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E N V I R O N M E N T A L  S T U D I E S

Biogeography of soil bacteria and archaea  
across France
Battle Karimi1*, Sébastien Terrat1*, Samuel Dequiedt1, Nicolas P. A. Saby2,  
Walid Horrigue1, Mélanie Lelièvre3, Virginie Nowak1, Claudy Jolivet2, Dominique Arrouays2, 
Patrick Wincker4, Corinne Cruaud4, Antonio Bispo2, Pierre-Alain Maron1,  
Nicolas Chemidlin Prévost-Bouré1, Lionel Ranjard1†

Over the last two decades, a considerable effort has been made to decipher the biogeography of soil microbial com-
munities as a whole, from small to broad scales. In contrast, few studies have focused on the taxonomic groups 
constituting these communities; thus, our knowledge of their ecological attributes and the drivers determining their 
composition and distribution is limited. We applied a pyrosequencing approach targeting 16S ribosomal RNA (rRNA) 
genes in soil DNA to a set of 2173 soil samples from France to reach a comprehensive understanding of the spatial 
distribution of bacteria and archaea and to identify the ecological processes and environmental drivers involved. 
Taxonomic assignment of the soil 16S rRNA sequences indicated the presence of 32 bacterial phyla or subphyla and 
3 archaeal phyla. Twenty of these 35 phyla were cosmopolitan and abundant, with heterogeneous spatial distributions 
structured in patches ranging from a 43- to 260-km radius. The hierarchy of the main environmental drivers of phyla 
distribution was soil pH > land management > soil texture > soil nutrients > climate. At a lower taxonomic level, 47 
dominant genera belonging to 12 phyla aggregated 62.1% of the sequences. We also showed that the phylum-level 
distribution can be determined largely by the distribution of the dominant genus or, alternatively, reflect the com-
bined distribution of all of the phylum members. Together, our study demonstrated that soil bacteria and archaea 
present highly diverse biogeographical patterns on a nationwide scale and that studies based on intensive and sys-
tematic sampling on a wide spatial scale provide a promising contribution for elucidating soil biodiversity determinism.

INTRODUCTION
Soil is the most complex environment on Earth and hosts huge bacte­
rial abundance and diversity with about 109 to 1010 cells and 105 to 106 
unique “taxonomic groups” in a single gram of soil (1). Numerous 
studies during the last decade have demonstrated the role of soil bac­
terial diversity (that is, richness, evenness, and community structure) 
in soil functions, such as nutrient cycling, pathogen management, 
degradation of pollutants, soil structure improvement, and stability 
of other ecosystem services to environmental changes [see (2) for a 
review]. Given the key role of soil microorganisms in the regulation 
of soil ecosystem functions, the environmental factors driving soil 
bacterial diversity need to be understood (3). A large body of data 
collected at various spatial scales suggests that the diversity and 
assemblages of soil bacterial and archaeal communities are mainly 
determined by soil properties (for example, pH, carbon content, 
texture), land management, climate, and plant cover (1, 3–6). How­
ever, the processes and drivers influencing the abundance of indi­
vidual bacterial and archaeal taxa are not clearly understood (7). Some 
microbial taxa are cosmopolitan and can be found in a large range 
of environmental conditions, whereas other taxa are more special­
ized and depend on a far more restricted range of environmental 
conditions. Unfortunately, the environmental drivers that shape each 

microbial taxon remain unidentified, which hampers our ability to 
predict their likely variations in a changing environment (3).

