanova, Stéphane Follain, Mélodie David, Rossano Ciampalini, Damien Raclot, et al.. Landscaping compromises for land degradation neutrality: The case of soil erosion in a Mediterranean agricultural landscape. Journal of Environmental Management, 2019, 235, pp.282-292. 10.1016/j.jenvman.2019.01.063. hal-02067100

HAL Id: hal-02067100 https://institut-agro-dijon.hal.science/hal-02067100v1

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0301479719300696 Manuscript_6e5855dd4c90e41ced12b0f2596eba3e

Short Title: Target for catchment land degradation neutral management in Mediterranean

Long title: Landscaping compromises for land degradation neutrality: the case of soil erosion in a Mediterranean agricultural landscape

Anna Smetanová^{a,b}, Stéphane Follain^c, Mélodie David^{b,d}, Rossano Ciampalini^b, Damien Raclot^{b,e}, Armand Crabit^b, Yves Le Bissonnais^b

^a Research Group Ecohydrology and Landscape Evaluation, Ernst-Reuter PLatz 1, DE-10623, Berlin,

Germany

^b LISAH, INRA, IRD, Montpellier SupAgro, Univ Montpellier, FR-34060, Montpellier, France

° Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France

^d GEODE UMR 5602, Maison de la Recherche, FR-31500, Toulouse, France

^e Institut Agronomique et Vétérinaire Hassan II, Dept. of Natural Resources and Environment, PO.

Box. 6608, Madinat Al Irfane, Rabat, Morocco

corresponding author:

Anna Smetanová, Department of Ecohydrology and Landscape Evaluation, TU Berlin, Ernst-Reuter Platz 1, DE-10623, Berlin, Germany, anna.smetanova@gmail.com, Tel: +49 3031473534

1 Abstract

2 Soil erosion is the primary process driving land degradation. Using multiple scales of 3 management to minimize soil erosion is crucial to achieve land degradation neutrality targets 4 within the Sustainable Development Goals agenda. Land management (LM) influences both on-5 site and off-site erosion on the event-scale and over the long-term. However, each LM differs in 6 effectiveness depending on the temporal scale considered. In order to understand how LM 7 effects internal and external catchment dynamics, we apply LandSoil, a physically based 8 landscape evolution model, to evaluate 7 LM scenarios over long- (30 years) and short-terms 9 (event scale). LM scenarios included changes in land use and/or landscape structure. Under 10 current LM, mean surface soil erosion was ~ $0.69 \pm 39 \cdot 10^{-3}$ m over 30 years. In contrast, a 11 single extreme event (435 mm/24h) in January resulted in ~ $0.62 \pm 3 \cdot 10^{-3}$ m loss and ~ $0.04 \pm$ 12 2.10⁻³ m if it occurred in October. Heterogeneous patterns of erosion and deposition developed 13 after 30 years, whereas extreme events dominantly showed soil loss and high catchment 14 connectivity. Effectiveness of LM in erosion mitigation and sediment trapping differed according 15 to temporal and spatial scales for each scenario. We concluded that multiple temporal and 16 spatial scales must be incorporated in order to adaptively manage land degradation and meet 17 neutrality targets. 18 19 Key words: 20 Land degradation, Degradation neutrality, Soil erosion, Landscaping, Mitigation strategy 21 22 1. Introduction 23 24 Land degradation neutrality targets of the Sustainable Development Goals (SDG 15.3) contain 25 time-specific measures to avoid, reduce and reverse land degradation at both national and 26 subnational levels (The Global Mechanism of UNCCD, 2016). Soil erosion by water is a major 27 land degradation process (Orr et al, 2017). Therefore, land management seeking to minimize 28 soil erosion is crucial for maintaining food and water security, climate regulation, soil ecosystem

services (Dominati et al., 2010; Koch et al., 2013; Lal, 2004; McBratney et al., 2014;

1/21

30 Montanarella et al., 2016; and achieving of multiple SDGs (Keesstra et al., 2016; Orr et al.,

31 2017).

32

33 It is expected, that soil erosion and suspended sediment yield in rivers will increase beginning in 34 the mid-21st century due to climate change (Raclot et al., 2018; Routschek et al., 2014a, 2014b, 35 Bussi et al., 2016; Rodríguez-Blanco et al., 2016). The majority of soil loss occurs during high-36 magnitude events of low frequency/recurrence, especially in Mediterranean environments where 37 3-10 of the largest daily events can account for over 50% of total soil loss (González-Hidalogo 38 et al., 2007, 2010). Due to climate change, the frequency of high-magnitude rainfall events 39 increases (e.g., Serpa et al., 2015). Therefore, considering seasonal patterns of soil loss 40 (Smetanová et al., 2018) alongside water and sediment connectivity, and evaluating economic 41 effects of on- and off-site effects of land management are all essential for preventing land 42 degradation (García-Ruiz et al, 2017; Raclot et al., 2018).

43

44 Land use influences both soil erosion (sediment production) and sediment connectivity, while 45 landscape structure can influence sediment transport and connectivity (Ciampalini et al., 2012; 46 Coulthard & Van De Wiel, 2017; David et al, 2014; Follain et al., 2006; Fryirs, 2013). Modelling 47 studies shown, that proper management can reduce the future effects of climate change on mid-48 and long-term soil erosion rates (Parroissien et al.2015; Rodriguez-Lloveras et al., 2016; 49 Routschek et al., 2014a, 2014b). Modelling approaches successfully tested the effects of crop 50 allocation, sediment trapping, and ditch optimisation techniques under mean or extreme rainfall 51 events (David et al, 2014; Furlan et al., 2012; Gumiere et al., 2014; Levavasseur et al, 2016; 52 Mullan et al., 2016; Nunes et al., 2013; Ronfort et al., 2011).

53

54 However, in order to meet land degradation neutrality targets, it is crucial to focus land

55 management simultaneously on the relevant spatial and temporal scales for erosional

56 processes (Larson et al., 1997; Stroosnijder, 2005) and stakeholders' scales of practice

57 (Smetanová, et al, 2018). This requires providing of multi-foci, multi-scale solution. For example,

58 a management reducing sheet and gully erosion during high-magnitude events of low

59 frequency/recurrence, and in long-term. Simultaneously, an effective management should 60 reflect differing priorities of stakeholders operating in the same region. For example, the spatial 61 scale of interests and mind-sets of a vineyards farmer and watershed manager might likely differ 62 between understanding internal catchment dynamics on individual field scales (farmer) versus 63 external catchment dynamics (e.g., sediment export to reservoirs). Furthermore, farmers 64 establishing vineyards are interested in soil productivity over timescales that plants achieve 65 highest productivity (10-30 years), while watershed managers might focus on reducing or 66 preventing flash floods (single events). Understanding how land management effects on soil 67 erosion contrast on temporal and spatial scales can help define targets for land management 68 decisions aimed at reducing land degradation.

69

The objective of this study is to compare the internal and external catchment soil erosion dynamics for different land management scenarios over short-term (event scale) and long-term (30 years) scales, in order to answer the question: "Should management strategies for land degradation be tailored for specific spatial and temporal scales to achieve land degradation neutral management?"

