
HAL Id: hal-01875662
https://institut-agro-dijon.hal.science/hal-01875662v1

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ACTIVe3D-WS: a Web-services based multimedia
platform

Jean-Claude Simon, Christophe Cruz, Christophe Nicolle

To cite this version:
Jean-Claude Simon, Christophe Cruz, Christophe Nicolle. ACTIVe3D-WS: a Web-services based
multimedia platform. Fourth International Symposium on Multimedia Software Engineering, Dec
2002, Newport Beach, United States. �10.1109/MMSE.2002.1181597�. �hal-01875662�

https://institut-agro-dijon.hal.science/hal-01875662v1
https://hal.archives-ouvertes.fr

ACTIVe3D-WS: a Web-services Based Multimedia Platform

Jean-Claude Simon, Christophe Cruz, Christophe Nicolle
Laboratoire Le2i

Aile des Sciences de l’Ingénieur
Université de Bourgogne

BP 47870 – 21078 Dijon Cedex – France

Abstract
In this paper, we present ACTIVe3D-Build, an
electronic platform for the management of civil
engineering projects. This platform is the result of a
research that aims to represent semantics of computer
graphics modeling within a relational database. The
final goal is to provide Web-services on this platform to
allow the development of distributed applications using
our technology for storing and extracting 3D-scenes
from our relational databases.

1. Introduction.

The 3D graphics computations require both complex
software and high-performance hardware. Moreover, a
large number of applications need to process more than
one file at the same time. Sending these files over the
Internet and displaying them at a client’s computer is not
possible without the use of dedicated language such as
VRML (Virtual Reality Modeling Language) [16].
VRML allows to create 3D-scenes, and to navigate in
these scenes using an Internet browser with an appropriate
plug-in. Nevertheless, the manipulation of theses files is
not easy due to the complexity of the VRML structure. In
order to solve this problem, a new language has been
developed by the W3C [20] for building 3D-Scenes: X3D
(eXtensible 3D). X3D is based on XML where 3D-Scenes
are represented as XML documents. The tree structure of
XML allows us to manipulate and decompose the 3D-
Scenes into basic elements corresponding to 3D
primitives. Nevertheless, this representation does not
allow computer graphic algorithms to manipulate many
scenes at the same time.

In this article, we present an electronic platform, the
ACTIVe3D-Build (Figure 1) [1], for the management of
civil engineering projects. This web-based platform
allows all participants of a project (electrician, plumber,
etc.) to directly use and exchange documents in the

projects via a simple Web browser. Moreover, a 3D-
visualization of a building that is generated from
databases allows each participant to move around in the
building being designed. In this 3D-environment, players
will be able to query all objects that compose the building
and thus obtain information about them from the IFC
database. The IFC contains business information
describing the civil engineering project.

Figure 1: electronic platform

This platform is the result of a research that aims to
represent semantics of computer graphics modeling
within a relational database [3]. The semantic modeling is
involved at two levels. The first level corresponds to
creation of two databases, the first one stocking the IFC,
and the other one stocking compositions of 3D scenes.
The second level represents the association of the
semantics of the IFC with 3D-elements of the 3D
database. In order to permit this association, we represent
all information (IFC, 3D scenes and management
information) as XML trees.

The decision-makers of the company wish to sell some
business skills developed on this platform. The final goal
is to provide Web-services on this platform to allow the
development of distributed applications using our
technology for storing and extracting 3D-scenes from our
relational databases (Figure 2). In this paper, we present

the architecture and processes to build Web-services from
an information system. We applied this method to our
platform: transforming 3D databases extraction and
insertion business skills in Web-services.

Figure 2: 3D scenes viewer

2. Web-services overview.

The Web-service is usually considered as a set of
layers contained in a stack. These layers are dynamically
defined following the user needs and are called through a
set of Internet protocols. These protocols are different
depending from the various architectures proposed in the
literacy [4, 5, 6, 8, 9, 10, 19]. However, in all Web-
services architecture, a pivot set of protocols is always
used. This pivot set is composed of: SOAP [13], WSDL
[18] and UDDI [15]. These protocols allow the discovery,
description and the communication between Web-
services.

SOAP (Simple Object Access Protocol) is a
mechanism using XML for the exchange of structured and
typified information between several actors in a
decentralized and distributed environment. WSDL (Web
Services Language Description) uses XML syntax to
describe the methods and parameters of the Web-services.
UDDI (Universal Description, Discovery and Integration)
makes it possible to find and publish Web-services over
the Internet. It is a global dictionary of Web-services.