In this context, a pioneering study involving comparison of 71 
soil samples from a wide range of North American soil ecosystems 
demonstrated that bacterial taxa can be classified into ecologically 
meaningful categories based on copiotrophic and oligotrophic at­
tributes (8). Other more recent studies conducted on a broad spatial 
scale were focused on specific taxa, but less intensively than the re­
search reported here. For Actinobacteria, one of the dominant bacte­
ria in soils, abundance was shown to be primarily driven by latitude 
and secondarily by pH, whereas climatic factors did not have any 
influence (9). Other dominant phyla, such as Proteobacteria, Acido­
bacteria, Planctomycetes, Bacteroidetes, and Firmicutes, showed dif­
ferent sensitivities to pH, C/N ratio, and phosphorous content (10). 
Moreover, Verrucomicrobia and Gemmatimonadetes, two phyla less 
abundant in soils, were sensitive to land management and soil moisture, 
respectively (11). The main ecological filters for archaeal populations 
in soils were identified as the C/N ratio and organic carbon con­
tent (12). Together, these different studies showed that each phylum is 
associated with specific drivers, which emphasizes the need for precise 
investigation of the processes and drivers involved in their regula­
tion. It is now acknowledged that certain high-level bacterial taxa at 
high taxonomic levels (for example, phylum or subphyla) can display 
shared ecological characteristics since they respond predictably to 
environmental variables and carry important biological functions 
(13). However, most studies have been limited to a handful of taxa 
(usually a single phylum) and based only on a few tens of soil samples 
(14), thus limiting the generality of those abiotic parameters as driving 
microbial populations. In addition, soil samples were generally col­
lected in a more or less restricted area (10) or directed to a precise 
environmental issue, for example, along a steep precipitation gradient 
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(15). To tackle these limitations, it is crucial to better integrate all 
the dominant and minor taxa constituting the community, as well 
as a wide range of environmental parameters such as soil types, land 
management, climate, and geography. To reach this goal, one of the 
most promising strategies is to apply a strong sampling effort in 
terms of number of soils and microbial taxonomic analyses of the 
indigenous communities on a broad spatial scale.

We therefore conducted an investigation using a national soil 
survey, the French Soil Quality Monitoring Network [Réseau de 
Mesures de la Qualité des Sols (RMQS)], that covers the huge envi­
ronmental diversity across the whole of continental France (2173 soils, 
area covered ≈ 5.3 105 km2; Fig. 1) (16). The variations in bacte­
rial and archaeal phyla in all these soils were assessed by a pyrose­
quencing approach targeting 16S ribosomal RNA (rRNA) genes. A 
geostatistical approach was then used to map and compare the spa­
tial distribution of each identified phylum across France. A variance 
partitioning analysis was also applied to identify and rank the eco­
logical processes and environmental drivers involved in bacterial and 
archaeal phyla distribution. This approach enabled us to decipher the 
spatial distribution and environmental drivers of dominant and minor 
soil bacteria and archaea. Finally, to disentangle the phyla distribu­
tion in light of the ecology of groups identified at a lower taxonomic 
rank, we extended our analysis to the dominant genera detected and 
identified in French soils.

RESULTS
Ubiquity and dominance of bacteria and archaea
Among the 37 phyla (32 bacteria and 5 archaea) and 2028 genera in 
the SILVA database, the taxonomic assignment of the data set indi­
cated the presence of 32 bacterial taxa (encompassing 27 phyla and 
5 subphyla) and 3 archaeal phyla in sampled soils (Fig. 2) and 1355 
genera detected in at least two soils. Comparison of the average rela­
tive abundance and ubiquity of the 35 phyla recorded led to the 
definition of four groups: major, medium, minor, and rare phyla 
(Fig. 2 and fig. S1). The 15 phyla in the first two groups were recorded 
in all soils, with an average relative abundance ranging from 14 
to 0.5% of sequences per sample. Bacteroidetes, Alphaproteo­
bacteria, Actinobacteria, Planctomycetes, Firmicutes, Gammaproteo­
bacteria, Acidobacteria, and Betaproteobacteria are the most dominant 
and cosmopolitan phyla. In contrast, the rare phyla (for example, 
Chlamydiae, Thermotogae, and Fusobacteria) were detected in 
fewer than 50% of the soils, with less than 0.01% on average per soil 
sample (Fig. 2).