75

76 2. Materials and Methods

2.1 Study site

78

79 The Roujan catchment (0.91 km²), located in south France (43°30'N, 3°19'E) has been 80 monitored for rainfall in the three meteorological stations equipped with tipping bucket rain 81 gauges, and for continuous runoff and sediment concentration at parcel, mid- and whole 82 catchment since 1992. It was described comprehensively by David et al. (2014). It belongs to a 83 sub-humid Mediterranean climate (Peel et al., 2017) with mean annual rainfall 634 mm and a 84 dry summer period, with maximum runoff and sediment yield from October to February. 85 Elevation ranges 50m and slopes are 2-20% (David et al., 2014). Miocene marine and 86 lacustrine sedimentary rocks with calcaric Regosols and Calcisols cover most of the catchment. 87 Land use is dominated by vineyards (62%) followed by cereal and alfalfa production, and

88 scrubland (Guix-Hébrard et al., 2007). Chemical weeding in vineyards is performed using 89 herbicide application alongside mechanical weeding by shallow (0.05-0.10 m) tillage with a 90 duck foot cultivator in spring and autumn (Biarnès and Colin, 2006; Coulouma et al., 2006). 91 Wheat and barley are rotated in the fields with annual crops. Fields are treated biannually in the 92 post-harvest period (summer-autumn) with a disc-and-chisel plough down to depths of 7 to 12 93 cm. Landscape structure is characterised by 140 fields (0.6 ± 0.5 ha) with grass, bare soil or 94 vegetated compacted soil strips along field borders, and an 11-km network of ditches (David et 95 al. 2014). Current land use and landscape structures represent baseline land use scenario 96 (Figure 1).

97

98 2.3. LandSoil model

99 LandSoil model was previously developed and calibrated in Roujan catchment (Ciampalini et al. 100 2012), and since then applied in variety of environments (e.g., Ciampalini et al.2011; Chartin et 101 al, 2011; Lacoste et al., 2016). LandSoil is a spatial raster-based model for simulating water and 102 tillage soil erosion as well as evolution of topography at plot to catchment scale. After modelling 103 each event, LandSoil recalculates the elevation raster. Soil surface properties control water 104 infiltration, runoff, and sediment concentration for each grid-cell and rainfall event (David et al., 105 2014; Leonard and Andrieux, 1998). Runoff in each grid cell is combination of input from 106 upstream/upslope cells and runoff generated within the cell. Runoff flows in the flow line 107 direction, or, if flow lines are interrupted, along liner landscape elements (roads, ditches, field 108 boundaries, and tillage rows). The model uses a modified single-flow runoff model (Jenson and 109 Domingue, 1988; Souchère et al., 1998) under eight possible flow directions. Both contour and 110 downslope tillage were modelled in different fields with tillage transport coefficients spanning 111 111–139 kg m⁻¹ (David et al., 2014). 112

113 2.4. Numerical experiment scheme

114

115 We considered two temporal dynamics (Figure 2):

(i) Long-term - 30 years. This period refers to long-term erosion rates over the timescale

- 117 that a new vineyard will reach peak productivity.
- 118 (ii) Single extreme rainfall event maximum measured daily rainfall event. Events were

119 modelled for January and October in order to consider variability in soil surface

- 120 properties (David et al., 2014) that arise during periods when large erosion events
- 121 usually occur (Smetanová et al., 2018).
- 122 We considered two spatial dynamics:
- (i) Internal catchment dynamics represented by fine spatial resolution modelling (1-meter
 grid) to simulate erosion and deposition patterns over the entire catchment. It related to
 spatial scale of farmers.
- (ii) External catchment dynamics represented by sediment export at the catchment outlet.
 It related to sediment input to river system, and management scale of watershed
 managers and policy makers.
- 129 We applied seven predictive land use scenarios that combine narrative and modelling methods
- 130 developed by David et al. (2014). Three narratives were (i) stationary production (B "baseline",
- 131 corresponding to current land mangement), (ii) more intensive production (I "intensified"), and
- 132 (iii) less intensive production (E "extensified") than stationary production. These narratives
- 133 were transformed into seven scenarios (BLUS, ILU; ILS; ILUS; ELU, ELS, ELUS) by modifying
- 134 the baseline land use and / or landscape structure by allocation rules for of land use (LU) and
- 135 landscape structure (LS) as described in Figure 3.
- 136
- 137 2.5. Model inputs
- 138

139 Elevation and soil surface topography

LIDAR-based digital elevation model derived at 2-m resolution (David et al., 2014) represented initial input topography for all scenarios. Elevation was recalculated after every/each event by subtracting the depth of eroded soil or adding the height of deposited sediment in each raster cell. Soil erosion rates and sediment export (in Mg·km⁻², where 1 Mg·km⁻² corresponds to 0.01

- 144 tonnes per hectare) at the catchment outlet were recalculated at the end of each simulation
- 145 period based on equations provided by David et al. (2014).

146

147	Rainfall dataset
148	Long-term rainfall series were based on 10-years extension of empirical rainfall event
149	measurements in the Roujan catchment between 1992-2012 (David et al., 2014; Figure 4). The
150	total rainfall depth (mm), maximum intensity over 6 min (mm h-1) and rainfall duration (h) were
151	considered for each event, separated by at least a 6-hour dry period.
152	An event with return period >100 years was represented by extreme event measured in
153	Perpignan (120km from Roujan) on 26 October, 1915 (Cosadney and Robison, 2000; Meteo
154	France, 2018). Rainfall depth was 435 mm over 24 hours, but no measurement of rainfall
155	intensity was available. Rainfall intensity was estimated using the Montana law, with results
156	suggest that the Montana coefficient value exceeded the maximum intensity class for the
157	LandSoil model. Therefore, the maximum rainfall intensity class (>40 mm h^{-1}) was applied
158	based on calibration from Ciampalini et al. (2012). Model parameters and soil conditions are
159	described in additional detail by David et al. (2014).
160	
161	Tillage Dataset
162	Modelled tillage events occurred in fields with annual crops and in vineyards with mechanical
163	weeding. We simulated tillage twice a year in April or May and October. The exact day of a
164	tillage simulation was determined by cumulative rainfall depth (40 mm) since the last tillage
165	event.
166	
167	3. Results
168	3.1 Temporal dynamics: Long-term vs. extreme event soil erosion
169	
170	Under current land use and landscape structure conditions (BLUS), mean soil loss was 0.69 \pm
171	38.97.10 ⁻³ m across the catchment over the 30-year simulation period (Table 1). Mean soil loss

- 172 here is the mean of all raster-cell values after 30 years of simulation. Each raster-cell value
- 173 represented cumulative elevation change after 30 years of simulation. Soil export at the outlet
- 174 (i.e., external catchment dynamics) under BLUS scenario was 9.02·10⁻² Mg·km⁻². Soil export at

175 catchment outlet varied from 4.74 (ELUS) to 119.20.10⁻² Mg·km⁻² (ILUS).