All proposed solutions to defined Web-services are
based on XML [21]. XML (eXtended Markup Language)
is an open textual language, providing data with structural
information and relative semantics [11]. Moreover,
beyond its ability to separate the content and the
presentation, XML has become the standard of data
exchanges on networks.

Usually Web-services can be developed using
technologies like Java, CORBA [2] and .NET [25]. Java
XML Pack is Sun’s [7] effort to encapsulate the various
standards in the Java space. This pack, containing a
collection of Java APIs for XML, is designed to support
the standard APIs for Web services including SOAP,

XMLP, WSDL, and UDDI. JAXP (Java API for Parsing)
covers SAX (Simple API for XML) [23], DOM
(Document Object Model) [22], and XSLT [24]. JAXB
(Java API for XML Binding) is a mechanism for
compiling XML data type definitions into Java classes
capable of reading XML into Java objects and writing
them back out again. JAXM (Java API for XML-based
Messaging) is a SOAP-based protocol for sending
messages. JAXR (Java API for XML Registries) is a
specification that provides a unified interface for UDDI
and ebXML registries, and conceivably other registries.
JAX-RPC (Java API for XML-based Remote Process
Communication) is a SOAP-based protocol for requesting
operations on remote servers.

3. A building solution for the Web-services.

To build a set of Web-services, first it is necessary to
define which services the company wants to sell. Usually
the Web-service is the electronic representation of a
specific business skill. The Web-service is considered as
an abstract and behavioral view of the information
system. In this section, we present a method to build
automatically the programming base of Web-services.
This method is articulate in three steps: Business skill
definition, the low-level Web-service building, and the
high-level Web-service building.

The Business skill definition step defines the set of
business skills the company want to sell. This definition is
made in three steps: The strategic step, the analysis step
and the normalization step.

The strategic step concerns the political and
management orientations. This level concerns the
decision-makers. At this end of this level, a set of Web-
services purposes is defined with corresponding
development teams and pacification. “Use Case
Diagrams” of UML are used to define the needs.

The analysis step concerns all static and dynamic
aspects of the information systems, which are analysis
and conceptually reorganized following the Web-services
purposes.

The normalization step concerns the definition of
norms, standards and planning for the development of
Web-services.

The low-level Web-service building step is the
intermediate layer in the Web-service building process. It
corresponds in the translation of conceptual view of the
information systems defined in the first step into a set of
classes, attributes, links, and methods. Generally, the view
of the schema, which corresponds to the business skill,
can be directly transformed into Java Classes. The Classes
contains attributes defines in the table and methods to
create objects from an extraction of the databases or to
store objects as table instances. Thus, at this end of this
step, all views are transforming in Java Classes. These

classes form the programming base to develop the Web-
services independently from the existing systems.

In our environment, we start from the X3D grammar,
which is converted into a relational schema. From this
schema, we generate java classes allowing the
manipulation of 3D-Data.

<element name= “TextureTransform“>
 <type content= “empty”>
 <attribute default = “0 0 0“ name = “center”/>
 <attribute default = “0 0 0“ name = “rotation”/>
 <attribute default = “1 1 1“ name = “scale”/>
 <attribute default = “0 0 0“ name = “translation”/>
 <attribute name = ”DEF” type =”ID”/>
 <attribute name = ”USE” type =”IDREF”/>
 </type>
</element>

Script 1. Grammar of element

“TextureTransform”

For example, the “TextureTransform” element

represented in Script 1 is translated into a
“TextureTransform” Table where all attribute element
become attribute of the table. An identifier attribute is
automatically generated during the process.

TextureTransform (TextureTransform _id, center,
rotation, scale, translation, id, idref)

At the low-level web-services building, this

“TextureTransform” table is automatically converted into
a java class “TextureTransform“. The composition of this
class is presented in Script 2. At this level, we have
developed a tool, which generate automatically the
creation script of the X3D database and classes. These
classes are connected automatically to the database. This
tool is the core of our low-level Web-service building. It
is an API, which gives us methods to create, update and
manipulate X3D databases without SQL queries.

In the high-level Web-service building, the
development team builds the Web-services. For this, they
build a “Class Diagram” of UML. This diagram contains
classes, which are derived from ones defined in the
previous step. Thus, the code for the database access and
the attribute are reused. The resulting Class Diagram is
directly transformed as Java classes organized in a Java
applet. Moreover, the XML-Schema grammar of the
Class Diagram is generated. The Web-services export
their results as XML documents.