Among the 1355 genera referenced, only 47 exhibited an average 
relative sequence abundance greater than 0.5%. All these genera were 
considered dominant since, on average, they represented more than 
62% of the cumulated sequences per sample. These 47 dominant genera 
belonged to 12 phyla (Fig. 3 and table S4), previously described and 
classified as the major and medium phyla. The most abundant genus 

Fig. 1. Sampling design. Map of France and the systematic sampling grid (16 × 16 km) of the French Soil Quality Monitoring Network (RMQS) (16).
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was Holophaga, belonging to Acidobacteria, with an average relative 
abundance of 6.29% (table S4), and the 47th genus was Desulfobulbus, 
belonging to Deltaproteobacteria, with an average relative abundance 
of 0.52%. On average, these 47 genera occurred in 98.2% of the samples, 
and the least cosmopolitan in the sampling area (Ktedonobacter, mem­
ber of Chloroflexi) was found in 79.6% of the samples.

Mapping of bacteria and archaea
Maps of the 20 most representative phyla, identified in Fig. 2, were 
drawn by applying a geostatistical approach based on their relative 
abundance (Fig. 4, fig. S2, and table S2). In the linear models used 
for interpolation, R2 ranged from 0.04 to 0.29, revealing spatial 
structuring depending on the phylum. Each phylum exhibited a 
heterogeneous and spatially structured distribution, and three types 
of distribution patterns were distinguished for the different phyla, 
based on the size of the geographical patches that ranged from 43.3- 
to 260.2-km radius. Chloroflexi, Fibrobacteres, and Cyanobacteria 
exhibited the spottiest distribution with patches around 50-km radius, 
whereas Actinobacteria, Firmicutes, Gammaproteobacteria, Betaproteo­
bacteria, Nitrospirae, Chlorobi, and Elusimicrobia exhibited the patch­
iest distribution with patches larger than 200 km radius. The other 

10 phyla gave intermediate-sized patches of about 100- to 150-km radius 
(Fig. 4 and fig. S2).

The genera distributions were more spatially structured than the 
phyla distributions (Fig. 5, fig. S3, and table S4). The spatial models 
of 60% of the phyla showed an R2 greater than 10%, compared with 
80% of the genera. Three of the 47 genera (Gaiella, Phycisphaera, and 
Thermofilum) were not spatially structured, and the other 44 had 
significant spatial distributions with geographical patches ranging 
from 25- to 314.5-km radius. For seven phyla, the spatial distribution 
of the most abundant genus was sufficient to explain the spatial 
distribution of the phylum, for example, Holophaga for Acido­
bacteria, Terrimonas for Bacteroidetes, Bacillus for Firmicutes, and 
Sulfobococcus for Crenarchaeota (Fig. 5A). However, as illustrated by 
the Actinobacteria and Deltaproteobacteria phyla (Fig. 5B), the spatial 
distribution of the phylum was not systematically driven by the major 
genus but instead by the cumulative distributions of all the genera.

Relationship between environmental parameters and 
bacteria and archaea distributions
The total explained variance in phyla distribution ranged from 17% 
(Cyanobacteria) to 60% (Alphaproteobacteria and Bacteroidetes) 

Fig. 2. Representativeness of bacterial and archaeal phyla in French soils. Left: The proportion of sampling sites where phyla were present. Right: The average relative 
abundance of the phyla. The four groups were determined by ascendant hierarchical clustering (fig. S1). The statistical differences in the phyla distributions are indicated 
in table S1.
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(Fig. 6A and table S3). The residual variance (from 40 to 83%) indi­
cates that other parameters, not taken into account in our study, 
may also contribute to the distribution of bacterial and archaeal phyla 
in these samples. Total variance was partitioned between five types 
of explanatory sets: four sets of environmental parameters (soil prop­
erties, land management, climate, and interactions between envi­
ronmental properties) and one set of spatial descriptors [spatial 
location, elevation, and principal coordinates of neighbor matrix 
(PCNM) variables]. For 16 phyla, the influence of selection by 
soil type, land management, and their interactions was stronger 
than the influence of spatial descriptors (Fig. 5A). These selection 
processes influenced both the major and medium phyla, for exam­
ple, Bacteroidetes and Alphaproteobacteria, and the minor phyla, 
for example, Elusimicrobia and Fibrobacteres. Soil properties were 
a main factor in the selection process for 9 of these 16 phyla and 
explained 7.8 to 27.9% of the total variance. Land management was 
the main factor for two major and four minor phyla (from 8.0% 
of the explained variance for Gemmatimonadetes to 12.7% for 
Alphaproteobacteria; Fig. 6A). Finally, climate represented the weakest 
selective pressure (less than 3.2% of the explained variance) and con­
cerned only seven phyla (five minor and two abundant). In addition, 
interactions between environmental parameters explained between 
0 and 27.8% of total variance according to the phylum. On the 
other hand, spatial descriptors mainly explained the variations (from 
6.2 to 17.0%) of four phyla, two of which were dominants (that is, 
Betaproteobacteria and Firmicutes) and two were minors (that is, 
Chloroflexi and Cyanobacteria) (Fig. 6A).