176 Erosional responses to single extreme rainfall events differed from long-term (30 years)

177 cumulative soil loss and were different for January and October. Mean soil loss in single

178 extreme rainfall event was $0.60 \pm 2.72 \cdot 10^{-3}$ m in January, and $0.00 \pm 1.55 \cdot 10^{-3}$ m in October

179 under BLUS scenario. Sediment export (external dynamics) was 16.4x higher in January than in

180 October. Similar patterns were observed in other scenarios, where mean soil loss for extreme

181 events were 1.3x (ILU) to 20x (ELS) higher in January relative to October.

182 Comparing mean soil loss of long-term and extreme events (Table 1) under BLUS scenario

183 showed that 8.3±14-times more soil was eroded after thirty years than by a single extreme

184 event in January.

185 Sediment exported by a single event in January or October is only reached as the cumulative 186 effect of many erosion events under normal rainfall conditions. This comparison could be called 187 'equal erosion delivery', which refers to the duration required for continuous "normal" erosion to 188 match the quantity of sediment delivered by an extreme event. In BLUS, sediment exported in 189 January was reached after ~27 years, while sediment exported during October was matched 190 after ~2 years. Sediment exported in all January extreme events was reached in ~21-26 years 191 under extensified land use scenarios, but dropped drastically to~2-4 years if October extreme 192 events were considered. Under ILU and ILUS, soil loss by both extreme events were more 193 similar than by all remaining scenarios. Under long-term rainfall conditions, an equivalent 194 amount of sediment export was reached in 6-7 years.

195

196 3.2 Internal catchment dynamics

197

Long-term rainfall conditions under current land use and landscape structure (BLUS) led to soil redistribution within the catchment (Figure 5B). Soil loss ranged from 0.01 to 0.3 m in vineyards with chemical weeding, with less than 0.01 m loss in scrubland and no tillage annual crop fields. In vineyards with mechanical weeding and in fields with tilled annual crops, erosion ranged from 0.01 to 0.3 m and deposition >0.01 m occurred. Rills created in parcels with no tillage and scrubland were infilled by shallow deposition (<0.01 m). Zero net erosion or deposition (<10⁻¹²m) was observed on or along linear landscape structures (e.g., roads, field borders).

205

206 In contrast to previous results, during an extreme event in January (Figure 5C), net soil loss was 207 0.01 to 0.3 m in all land uses excluding scrubland, where a series of long rills with depths <208 0.01 m, were created. Rills deeper than 0.3 m were formed along some recent and/or historical 209 linear landscape structures. Deposition > 0.1 m only took place on some of the vegetated strips. 210 During an extreme event in October, mean soil loss was lower than that from extreme events in 211 January (Table 1). Furthermore, the rill network within scrubland and along field borders was 212 less dense and generally, shorter rills infilled with less than 0.01 m sediment (Figure 5D). "Equal 213 erosion delivery" duration was ~27-years for an extreme event in January. However, soil 214 redistribution patterns were completely different (Figure 5E). Sediment exported during an 215 extreme rainfall event in October was reached after ~2 years of long-term rainfall conditions 216 (Figure 5F), but contrary to extreme rainfall in October (Figure 5D) nearly zero erosion or 217 deposition occurred within most of the parcels under normal rainfall conditions.

218

For other scenarios, the relation between long-term and extreme event internal catchment dynamics was similar to those in BLUS (Supplementary Info 1). Normal rainfall simulations led to heterogeneous soil redistribution patterns with areas of both erosion and deposition after 30 years, while nearly zero net soil erosion over the majority of the catchment during extreme events.

224 Differences in internal catchment dynamics for each temporal scale are shown using an 225 example of upper (terraced) slopes divided to two parcels (Figure 6). The upper parcel was 226 divided to one (ILS) or more (BLUS, ELS) fields with mechanical weeding. Chemical weeding 227 was applied in ILU and ILUS scenarios, while scrubland covered the parcel in ELU and ELUS 228 (Figure 6A). The lower parcel was covered by scrubland in all scenarios, but the field border 229 cover varied (Figure 6A). Under scenarios of intensified land use (ILU and ILUS), 0.01-0.3 m of 230 soil was removed from surface in vineyards with mechanical weeding. Furthermore, deep rills 231 (0.01-0.3 m) in scrublands were infilled with transported material after 30 years (Figure 6B). 232 During extreme events in January (Figure 6C), the scrubland rill network was much less dense

233 compared to long-term simulations. However, during extreme event in January some of the 234 partly infilled rills cut into adjacent field borders and continued eroding. Additionally, exclusively 235 soil erosion occurred downhill of the scrubland field border during extreme events in January. 236 Substituting vegetated pathways with bare soil (Figure 6A-ILS) increased connectivity between 237 parcels and concentration of overland flow from upper parcel in lower parcels under long-term 238 rainfall conditions (Figure 6B-ILS). During extreme events (Figure 6C, 6D –ILS) erosion <0.01 m 239 occurred along some rills in scrubland. Under ILS, equal erosion delivery was attained after 17 240 years in comparison to January extreme event. Soil redistribution after 17 and 30-years under 241 ILS was similar. For ILU and ILUS, equal erosion delivery was 7 and 6 years. Again the soil 242 erosion pattern of equal soil erosion delivery was similar to long-term soil redistribution pattern 243 (Figure 6E -ILU and ILUS).

244 Under ELU overland flow generated in upper parcel (scrubland, Figure 6A-ELU) caused less 245 intensive erosion on-site than vineyards parcels in stationary and more intensive production 246 scenarios in 30 years (Figure 6B). Furthermore, scrubland led to rill formation and their infilling 247 in lower parcel after 30 years (Figure 6B-ELU). In ELUS, combined land use and landscape 248 structure changes helped protect rill incision (Figure 6B ELUS), but as Figure 6B ELS shows, 249 change of landscape structure alone was not sufficient to prevent rill erosion. Under extreme 250 events, erosion was low along scrubland field borders, and downslope rills emerged only under 251 ELS. During the year when sediment export from long-term rainfall conditions equalled extreme 252 events, soil redistribution patterns was more related to long-term precipitation patterns (Figure 253 6, Supplementary Info 1).

254

255 3.3 External catchment dynamics

256 Sediment export is referred to external catchment dynamics, and is reported in section 3.1,

257 Table 1. In scenarios with intensified land use (ILU, ILUS), total sediment export over long-term

- 258 conditions was over 10-fold higher than BLUS, over 4-fold higher than ILS. Total sediment
- export under extreme event in January was in ILU and ILUS over 2.6-fold higher than BLUS,
- and over 1.6-fold higher than ILS. For scenarios with less intensive production than BLUS, long-
- term sediment export at catchment outlet by 10% (ELU), 40% (ELS) and 50% (ELUS) in

262 comparison with BLUS sediment export.