In our solution the extraction and insertion web-
services presented below are composed of 543 java
classes, which are composed of abstract classes and X3D
element classes. We have also high-level classes, which
permit high queries on the databases as operations of joint

between tables, or operations of selection on tuples
according to attributes values.

public class TextureTransform extends X3DObject{
//private attributes
private String TextureTransform _id;
private String center;
private String rotation;
private String scale;
private String translation;
private String id;
private String idref;
//constructor
public TextureTransform (String

TextureTransform _id){
//this constructor seeks information in the database
… }
public TextureTransform (String center, ….) {…}
public TextureTransform () {…}
//access methods
public String getTextureTransform _id(){…}
public String setTextureTransform _id(String){…}
…
public boolean storeDB(){
//this method update database } }

Script 2. Class “TextureTransform”

In this section, we present (chart 1) the performance

evaluating of the X3D database (insertion and extraction).
The source files are VRML files. These tests are made
without database or network optimization The following
tests concern 1/ the time to convert a VRML file into a
X3D document, to create the corresponding insertion
script, and to execute this scrip in the database, 2/ the time
to extract data and build a X3D document from the
database.

File Size
(in Kb)

315 1962 4039 8767

Creation of the
Insertion Script

1’ 4’ 5’ 40’

Insertion
Script Running

6’ 25’ 30’ 25’

Extraction of
the X3D scene

15’ 1’’20’ 2’’20’ 2’’05’

Chart 1. Results of process

These results show that times of process depend on two

criteria: The size of the file and the structure of the scene.
For this last point, the scene 4 contains less tag than the
scene 3. Nevertheless, its size is more important. The
graphic elements are described by a set of points rather
than a set of primitives (cube, sphere, etc.) Some elements
of the scene 4 possess more than 15000 characters. We
note that the extraction times are very important in

relation to the insertion times. It is owed to the Oracle
optimizer that detects the best path in the database schema
and then rewrites the query before executing it.

4. ACTIVe3D Web-services architecture.

The ACTIVe3D-Build architecture consists of three
distinct layers based on XML (Figure 3): the “Data” layer
stores information generated during the life of a civil
engineering project. Moreover, this layer stores XML
documents in the specific relational databases. The
“Broadcast” layer provides the distributed communication
support of information sharing through the Internet
network. The “Behavioral” layer provides mechanisms of
the information process. This layer is a set of Java Classes
that manipulate several XML streams between databases.

Figure 3: The ACTIVe3D-Build architecture

The “Data” layer consists of three relational databases
(Figure 3: Management, IFC and X3D). The Management
database contains all information about all the participants
(professional information: roles, rights and actions in the
project). Furthermore, it contains all information about
documents that are exchanged during the life of the

project (creation date, release date, information updates,
deletion date, etc.) The IFC and X3D databases are used
to store information usually kept in ASCII monolithic
files. An analysis method developed by our team has
permitted to convert these files into a relational format
(primary keys, simple and mono-valued attributes, foreign
keys). The set of databases represents more than 500
tables to store management, IFC and X3D data. The use
of databases instead of files permits an increased
flexibility of manipulation and avoids problems of the
volume of file sizes when transferring files through the
network. The IFC database is generated from the XMLifc
language of the IAI. This language is a translation of the
XML schema that contains production rules of the IFC
files corresponding to the STEP specification [14]. The
database X3D is generated from the XML schema of the
X3D, which has been developed by the Web3D
Consortium [17]. X3D is the XML translation of the
VRML language.

The “Behavioral” layer is composed of three Java
packages. The first Java package manipulates
management information. A Java class is defined for each
table of the relational schema in the Management
database. Java objects are initialized from the database
(extraction process) or by data inserted by the user
(insertion process). This module is called Management
Interface module (MI in the Figure 3). The second Java
package permits to manipulate IFC. It is named the IFC
Interface module (II in the Figure 3). The third Java
package is intended for manipulation of X3D scenes. It is
the Scene Access Interface module (called SAI in the
Figure 3). We developed our own SAI module that is
derived from the more recent Schema X3D [12].

The “Broadcast” layer is structured as a Client-
Server. On the client side, a Java applet is used as a SOAP
client. On the server side, a Java server is used. The
architecture is developed entirely in Java. The
communication between the client and the server is
carried out using SOAP. SOAP uses the protocol HTTP to
exchange the XML files and to bridge the gap of the
firewalls. This Web-services oriented architecture makes
the XML documents exchange easier than the previous
developed architecture. This last one used a secured
object stream between the server and the client whom
involve problems with firewalls, proxy, etc. Both the
client and the sever use a common ACTIVe3D interface
that regroups the three interfaces (MI, II, SAI).