When the relative contribution of each environmental parameter 
was ranked according to the respective amounts of explained variance, 
the distribution of each phylum was found to be driven by 4 to 10 
parameters. The drivers can be ranked in the following sequence, 

according to their cumulated influence on all phyla: pH > land 
management > soil texture > soil nutrients > climate. Soil pH was 
the major driver and significantly explained the variation of 17 phyla 
with a maximum of 27.3% for Bacteroidetes. The influence of an 
increasing pH was positive for nine phyla and negative for eight 
phyla (Fig. 6B). Regarding land management influence, eight phyla 
were stimulated and six were inhibited by agricultural practices along 
a gradient from forest to vineyards (Fig. 6C). Soil texture (clay and silt 
contents) was a driver for 17 phyla, mainly minors, and explained 
up to 6% of their variance (Fig. 6B). Considering the soil nutrient 
characteristics [C/N ratio, soil organic carbon (SOC), available phos­
phorus, and total potassium], most phyla were significantly but 
weakly influenced by at least one parameter, with less than 4% of 
the explained variance (Fig. 6B). More precisely, the C/N ratio 
significantly influenced nine phyla, followed by SOC, available 
phosphorus, and total potassium. For climate, temperature was the 
only significant but weak driver for seven phyla, inhibiting six of 
these but stimulating Crenarchaeota (Fig. 6B). Finally, spatial de­
scriptors and especially PCNM vectors, summarized here in the fine 
(30 to 100 km) and coarse (100 to 350 km) spatial scale effects, af­
fected all phyla except Alphaproteobacteria (Fig. 6D).

At the genus level, the total explained variance in taxa distribu­
tion ranged from 13.2 to 72.2% and appeared greater than that of the 
phyla (table S5). According to the amounts of variance explained by 
the different environmental parameters, the drivers can be ranked 
in the following sequence: pH > soil nutrients > land management 
> spatial descriptors. Soil texture and climate were only minor driv­
ers even though their effects were statistically significant for half of 
the genera. As for the phylum level, soil pH was the major driver for 
30 genera, with an average of 14.0% of the explained variance and a 
maximum of 50.9% for Isosphaera (Planctomycetes). Similarly, soil 