263

264	Sediment export under all scenarios was increasingly stable over the first four years of model
265	simulations, followed by sudden increases in the fifth year triggered by rainfall (Figure 7). The
266	sediment export response to natural rainfall conditions differed between the modelled scenarios.
267	Intensified scenarios responded with higher sediment production (i.e., erosion) and transport.
268	Soil export in ILUS more than doubled, and increased ~1.5-fold in ILU and ILS (Figure 7B). On
269	the contrary, ELU exhibited increased sediment export than ELS. Threshold behaviours with
270	different magnitudes of sediment response existed for all scenarios in several years (e.g., year
271	16, year 24).
272	Figure 7B compares sediment export by extreme events in January with long-term sediment
273	export. Intensified scenarios reached the sediment export of BLUS within first 4 to 10 years (for
274	ILUS and ILS, respectively).
275	
276	4. Discussion
277	
278	4.1 Land management optimisation: understanding the impact on differing temporal scales
279	
280	Comparing scenarios over different time scales showed that both external and internal
281	catchment dynamics differed for long-term and extreme-event rainfall conditions. Mean and
282	variability of soil loss were greater after long-term rainfall events than extreme rainfall
283	conditions. However, sediment export at the catchment outlet from a single extreme event (in
284	January) accounted for 89% (BLUS) of long-term sediment export. Within-catchment and within-
285	parcels erosional hotspots formed over the 30 year simulations. Hotspots' spatial distribution
286	differed for each land use scenario, while landscape structure influenced within-catchment (dis-)
287	connectivity. Soil redistribution within parcels was strongly influenced by erosion from tillage
288	(David et al, 2014), which temporarily influences soil properties and micro-landforms (e.g.,
289	infilling rills, creating tillage rows) and thus, hydrology and associated sediment connectivity
290	along hillslopes.

291 During extreme events, most of the catchment was connected. Soil erosion removed up to 0.01-292 m from almost the entire catchment independent of land use or landscape structure (except for 293 scrubland and some of the filed borders, grass strips, pathways). Land uses or landscape 294 structures sometimes acted as barriers or buffers under normal rainfall conditions, but were less 295 effective in damping overland flow and sediment trapping. Yet, effects of single extreme rainfall 296 events differed for October and January depending on soil-vegetation properties in the 297 respective month. In October, transport-limited deposition took place in some pathways, 298 whereas only transport and zero net erosion or deposition took place in January. Antecedent 299 conditions such as previous rainfall or tillage influenced sensitivity of sediment response to 300 seasonal changes in soil hydrological properties, demonstrated previously by monitoring studies 301 (e.g., Biddocu et al., 2017; Inoubli et al., 2017; Raclot et al., 2009, Smetanova et al., under 302 revision). 303 304 4.2 Land management optimisation: understanding effects of management measures under 305 different scenarios 306 307 We discuss the effect of land management on land-degradation based on area-specific 308 sediment budgets for both long-term and extreme events (Figure 8). 309 Chemical weeding led to erosion when applied on vineyards in all scenarios and timescales. 310 Mechanical weeding, was also a net source of sediment under extreme rainfall conditions in 311 January, but over 30 years, had nearly neutral sediment budget. According to David et al. 312 (2014), mechanical weeding caused three-times less sediment erosion compared to chemical 313 weeding over 100 years. However, extensive mechanical weeding in ELU without using 314 extensive landscape structures (such as in ELS) increased sediment export more than both 315 current land use and extensive landscape structure in ELS (Table 1). This confirms that land 316 use and landscape structure management must be used in combination to effectively decrease 317 both sediment production (i.e., erosion) from farmers' fields and sediment exported from the 318 catchment to river system.

319 Grass strips and vegetated strips were the most effective management strategies for trapping

11/21

320 sediment at both temporal scales (and in 100 years as in David et al., 2014), but the sediment 321 trapped was highest for extreme events. Total area and spatial distribution of vegetated strips 322 was identical under BLUS; ILU and ILUS, but sediment trapping in vegetated strips decreased 323 with decreasing sediment production. Sediment trapping efficiency of vegetated strips differed 324 with (i) amount of sediment produced, (ii) spatial redistribution of landscape elements and land 325 uses, and (iii) single (process) versus cumulative events (long-term processes). Trapping 326 efficiency was directly linked to sediment connectivity during extreme events and over the long-327 term. This confirm previous findings that both sediment connectivity and sediment trapping 328 efficiency are dependent on spatial distribution of management (Collin et al., 2012; Gumiere et 329 al., 2011; Mekonnen et al., 2015; Ramos et al., 2010). Using a raster-based approach allowed 330 us to assess sediment production and transport at individual parcel scale at both temporal 331 scales (example in Figure 6). However, we did not calculate soil loss and effectiveness of 332 measures for each farmer at different time scales, which is possible and recommended for 333 supporting decision-making schemes (Souchère et al., 2010). At the catchment scale, soil 334 surface properties drove sediment export regardless of land use (David et al., 2014). Therefore, 335 management techniques aimed at the soil surface can reduce soil erosion. Such approaches 336 include straw mulch or intercropping, and are known to decrease soil erosion under long-term 337 and extreme rainfall conditions (Biddocu et al., 2014, 2016, 2017; Blavet et al., 2009; Cerdà et 338 al., 2016; Gómez et al., 2009, 2014; Kosmas et al., 1997; Prosdocimi et al., 2016; Raclot et al., 339 2009; Ramos et al., 2007; Rodrigo-Comino et al., 2016; Ruiz-Colmenro et al., 2011). 340 Management strategies can be either (i) permanently incorporated in land use scenarios, or (ii) 341 used in conjunction with others (e.g., geotextiles, mobile sediment trapping barriers) as ad-hoc 342 measures during extreme events (Sherrif et al., 2016). 343

344 4.3 Pathways for applicable optimisation for land-degradation neutral management

345

Our results suggest that using multiple temporal, spatial and management scales to evaluate
soil erosion and connectivity can significantly improve existing modelling approaches (Bussi et
al., 2016; Collin et al., 2012; David et al., 2014; Gumiere et al., 2014; Mullan et al., 2016; Nunes

349 et al., 2013; Paroissien et al, 2015; Ramos et al., 2015; Rodriguez-Lloveras et al., 2016; Ronfort 350 et al., 2011; Routschek et al., 2014). Our approach includes temporally- and spatially-adjusted 351 measures that are applicable for meeting soil erosion and land degradation neutrality targets 352 (The Global Mechanism of UNCCD, 2016). We demonstrate that proposing land degradation 353 neutrality measures in agricultural catchments is extremely complex due to (i) natural variability 354 of catchment responses to normal rainfall conditions and extreme events, and (ii) variability in 355 cumulative response depending on the spatial distribution of selected measures. Furthermore, 356 we showed that (iii) the same sediment export (sediment yield) values represented different 357 patterns of soil erosion and deposition within a catchment. The complexity of applying measures 358 to reduce land degradation is reinforced by differing interests and management aims of each 359 stakeholder (e.g., farmer or watershed manager; Smetanová et al., 2018). Therefore, modelling 360 approaches applied on differing spatial and temporal scales are valuable aid for participative 361 decision making on best practice management (Hewett et al., 2018, Keesstra et al., 2018).