5. Application to our multimedia platform.

To illustrate this paper, we present two business skills
in our company. First, we create object model from XML-
Schemas written in Java and also relational data model for
relational databases. Those methods allow generic
generation of structures for memory or database

manipulation. Second, we create API, with the help of
JDBC, for data’s persistence. This API is a bridge
between data memory model and database model. Thus, a
constructor who seeks information in the database
initializes Java objects. Moreover java objects are backed
up in the database by calling storing methods. JDBC is an
API that lets you access virtually any tabular data source
from the Java programming language. It provides cross-
DBMS connectivity to a wide range of SQL databases.
This technology allows realization of complex data’s
manipulation as well in memory as into databases.

Now, we focus on 3D services, which are proposed as
Web-Services. First one is 3D storing-Service and second
is 3D Extraction Services.

5.1. 3D-storing service.

The storage process of an X3D document requires two
steps. The first consists in carrying out a memory model
of a document XML called X3D memory model
(X3DMM). A parser SAX realizes this translation. We
define for that an XMLHandler, which gives the
translations rules of the X3D document elements into Java
object. The Java classes, which allow definition of
X3DMM, are generated from X3D grammar. The second
step stores the X3DMM into database. This one resides in
an easy way of programming using the recursively. The
element root starts the algorithm while being stored in the
data base then sends the command to each one of these
children, so that they do as much of it and so on.

Once scenes are stored in the database, it is very
simple to manipulate them with SQL queries (of with
X3DMM). Values of all scene attributes can be modified.
Insertion, modifications and deletions of 3D objects in
several scenes can be performed simultaneously. It is
possible to make all the attributes of scenes evolve
dynamically such as to modify the coordinates of light
source in a scene by simple SQL queries.

The 3D-storing service is a Web-service based on the
business skill that store VRML or X3D files into a
relational database. This section presents first, the
mechanism of the business skill, and next the translation
of this business skill as a Web-service.

The storage step being realized (Low-Level web-
service building), it is advisable to set up the Web
Service. This consists in the evolution of the class
Diagram to build an EJB (Enterprise Java Bean) allowing
the insertion from the web (high-level web service
building).

5.2. 3D-Extraction service.

The extraction process is based on the same procedures
as the insertion process.

First of all, it is necessary to know what it is possible

to extract from the X3D database. For that a simple
interrogation of the base makes it possible to know
identify it each scene contained. It is also possible to thus
select an element according to his name, and of carried
out a catalogue of object 3d. Once the given element root,
as is identifier, it is possible to initialize a Java object,
which extracts information from the element. This object
launches the recursive extraction call to carry out a
X3DMM of the under tree X3D. To generate the X3D
document, the same recursive method is used. The
element root writes in a buffer the values of these
attributes, and then launches the extraction command to
each child. Once arrived at the end of the algorithm, the
buffer is transmitted in a flow of file. Then a style sheet is
applied to this X3D document maps it into a VRML file.

The extraction process is not limited to the display of
3D-scenes. The SQL extraction queries can also
manipulate objects appearing in scenes. Inside the
database, the scenes are not stored as a single file but they
are decomposed into many tables corresponding to all
components composing the scenes. One of the advantages
of this organization is the possibility of extraction of
objects shared by several scenes. Thus, many scenes can
be modified at the same time. Instead of interrogating
different stages one by one, it is sufficient to use one SQL
query to modify objects composing the scenes stored in
the database.

A scene is modeled as a tree. In addition, objects
themselves are represented as trees. An object contains a
number of components. For example, a table consists of a
tray and four legs. It is possible to define appearance
attributes for each of these elements or for broadly
speaking of all elements. In fact, a tag called «Shape»
which contains the physical and visual descriptions of an
object defines 3D objects: its dimensions, its color, etc.
Therefore, it is possible to define a name for every
“Shape” tag. With this name, it is possible to access the
elements and features of an object. The modification of
attributes is performed by SQL queries. In the below, we
give several examples of SQL queries that allow to
manipulate scenes.

Select Shape_id, DEF SHAPE from SHAPE
where DEF is not NULL;

This request permits to select all Shape tags that
compose all scenes stored in the database and to display
certain features when DEF attributes of Shape is not Null.
In the following query, we update a specific instance of
“Material” tag by changing the value of its transparency
attribute.

update Material set TRANSPARENCY = '0.3'
where material_id =’10’ ;

The major advantage of this method lies in the fact that

such a modification operates either on a selected scene or
on all scenes in the databases. The automatic execution of
the modification reduces the cost of manipulation of
scenes.

The construction of the 3D-Extraction Web-Service
reuses the low-level 3D-Insertion Web-Service building
because the same tables are manipulated. This Web-
Service exports its results as X3D documents which are
converted in VRML or other structures using XSL. A Set
of specific method is defined for the partial extraction of
3D objects from the scenes. Currently, we are developing
an interface allowing a final user to query directly the
scenes through a Web-service using a set of parameters.