Fig. 3. Relative abundance of the 47 main genera. The main genera presented more than 0.5% of sequences on average and occurred in more than 75% of sites. The 
genera were classified across the bacterial and archaeal phyla. “Others” corresponds to the sum of all genera within each phylum representing fewer than 0.5% of 
sequences.
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Fig. 4. Mapping of abundance of the most dominant bacterial and archaeal phyla across France. For each map, d is the range in kilometers estimated by the model, 
and R2 corresponds to the correlation between the predicted and measured values. The quality parameters and the model types are detailed in table S2.
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Fig. 5. Comparison of maps phylum/genera. (A) Four examples of a phylum for which the spatial distribution is consistent with its major genus. (B) Two examples of a 
phylum for which the spatial distribution represents the cumulative distributions of all genera belonging to the phylum. The complete set of maps is available in fig. S4.
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Fig. 6. Variance partitioning of the microbial phyla across France according to environmental and spatial parameters. (A) The 20 microbial phyla are ranked from 
the most to the least abundant. The explained variance corresponds to the sum of the adjusted R2 values of the significant parameters within the contextual groups (soil 
physicochemical parameters, land management, spatial descriptors, climate, interactions between soil physicochemical properties and land management). The thresh-
old for statistical significance was set at 0.01. Missing values indicate that no variable of the related group was retained in the model. (B to D) Contribution and effect of 
environmental parameters, land management, and spatial descriptors (PCNM at medium and coarse scales) on the distribution of bacterial and archaeal phyla. The colors 
depict the direction of the standardized partial regression coefficients (green, positive effect; red, negative effect). The height of the shape and the values indicate the 
percentage of variance explained by environmental parameters [for (B) and (D), proportions are comparable between boxes] and the coefficient of the standardized 
partial regression of each land management type. For this last effect, the coefficients are relative to a reference level grouping of 60 samples unclassified in the four types 
(C). The explained variance represents the respective significant contribution of each variable and was calculated by considering all other variables using partial regres-
sion models and adjusting the R2 values.
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nutrients (C/N ratio, SOC, available phosphorus, and potassium) were 
an important driver for soil genera [average = 2.3%, maximum = 9.6% 
for Azospira (Betaproteobacteria)]. Land management and soil tex­
ture were the weaker drivers at the genus level. In certain cases, 
drivers were identified at the genus level but not at the phylum level 
or inversely (table S5).

DISCUSSION
Here, a comprehensive approach was applied to produce one of the 
most intensive distribution maps of bacterial and archaeal taxa (phyla 
and genera) on a broad scale and to identify the ecological processes 
and environmental drivers regulating their biogeographic variations.

Spatial distribution of bacterial and archaeal phyla
Regarding the ubiquity and dominance of the phyla detected in 
French soils, the most ubiquitous phyla (Bacteroidetes, Alphapro­
teobacteria, Actinobacteria, Planctomycetes, Firmicutes, Gammapro­
teobacteria, Acidobacteria, and Betaproteobacteria) were generally 
the most abundant, as previously stated (17). Two hypotheses already 
formulated can explain this statement: (i) These abundant micro­
organisms are easier to detect with our technical procedure, or (ii) 
potential dispersal is greater for microorganisms with a large popu­
lation size. With a relative abundance exceeding 5%, these phyla were 
already reported to be dominant phyla in other soil studies (7) and 
also in marine sediments (18), oceans (19), and mammalian gut 
microbiota (20). These results reinforce the hypothesis of microbial 
cosmopolitanism initially based on the postulate of Baas Becking 
(1934), “Everything is everywhere, but the environment selects” (21), 
(21) and reexamined more recently (22). Such cosmopolitanism may 
be partly explained by the different abilities of microorganisms: 
Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Betapro­
teobacteria are dispersed by aerosolized soil dusts (23) and success­
fully colonize new environments. Firmicutes and Actinobacteria form 
resistant physiological stages that allow them to survive in hostile 
environments (24, 25). Some phyla [for example, Firmicutes (26)] 
are generalists for habitat and substrate. In contrast, minor and rare 
phyla seem to be less cosmopolitan, which could be related to more 
restricted ecological niches (11), and/or limited abilities to migrate 
(for example, efficient barriers for dispersal), and/or high rates of 
active losses due to predation or viral lysis (27).