362

363 5. CONCLUSION

364

Our research proved, that tailoring specific management strategies for specific spatial and
 temporal scales might be suitable in order to achieve land degradation neutral management.
 Our research contributions included the following in regards to attaining land degradation
 neutrality goals:

Managing changes to land use or cover won't appropriately serve land degradation
 neutrality targets at the catchment scale (sub-national level). It is essential to include
 landscape structure change and connectivity management into land use scenarios.
 Internal and external catchment dynamics differ for long-term and extreme events, and

- therefore multiple temporal, spatial, and management scales must be compared and
 incorporated in to planning adaptive management for land degradation. Optimally, this
 will span from farm- to catchment-scales, as well as sub-national levels.
- 376
 3. Modelling approaches such as LandSoil enable comparison of management efficiency
 377
 for both long- and extreme event-scales. Additionally, the model improves selection of

378

timely and adaptive management scenarios best serving land degradation neutrality targets (SDGs 15.3)

380

379

We suggest that holistic land degradation neutrality management can be selected by using multi-scale consideration based on models incorporated in participative decision making. Using such inputs will bring multiple co-benefits fostering life on land, including avoiding, reducing and reversing land degradation processes.

385

386 Acknowledgement

387 This work benefits from the financial support of ANR-08-VULN-006 (LANDSOIL project) and

388 MESOEROS21 (ANR-06-VULN-012), ORE OMERE, MISTRALS/Sicmed R_Osmed and

389 MASCC (funded by ARIMNET2). Anna Smetanová received Marie-Curie FP7 COFUND People

390 Programme AgreenSkills fellowship (grant 267196). Author thank to Dr. Mitchell Donovan for his

- 391 helpful comments and remarks.
- 392

393 References

- Biarnès A, Colin F. 2006. Methodology for assessing the hydrological impact of weed control
- 395 practices with a view to management of Mediterranean vine growing catchments. International

396 Journal of Sustainable Development 9, 161–179. doi: 10.1504/IJSD.2006.011639

397 Biddocu M, Ferraris S, Pitacco A, Cavallo E. 2017. Temporal variability of soil management

398 effects on soil hydrological properties, runoff and erosion at the field scale in a hillslope

399 vineyard, North-West Italy. Soil & Tillage Research 165, 46–58.

- 400 Biddoccu M, Ferraris S, Opsi F, Cavallo E. 2016. Long-term monitoring of soil management
- 401 effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North-West Italy). Soil
- 402 & Tillage Research 155, 176–189. doi:10.1016/j.still.2015.07.005.
- 403 Biddoccu M, Opsi F, Cavallo E. 2014. Relationships between runoff and soil losses with rainfall
- 404 characteristics and a long-term soil management practices in a hilly vineyard (Piedmont, NW
- 405 Italy). Soil Science and Plant Nutrition 60, 92–99. doi: 10.1080/00380768.2013.862488.
- 406 Blavet D, De Noni G, Le Bissonnais Y, Leonard M, Maillo L, Laurent JY, Asseline J, Leprun JC,

- 407 Arshad MA, Roose E. 2009. Effect of land use and management on the early stages of soil
- 408 water erosion in French Mediterranean vineyards. Soil & Tillage Research 106, 124–136.

409 Bussi G, Dadson SJ, Prudhomme C, Whitehead P. 2016. Modelling the future impacts of

410 climate and land-use change on suspended sediment transport in the River Thames (UK).

411 Journal of Hydrology 542, 357-372. doi: 10.1016/j.jhydrol.2016.09.010

- 412 Cerdà A, González-Pelayo O, Giménez-Morera A, Jordán A, Pereira P, Novara A, Brevik EC,
- 413 Prosdocimi M, Mahmoodabadi M, Keesstra S, García Orenes F, Ritsema C. 2016. The use of
- 414 barley straw residues to avoid high erosion and runoff rates on persimmon plantations in
- 415 Eastern Spain under low frequency high magnitude simulated rainfall events. Soil Research
- 416 54, 154-165.
- 417 Ciampalini R, Billi P, Follain S, Le Bissonnais Y, Ferrari G, Borselli L. 2011. Long-term soil
- 418 erosion analysis on the terrace systems of the archaeological area of Aksum (Ethiopia) (1800
- 419 BC today). IAG Regional meeting (Addis Abeba).
- 420 Ciampalini R, Follain S, Le Bissonnais Y. 2012. LandSoil: a model for the analysis of erosion
- 421 impact on agricultural landscape evolution. Geomorphology 175, 25–37. doi:
- 422 10.1016/j.geomorph.2012.06.014
- 423 Ciampalini R, Follain S, Cheviron B, Le Bissonnais Y, Couturier A, Walter C. 2017. Local
- 424 sensitivity analysis of the LandSoil erosion model applied on a virtual catchment". In: Srivastava
- 425 P, Petropoulos G. (Eds.) Sensitivity Analysis in Earth Observation Modelling, Elsevier, pp 55-73.
- 426 Chartin C, Bourennane H, Salvador-Blanesa S, Hinschberger F, Macaire J-J. 2011.
- 427 Classification and mapping of anthropogenic landforms on cultivated hillslopes using DEMs and
- 428 soil thickness data Example from the SW Parisian Basin, France. Geomorphology 135, 8-20.
- 429 doi: 10.1016/j.geomorph.2011.07.020
- 430 Collin F, Moussa R, Louchart X. 2012. Impact of the spatial arrangement of land management
- 431 practices on surface runoff for small catchments. Hydrological Processes 26, 255-271. doi:
- 432 10.1002/hyp.8199
- 433 Cosandey C, Robinson M. 2000. Hydrologie continentale. Armand Colin, Paris, 2000, 368 p.
- 434 Coulouma G, Boizard H, Trotoux G, Lagacherie P, Richard G. 2006. Effect of deep tillage for
- 435 vineyard establishment on soil texture: a case study in southern France. Soil & Tillage Research

- 436 88, 132–143. doi: 10.1016/j.still.2005.05.002
- 437 Coulthard TJ, Van De Wiel MJ. 2017. Modelling long term basin scale sediment connectivity,
- 438 driven by spatiall and land use changes. Geomorphology 277, 265-281. doi:
- 439 10.1016/j.geomorph.2016.05.027
- 440 David M, Follain S, Ciampalini R, Le Bissonnais Y, Couturier A, Walter C. 2014. Simulation of
- 441 medium-term soil redistributions for different land use and landscape design scenarios within a
- 442 vineyard landscape in Mediterranean France. Geomorphology 214, 10-21. doi:
- 443 10.1016/j.geomorph.2014.03.016
- 444 Dominati E, Patterson M, Mackay A. 2010. A framework for classifying and quantifying the
- 445 natural capital and ecosystem services of soils. Ecological Economics 69, 1858–1868. doi:
- 446 10.1016/j.ecolecon.2010.05.002
- 447 Follain S, Minasny B, McBratney AB, Walter C. 2006. Simulation of soil thickness evolution in a
- 448 complex agricultural landscape at fine spatial and temporal scales. Geoderma 133, 71-86.
- 449 Furlan A, Poussin J-C, Mailhol J-C, Le Bissonnais Y, Gumiere SJ. 2012. Designing
- 450 management options to reduce surface runoff and sediment yield with farmers: An experiment
- 451 in south-western France. Journal of Environmental Management 96, 74-85.
- 452 Fryirs K. 2013. (Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment
- 453 delivery problem. Earth Surface Processes & Landforms 38, 30–46. doi: 10.1002/esp.3242
- 454 García-Ruiz JM, Beguería S, Lana-Renault N, Nadal-Romero E, Cerda A. 2017. Ongoing and
- 455 emerging questions in water erosion studies. Land Degradation & Development 28, 5-21.
- 456 Gómez JA, Sobrinho TA, Giráldez JV, Fereres E. 2009. Soil management effects on runoff,
- 457 erosion and soil properties in an olive grove of Southern Spain. Soil & Tillage Research. 102, 5–
- 458 13. doi:10.1016/j.still.2008.05.005.
- 459 Gómez JA, Vanwallenghem T, De Hoces A, Taguas EV. 2014. Hydrological and erosive
- 460 response of a small catchment under olive cultivation in a vertic soil during a five-year period:
- 461 implications for sustainability. Agric. Ecosyst. Environ. 188, 229–244.
- 462 Guix-Hébrard N, Voltz M, Trambouze W, Garnier F, Gaudillère JP, Lagacherie P. 2007.
- 463 Influence of watertable depths on the variation of grapevine water status at the landscape scale.

