Sigb and agra regulation in listeria monocytognes: effect on survival in soil/rhizosphere under biotic and abiotic conditions
Catarina Marinho, Dominique Garmyn, Laurent Gal, Conor O’Byrne, Pascal P. Piveteau

To cite this version:

HAL Id: hal-01999084
https://institut-agro-dijon.hal.science/hal-01999084
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ouétrangers, des laboratoires publics ou privés.
FEMS7-1152
Environmental Microbiology/Microbial Ecology /Microbial Communities - Part II

SIGB AND AGRA REGULATION IN LISTERIA MONOCYTOGENES: EFFECT ON SURVIVAL IN SOIL/RHIZOSPHERE UNDER BIOTIC AND ABIOTIC CONDITIONS
C. Marinho¹,², D. Garmyn², L. Gal³, C. O'Byrne¹, P. Piveteau²
¹National University of Ireland- Galway, Department of Microbiology, Galway, Ireland
²Univ. Bourgogne Franche-Comté, Agroecologie- INRA, Dijon, France
³AgroSup- Dijon, Agroecologie- INRA, Dijon, France

Backgrounds

Listeria monocytogenes is the agent of listeriosis, a life-threatening condition in at-risk people. Complex transmission routes between outdoor environments and the food chain result in foodstuff contamination. Sensing of environmental changes can trigger regulation of gene expression, allowing bacteria to adapt their physiology and survive. The Agr cell-cell communication system transcription regulator AgrA is triggered during several environmental conditions including soil, an important reservoir of L. monocytogenes. The RNA polymerase σ^B factor aids survival in several stress conditions and may be required for L. monocytogenes survival in the soil environment.

Objectives

This study aims to investigate the involvement of AgrA and σ^B in the regulatory network of L. monocytogenes during saprophytic life in soil and rhizosphere according to the background biotic environment.

Methods

A collection of in-frame deletion mutant strains (ΔagrA, $\Delta$$\sigma^B$ and ΔagrA+$\Delta$$\sigma^B$) was constructed from parental L. monocytogenes EGD-e. Strains were inoculated into clay soil mesocosms at different water holding capacities and with or without background microbiota. Kinetics of strains survival was followed during incubation for 14 days. Growth was investigated in the rhizosphere of Festuca arundinacea plants *in vitro*. One-week kinetics of strains survival was performed during incubation into climatic chamber.

Conclusions

Depending on the incubation conditions, the fitness of the deletion mutants were affected. During its saprophytic life in soil habitat, L. monocytogenes have to cope with ever-changing environmental conditions and adapt in order to sustain life. Integration of various stimuli results in a coordinated response including communication and stress response systems through AgrA- and σ^B-mediated regulation.