Mapping the 20 most representative phyla systematically revealed 
a heterogeneous and specific distribution for each phylum. The spottiest 
distributions, seen in Chloroflexi, Fibrobacteres, and Cyanobacteria, 
may result from the influence of local filters such as landscape con­
figuration or land management variations (fig. S4) (4, 28), whereas 
distributions in larger patches (for example, Actinobacteria, Firmic­
utes, Gammaproteobacteria) may be explained by the presence of large 
natural barriers (mountain, sea, etc.; http://eusoils.jrc.ec.europa.eu/
projects/lucas), the main soil types, and climatic conditions (28). 
For example, the hot spots of Acidobacteria located in the southwest 
closely corresponded to the most acidic soils in France (fig. S4), as 
also observed in American soils (8). In addition, the hot spots of 
Actinobacteria recorded in Landes (southwest France) and Centre 
(central France) could be related to distribution of particular types 
of land management, notably forest and grasslands, in these regions 
(29). These contrasting distribution patterns suggest not only that all 
the studied phyla can be differently affected by the selection process 
due to the influence of particular environmental parameters but also 

that minor and rare phyla can be differently influenced by neutral 
processes, especially dispersal limitations (30). The latter depends 
on the abilities of phyla members to disperse across a large territory 
through passive or active mechanisms and to persist at the settling 
location (23). Together, the gradient of patch size might be partly 
due to a gradient of selection by environmental parameters and/or 
dispersal limitation.

Which processes and drivers for which phyla?
The total explained variance in phyla distribution ranged from 60% 
(Alphaproteobacteria) to 17% (Cyanobacteria). The latter phylum is 
known to include photosynthetic organisms mainly found in aquatic 
environments like oceans or freshwater (31) and generally influenced 
by temperature, light, specific nutrients, and competitor abundances 
(32). Thus, soil moisture and light accessibility, not measured in this 
study, might be better predictors of the variability of this phylum in 
soils and justify the weak explained variance observed in our study. 
The low explained variance of Cyanobacteria may also be due to their 
restricted ecological niches, which is limited to the soil surface (that 
is, light exposed) that could be diluted when soils were collected at 
0- to 30-cm depth, and in biofilm associated with coarse particles 
that could be excluded when soils were sieved through a 2-mm mesh.

Since 16 of our phyla were mainly influenced by environmental 
parameters, our results support a previous assumption (30), based 
on a review of 22 studies, that environmental selection has a greater 
effect than distance in shaping microbial phyla distribution (29). 
Ranking of the environmental data sets indicated that phyla distri­
bution was more dependent on local selection processes like soil 
properties and land management. The impact of climate could be 
masked by interactions between soil, land management, and cli­
matic characteristics, which represented between 0 and 28% of the 
explained variance and an important effect for 10 phyla (Fig. 6A). 
This taxa-based hierarchy reinforced the previous results obtained for 
microbial biomass (16), diversity (3, 5), and genetic structure (33) of 
the microbial community.

Spatial descriptors mainly explained the variation of four phyla. 
Thus, as previously shown by our mapping, dispersal ability de­
pended on the phylum (34) and the ability of that phylum to survive 
in a new location. As mentioned above, the potential of Betaproteo­
bacteria and Firmicutes to disperse and to colonize soil is high (23, 25). 
These biological characteristics are consistent with large patches 
on the maps (>200 km; Fig. 4) and the observed cosmopolitan and 
abundant distributions of both phyla (Fig. 2). Chloroflexi and Cyano­
bacteria were also cosmopolitan but less abundant. This finding sug­
gests that these phyla (i) exhibit a weak ability to colonize a wide 
range of soil types rather than a weak ability to migrate, (ii) may not 
be able to produce large populations in most soils, or that (iii) their 
detection signal is diluted due to inappropriate soil sampling and siev­
ing strategy (as described below).

Among the environmental parameters, soil pH is the major driver 
for 17 phyla, which confirmed the overriding effect of pH on the mi­
crobial community as a whole (1). However, our results contradict 
some other reports on pH effects on the dominant phyla. For example, 
the negative influence observed for Actinobacteria is in accord­
ance with some studies (8) but not with others (35). These discrep­
ancies in pH effect might be due to different interactions between 
the soil properties producing soil heterogeneity. In addition, dissimilar 
results could also be due to the low sampling effort and a priori sam­
pling strategy applied in most studies, which limited soil variations 
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and therefore the genericity of the results (33, 36), and to the techni­
cal approaches involved (cultivable versus molecular), which could 
bias the estimation of taxa abundance and pH effect (8).