- 464 European Journal of Agronomy 27, 187–196. doi: 10.1016/j.eja.2007.03.005
- 465 Gumiere SJ, Bissonnais Y, Raclot D, Cheviron B. 2011. Vegetated filter effects on
- 466 sedimentological connectivity of agricultural catchments in erosion modelling: A review. Erath
- 467 Surface Processes and Landforms 36, 3-19.
- 468 Gumiere SJ, Bailly J-S, Cheviron B, Raclot D, Le Bissonnais Y, Rousseau A. 2014. Evaluating
- the impact of the spatial distribution of land management practices on water erosion: case study
- 470 of a Mediterranean catchment. Journal of Hydrology Engineering. doi:
- 471 <u>10.1061/(ASCE)HE.1943-5584.0001076, C5014004.</u>
- 472 Hewett C, Simpson C, Wainwright J, Hudson S. 2018. Communicating risk to infrastructure due
- to soil erosion: a bottom up approach. Land Degradation & Development 29, 1282–1294.
- 474 Inoubli N, Raclot D, Moussa R, Habaieb H, Le Bissonnais Y. 2016. Soil cracking effects on
- 475 hydrological and erosive processes in Mediterranean cultivated vertisols. Hydrological Process,
- 476 30, 4154-4167.
- 477 Jenson SK, Domingue JO. 1988. Extracting topographic structure from digital elevation data for
- 478 geographic information system analysis. Photogrammetric Engineering and Remote Sensing479 54, 1593-1600.
- 480 Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton JN,
- 481 Pachepsky Y, van der Putten WH, Bardgett JD, Moolenaar S, Mol G, Jansen B, Fresco, LO.
- 482 2016. The significance of soils and soil science towards realization of the United Nations
- 483 Sustainable Development Goals. Soil 2, 111–128. doi: 10.5194/soil-2-111-2016
- 484 Keesstra SD, Nunes JP, Novara A, Finger D, Avelar D, Kalantari Z, Cerda A. 2018. The
- 485 superior effect of nature based solutions in land management for enhancing ecosystem
- 486 services. Science of the Total Environment 610-611, 997-1009. doi:
- 487 10.1016/j.scitotenv.2017.08.077
- 488 Koch A, Field D, McBratney A B, Adams M, Hill R, Craw-ford J, Minasny B, Lal R, Abbott L,
- 489 O'Donnel A, Angers D, Baldock J, Barbier E, Binkley D, Parton W, Wall DH, Bird M, Chenu C,
- 490 Flora CB, Goulding K, Grunwald S, Hempel J, Jastrow J, Lehmann J, Lorenz K, Morgan CL,
- 491 Whitehead D, Young I, Zimmermann M. 2013. Soil security: solving the global soil crisis. Global
- 492 Policy 4, 434–441. doi: 0.1111/1758-5899.12096

- 493 Kosmas C, Danalatos N, Cammeraat LH, Chabart M, Diamantopoulos J, Farand R, Gutierrez L,
- 494 Jacob A, Marques H, Martinez-Fernandez J, Mizara A, Moustakas N, Nicolau JM, Oliveros C,
- 495 Pinna G, Puddu R, Puigdefabregas J, Roxo M, Simao A, Stamou G, Tomasi N, Usai D, Vacca
- 496 A. 1997. The effect of land use on runoff and soil erosion rates under Mediterranean conditions.
- 497 CATENA, 29, 45–59.
- 498 Lacoste M, Viaud V, Michot D, Walter C. 2016. Model-based evaluation of impact of soil
- 499 redistribution on soil organic carbon stocks in a temperate hedgerow landscape. Earth Surface
- 500 Processes and Landforms, 41, 1536-1549. doi: 10.1002/esp.3925
- 501 Lal R. 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security.
- 502 Science 304, 1623–1627. doi: 10.1126/science.1097396
- 503 Leonard J, Andrieux P. 1998. Infiltration characteristics of soils in Mediterranean vineyards in
- 504 southern France. Catena 32, 209–223. doi: 10.1016/S0341-8162(98)00049-6
- 505 Levavasseur F, Bailly J-S, Lagacherie P. 2016. Are ditch networks optimised for mitigating rill
- 506 erosion in cultivated Mediterranean landscapes? A numerical experiment. Land Use Policy 50,
- 507 441-448.
- 508 Meteo France, 2018. Pluies extrêmes en France métropolitaine.
- 509 http://pluiesextremes.meteo.fr/france-metropole/Fantastique-chute-de-pluie-sur-Perpignan.html.
- 510 Accessed: 15 May 2018.
- 511 McBratney AB, Field DJ, Koch A. 2014. The dimensions of soil security. Geoderma 213, 203–
- 512 213. doi: 10.1016/j.geoderma.2013.08.013
- 513 Mekonnen M, Keesstra SD, Stroosnijder L, Baartman JEM, Maroulis J. 2015. Soil conservation
- 514 through sediment trapping: A review. Land Degradation & Development 26, 544–556.
- 515 Montanarella L, Pennock DJ, McKenzie N, Badraoui M, Chude V, Baptista I, Mamo T,
- 516 Yemefack M, Singh Aulakh M, Yagi K, Young Hong S, Vijarnsorn P, Zhang G-L, Arrouays D,
- 517 Black H, Krasilnikov P, Sobocká J, Alegre J, Roberto Henriquez C, de Lourdes Mendonça-
- 518 Santos M, Taboada M, Espinosa-Victoria D, Al Shankiti A, Alavi Panah SK, El Mustafa Elsheikh
- 519 EA, Hempel J, Camps Arbestain M, Nachtergaele F, Vargas R. 2016. World's soils are under
- 520 threat. Soil 2, 79-82. doi: 10.5194/soil-2-79-2016
- 521 Mullan D, Vandaele K, Boardman J, Meneely J, Crossley LH. 2016. Modelling the effectiveness

- 522 of grass buffer strips in managing muddy floods under a changing climate. Geomorphology
- 523 102–120. doi: 10.1016/j.geomorph.2016.07.012