6. Conclusion and future work

In this article, we have presented a method of
modeling and storing of 3D-scenes in a relational
database. We use the X3D language as an underlying
model. This language, based on the XML standard, is
compatible with VRML. We have constructed a
functional architecture of insertion and extraction of 3D-
scenes into and from a database. This architecture permits
us to manipulate 3D-scenes by SQL queries.

In the setting of an industrial project, we currently
strive to set up an interoperability architecture that
associates our 3D-database with standard databases. The
final objective is to build an Internet environment.

To achieve this goal, we use Web-services. These
Web-services give access the database transparent of way
for the users. We will develop the use of the standards,
which constitute the pivot set of the Web-services. The
next step will be the use of WSDL and the creation of a
directory UDDI. This directory will be a Web-service,
which will be to implement into Java and with the DBMS
managing our three databases (Management, IFC and
X3D). An axis of significant development will be the
Web-services security. Initially, we will modify our
architecture by replacing protocol HTTP by its secured
version (HTTPS). After, a solution to this problem
includes encryption technologies (like XML Encryption
[26]) and digital signature technologies (like XML
Signature [27]).

7. Bibliography.

[1] Active3D: http://www.active3d.net
[2] CORBA, http://www.corba.org
[3] Christophe Cruz, Christophe Nicolle, Marc Neveu,

ACTIVe3D : Interrogation de scènes 3D en SQL,
Medianet, 2002, Tunisie.

[4] HP web services platform: a comparison with hp e-speak
executive, 20001,
http://www.bluestone.com/downloads/pdf/espeak_webse
rvices.pdf

[5] IONA Technologies PLC, April 2002, White Paper
Orbix E2A XMLBus Edition Technology Overview,
http://www.xmlbus.com/learn/webserviceswp.pdf

[6] IBM Web Services Architecture Team, Web Services
architecture overview: The next stage of evolution for e-
business, by, September 2000,
ftp://www6.software.ibm.com/software/developer/library
/w-ovr.pdf

[7] Java XML Pack,
http://java.sun.com/xml/javaxmlpack.html

[8] Microsoft Developer Network, A Platform for Web
Services, by Mary Kirtland, January 2001.
http://msdn.microsoft.com/library/default.asp?url=/librar
y/en-us/dnwebsrv/html/websvcs_platform.asp

[9] Meta Group,
http://www.bea.com/events/integrate/pdf/METAParis.pd
f, 24 October, 2001, Dr. Bjorn Tuft Vice President
International Enterprise Architecture Strategies

[10] Judith M. Myerson, Web Service Architectures,
http://www.webservicesarchitect.com/content/articles/we
bservicesarchitectures.pdf

[11] W J Pardi, XML, in Action, 1999, Microsoft Press,
http://www.microsoft.com/france/mspress.

[12] X3D Scene Access Interface (SAI),
http://www.web3d.org/TaskGroups/x3d/sai/SceneAccess
Interface.html

[13] Simple Object Access Protocol (SOAP) 1.1, W3C Note
08 May 2000, http://www.w3.org/TR/SOAP/

[14] Standard for the Exchange of Product model data
(STEP): http://www.nist.gov/sc4/www/stepdocs.htm

[15] Universal Description, Discovery and Integration,
http://www.uddi.org/specification.html

[16] International Web3D specifications VRML97 Standard:
http://www.vrml.org/fs_workinggroups.htm

[17] Web3D Consortium: http://www.web3d.org
[18] Web Services Description Language (WSDL) 1.1; W3C

Note 15 March 2001, http://www.w3.org/TR/wsdl
[19] W3C workshop on Web services: Position papers11-12

April 2001 - San Jose, CA, USA,
http://www.w3.org/2001/03/WSWS-popa/

[20] The World Wide Web Consortium (W3C) develops
interoperable technologies: http://www.w3c.org

[21] Extensible Markup Language (XML) 1.0 (Second
Edition), W3C Recommendation 6 October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006

[22] Document Object Model (DOM),
http://www.w3.org/DOM/

[23] About SAX, http://www.saxproject.org/
[24] XSLT (1999). XSL Transformations (XSLT), Version

1.0, W3C Recommendation 16 November, 1999,
http://www.w3.org/TR/xslt

[25] What Is .NET?,
http://www.microsoft.com/net/defined/default.asp

[26] XML Encryption WG,
http://www.w3.org/Encryption/2001/

[27] XML Signature WG, http://www.w3.org/Signature/

View publication statsView publication stats

https://www.researchgate.net/publication/4004359