524 Nunes JP, Seixas J, Keizer JJ. 2013. Modelling the response of within-storm runoff and erosion

- 525 dynamics to climate change in two Mediterranean watersheds: A multi-model, multi-scale
- 526 approach to scenario design and analysis. Catena 102, 27-39. doi:
- 527 10.1016/j.catena.2011.04.001
- 528 Orr BJ, Cowie AL, Castillo Sanchez VM, Chasek P, Crossman ND, Erlewein A, Louwagie G,
- 529 Maron M, Metternicht GI, Minelli S, Tengberg AE, Walter S, Welton S. 2017. Scientific
- 530 Conceptual Framework for Land Degradation Neutrality. A Report of the Science-Policy
- 531 Interface. United Nations Convention to Combat Desertification (UNCCD), Bonn, Germany.
- 532 ISBN 978-92-95110-42-7 (hard copy), 978-92-95110-41-0 (electronic copy).
- 533 Paroissien J-B, Darboux F, Devillers B, Mouillot F, Raclot D, Le Bissonnais Y. 2015. A method
- 534 for modelling the effects of climate and land use changes on erosion and sustainability of soil in
- 535 a Mediterranean watershed (Languedoc, France). Journal of Environmental Management 150,
- 536 57-68. doi: 10.1016/j.jenvman.2014.10.034
- 537 Peel, M.C., Finlayson, B.L., McMahon, T.A. 2007. Updated world map of the Köppen-Geiger
- 538 climate classification. Hydrology & Earth System Sciences, 11, 1633–1644.
- 539 Prosdocimi, M., Cerdà, A., Tarolli, P., 2016. Soil water erosion on Mediterranean vineyards: a
- 540 review. Catena 141 (2016), 1–21.
- 541 Raclot D, Le Bissonnais Y, Annabi M, Sabir M, Smetanova A. 2018. Main issues for preserving
- 542 Mediterranean soil resources from water under global change. Land Degradation &
- 543 Development 29, 789–799.
- 544 Raclot D, Le Bissonnais Y, Louchart Y, Andrieux P, Moussa R, Voltz M. 2009.Soil tillage and
- 545 scale effects on erosion from fields to catchment in a Mediterranean vineyard area. Catena 66,
- 546 198-210.
- 547 Ramos MC, Martínez-Casasnovas JA. 2007. Soil loss and soil water content affected by land
- 548 levelling in Penedès vineyards, NE Spain. Catena 71, 210–217.
- 549 Ramos MC, Martínez-Casasnovas JA. 2010. Effects of field reorganisation on the spatial
- 550 variability of runoff and erosion rates in vineyards of Northeastern Spain. Land Degradation &

- 551 Development 21, 1–12.
- 552 Ramos MC, Benito C, Martínez-Casasnovas JA. 2015. Simulating soil conservation measures
- 553 to control soil and nutrient losses in a small, vineyard dominated, basin. Agriculture,
- 554 Ecosystems & Environment, 213, 194–208.
- 555 Rodrigo-Comino J, Iserloh T, Morvan X, Malam Issa O, Naisse C, Keesstra SD, Cerdà A,
- 556 Prosdocimi M, Arnáez J, Lasanta T, Concepión Ramos M, Marqués MJ, Ruiz-Colmenero M,
- 557 Bienes R, Ruiz Sinoga JD, Seeger M, Ries JB.2016. Soil Erosion Processes in European
- 558 Vineyards: A Qualitative Comparison of Rainfall Simulation Measurements in Germany, Spain
- and France. Hydrology 3, 6. doi:10.3390/hydrology3010006
- 560 Rodríguez-Blanco ML, Arias R, Taboada-Castro MM, Nunes JP, Keizer JJ, Taboada-Castro T.
- 561 2016. Potential Impact of Climate Change on Suspended Sediment Yield in NW Spain: A Case
- 562 Study on the Corbeira Catchment. Water 8, 444. doi: 10.3390/w8100444
- 563 Rodriguez-Lloveras X, Buytaert W, Benito G. 2016. Land use can offset climate change induced
- 564 increases in erosion in Mediterranean watersheds. Catena 143, 244-255. doi:
- 565 /10.1016/j.catena.2016.04.012
- 566 Ronfort C, Souchère V, Martin P, Sebillotte C, Castellazzi MS, Barbottin A, Meynard JM, Laignel
- 567 B. 2011. Methodology for land use change scenario assessment for runoff impacts: A case
- 568 study in a north-western European Loess belt region (Pays de Caux, France). Catena 86, 36–
- 569 48. doi:10.1016/j.catena.2011.02.004
- 570 Routschek A, Schmidt J, Enke W, Deutschlander T. 2014a. Future soil erosion risk Results of
- 571 GIS-based model simulations for a catchment in Saxony/Germany. Geomorphology 206, 299-
- 572 306. doi: 10.1016/j.geomorph.2013.09.033
- 573 Routschek A, Schmidt J, Kreienkamp F. 2014b. Impact of climate change on soil erosion A
- 574 high-resolution projection on catchment scale until 2100 in Saxony/Germany. Catena 121, 99-
- 575 109. doi: 10.1016/j.catena.2014.04.019
- 576 Serpa D, Nunes JP, Santos J, Sampaio E, Jacinto R, Veiga S, Lima JC, Moreira M, Corte-Real
- 577 J, Keizer JJ, Abrantes N. 2015. Impacts of climate and land use changes on the hydrological
- 578 and erosion processes of two contrasting Mediterranean catchments. Science of Total
- 579 Environment 538, 64–77. doi: 10.1016/j.scitotenv.2015.08.033

- 580 Sherriff SC, Rowan JC, Fenton O, Jordan P, Melland AR, Mellander P-E, Ó hUallacháin D.
- 581 2016. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural

582 Watersheds: Implications for Watershed Scale Sediment Management. Environmental Sciences

583 & Technology, 50, 1769-1778. doi: 10.1021/acs.est.5b04573

- 584 Smetanová A, Paton E, Maynard C, Tindale S, Fernandez-Getino A-P, Marques MJ, Bracken L,
- 585 Le Bissonnais Y, Keesstra S. 2018. Stakeholders' perception of the relevance of water and
- 586 sediment connectivity in water and land management. Land Degradation & Development, doi:
- 587 10.1002/ldr.2934
- 588 Smetanová A, Le Bissonnais Y, Raclot D, Nunes JP, Licciardello F, Le Bouteiller C, Latron J,
- 589 Rodríguez-Caballero E, Mathys N, Klotz S, Mekki I, Gallart F, Solé Benet A, Pérez Gallego N,
- 590 Andrieux P, Moussa R, Planchon O, Marisa Santos J, Alshihabi O, Chikhaoui M., Follain S.,
- 591 2018. Patterns of temporal variability and time compression of sediment yield in small
- 592 Mediterranean catchments. Soil Use & Management 34, 388-403. doi: 10.1111/sum.12437.
- 593 Souchère V, King D, Daroussin J, Papy F, Capillon A. 1998. Effects of tillage on runoff
- 594 directions: consequences on runoff contributing area within agricultural catchments. Journal of
- 595 Hydrology 206, 256-267.
- 596 Souchère V, Millair L, Echeverria J, Bousquet F, Le Page C, Etienne M. 2010. Co-constructing
- 597 with stakeholders a role-playing game to initiate collective management of erosive runoff risks at
- the watershed scale. Environmental Modelling & Software 25, 1359–1370.
- 599 Stroosnijder, L. 2005. Measurement of erosion: Is it possible? CATENA, 64, 162-173
- 600 The Global Mechanism of UNCCD. 2016. Achieving Land Degradation Neutrality at the Country
- 601 Level: Building Blocks for LDN Target Setting. Bonn, Germany. ISBN 978-92-95110-31-1

Figure description:

Figure 1. Study area (A), land use (B), and landscape structures (C)

Figure 2: Flowchart of numerical experiment in LandSoil. Model inputs were digital elevation model, dynamic soil properties, seven land management scenarios, and rainfall. Two temporal (long-term, single event) and two spatial dynamics (internal and external) were considered. Red triangle indicates management priorities of a farmer, inverted red triangle priorities of a watershed manager. Outputs related to internal (v) and external (inverted v) catchment dynamics were produced for each scenario.

Figure 3. Land management allocation matrix.

Figure 4. The full 30 years of precipitation data plotted over time. First 20 years (red frame) are empirically measured rainfall events in Roujan (1992-2012), while the last 10 years are extension of the empirical dataset. The red star represents the amount of rainfall during the extreme event (435 mm/24h) measured in Perpignan in 1915.

Figure 5. Internal catchment dynamics under current land use and landscape structure (BLUS) A: Land use and landscape structure, B-F: Erosion and deposition: (B) after 30 years of normal rainfall conditions, (C) after an extreme event in January, (D) after an extreme event in October. (E) internal catchment dynamics in year (indicated by number) when sediment export by the long-term rainfall series matches that of an extreme event in January, and (F) same as E, but for an extreme event in October. An elevation change legend (bottom right) shows deposition as positive, erosion as negative, and anything < 10^{-12} m and > -10^{-12} m as "no erosion, no deposition".

Figure 6. Internal catchment dynamics in one selected catchment segment

Land use and landscape structure(A), and erosion and deposition on different time scales (B-F) under different scenarios (indicated by rows) are shown in the selected catchment segment (locator figure, left bottom). Time scales: (B) 30 years under normal rainfall conditions, (C) an extreme event in January, and (D) an extreme event in October. In columns E and F, internal catchment dynamics are shown for the year when catchment outlet sediment export under long-term rainfall series met that of an extreme event (E) in January and (F) in October.

Baseline scenario (B) represents steady production under current land use (LU) and landscape structure (S). More intensive (I) production than steady production is represented by ILU, ILS, ILUS scenario, less intensive (E) production by ELU, ELS, ELUS.

An elevation change legend (bottom right) shows deposition as positive, erosion as negative, and anything $<10^{-12}$ m and $> -10^{-12}$ m) as "no erosion, no deposition".

Figure 7. External catchment dynamics

(A) Area specific sediment yield at the catchment outlet (10⁻² Mg·km⁻²) over 30 years. (B) Comparison between sediment delivery over long-term (30 years) and extreme events in January (arrow). Baseline scenario (B) represents steady production under current land use (LU) and landscape structure (S).
More intensive (I) production than steady production is represented by ILU, ILS, ILUS scenario, less intensive € production by ELU, ELS, ELUS.

Figure 8. Land management effect on land degradation under different scenarios and temporal scales. Area-specific sediment budget within landscape management (10⁻² Mg·km⁻²) is plotted for long-term (30 years, x-axis), and an extreme event in January (y-axis). Erosion is plotted in red and orange, deposition in green and blue.

Baseline scenario: (A) land use and (B) landscape structure

```
    vineyards - mechanical weeding 
    fuit trees
    vineyards - chemical weeding 
    scubland
    annual crops - tillage
    mannual crops - no tillage
```


		Narrative				
I	Management	Stationary production (B)	More intensive production (I)	Less intensive production (E)		
	Area: vineyards and crop					
Landuse (LU)	Area: chemical weeding					
	Area: no tillage					
	Field unit surface			I		
Landscape	Linear structure density		•			
structure (LS)	Downslope tillage direction					
	Area: grass strips		-			

Scenarios were build according to three narratives: (B) – stationary production (representing current conditions), (I) more intensive production and (E) less intensive production than current conditions. Land use (LU) and/or landscape structure (LS) management was modified by increase (↑) or decrease (↓) in total area, and change in spatial allocation of LU and/or LD management in comparison with stationary production (-). The abbreviations of resulting seven scenarios (BLUS, ILU, ILS, ILUS, ELU, ELS, ELUS) indicate the narrative (B, I, S) and management (LU, LS, or LUS- both LU and LS). Detailed rules on allocation are in David et al. (2014). Spatial allocation of BLUS is plotted in Figure 5A (BLUS), and remaining scenarios in Supplementary Info 1.1A-1.6A.

Erosion

Accumulation.

pathway - vegetated soil

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 years

♦ fruit tree

ograss strip oroad

Table 1. Mean soil loss for the catchment and soil export at catchment outlet under each scenario

	Long-term erosion			Extreme event in							
				January			October				
	Mean soil loss*	Soil export at outlet		Mean soil loss*	I Soil export at outlet		Equal	Mean soil loss*	Soil export at outlet		Equal
	10 ⁻³ m	Mg	10 ⁻² Mg∙km ⁻²	10⁻³m	Mg	10 ⁻² Mg∙km ⁻²	years	10 ⁻³ m	Mg	10 ⁻² Mg⋅km ⁻²	years
BLUS	0.69±38.97	856.11	9.02	0.62±2.71	762.10	8.03	26.7	0.04±1.55	46.16	0.49	1.6
ILU	7.05±80.47 1.73±35.69	2135.83	91.70 22.51	0.99±2.16	1216.83	21.05 12.82	6.9 17.1	0.09±0.74	1456.43	15.35	5.0 1.6
ILUS	9.17±52.68	11309.58	119.20	1.89±3.44	2334.57	24.60	6.2	1.17±3.26	1445.42	15.23	3.8
ELU	0.62±25.16	769.80	8.11	0.50±2.01	614.55	6.48	23.9	0.07±1.16	88.06	0.93	3.4
ELS	0.38±35.01	469.59	4.95	0.33±3.10	412.83	4.35	26.4	0.03±1.38	36.87	0.39	2.4
ELUS	0.36±19.43	449.81	4.74	0.26±2.47	318.81	3.36	21.3	0.05±1.35	57.60	0.61	3.8

 ELUS
 0.36±19.43
 449.81
 4.74
 0.26±2.47
 318.81
 3.36
 21.3
 0.05±1.35
 57.60
 0.61
 3.8

 *- mean calculated based on raster cells, ± indicates standard deviation. Mean soil loss is also referred to as internal catchment dynamics in the text. Soil export is also referred to as external catchment dynamics in the text. **- number of years in which catchment outlet sediment export over long-term rainfall matched that of extreme events; BLUS-steady production - baseline land use and landscape structure. I-more intensive production than B. E-less intensive production than B; 10⁻² Mg·km⁻² equals t/ha