Across France, the significant influence of land management was 
linked to cropping intensity and associated soil perturbation with a 
gradient from forests to vineyards/orchards (16). For example, in 
our study, Alphaproteobacteria were more abundant in forests, which 
are known to undergo weak soil perturbation and to provide copi­
otrophic habitats rich in recalcitrant organic matter (37). This ob­
servation is in accordance with the ability of several genera belonging 
to this phylum, like Rhizobium, to degrade recalcitrant organic matter, 
such as plant lignin (35). Alphaproteobacteria are also known to 
have important nitrogen cycle functions and to be involved in the 
decomposition of lignin by-products (mono- and oligophenolic com­
pounds) relevant to forest ecosystems. The inorganic fertilization of 
soils under forest-to-agroecosystem conversion may also explain the 
low abundance of nitrogen-fixing Alphaproteobacteria (38).

The effect of fine soil texture was negative for 10 phyla, with silt 
and clay having a differential impact in certain cases (Actinobacteria, 
Betaproteobacteria, Nitrospirae, Armatimonadetes, and Fibrobacteres). 
This pattern suggested that half of the bacterial and archaeal phyla 
were adapted to coarse-textured soils, considered as heterogeneous, 
less-protected, and oligotrophic habitats (39). In addition, the weak­
ness of the observed effect of soil nutrients (C/N ratio, SOC content, 
available phosphorus, and total potassium) suggests that microbial 
phyla cannot be classified into copiotrophic or oligotrophic categories 
based on soil nutrient characteristics alone (8). Finally, the weak but 
significant positive effect of climate and, especially, temperature on 
Crenarchaeota (3.2% of explained variance) is consistent with the 
ability of several genera belonging to this phylum to survive in high-
temperature habitats such as hydrothermal vents or volcanoes (12).

The significant part of the variance explained for four phyla by 
spatial descriptors and, especially, PCNM vectors might be partly 
related to (i) variations in unmeasured environmental parameters at 
different spatial scales (30) and/or (ii) the dispersal ability, as a neutral 
process, of the phyla (40). On the basis of the latter postulate, three 
response patterns were observed, depending on the scale of spatial 
structure, which led to three hypotheses for the dispersal abilities of 
microorganisms: (i) positive effects of both fine and coarse scales on 
four phyla, suggesting their dispersal over short and long distances; (ii) 
positive effects of only fine scale on five phyla, suggesting their dis­
persal over short distance; and (iii) negative effects of both scales on six 
phyla, suggesting high dispersal limitation. The coarse-scale effect was 
the strongest (15%) and positive for Firmicutes, while the fine scale 
had the highest and positive effect on Chloroflexi (11.9% of variance). 
These observations accord with our previous findings that these varia­
tions were mainly explained by spatial descriptions and suggested that 
the distribution of these phyla is greatly influenced by dispersal. They 
also accord with our mapping results since Firmicutes were structured 
in large spatial patches (>200 km), whereas Chloroflexi were spatially 
distributed in small patches (<60 km). All our hypotheses about PCNM 
vectors and dispersal need to be validated by computing a complementary 
approach using a neutral model of metacommunity (41).

Disentangling phylum-level biogeography from  
genus-level ecology
To investigate the ecological coherence of phyla biogeography, we 
also examined the spatial distribution and environmental drivers of 
the main genera detected in French soils and compared the results 

between genus and phylum levels. Depending on the phylum, spa­
tial distribution and environmental drivers were consistent with the 
dominant genus in the phylum or with the cumulative distributions 
and drivers of the genera within the phylum.

The first scenario was exemplified by the phyla Acidobacteria, 
Firmicutes, and Bacteroidetes, whose overall distribution perfectly 
matched that of their dominant genus, that is, Holophaga (on average 
6.3% of total sequences), Bacillus (3.8%), and Terrimonas (3.5%), 
respectively, for both spatial distribution and environmental drivers. 
The distribution of Holophaga overlaid the soil pH map (fig. S4), 
confirming the high affinity of Acidobacteria for low pH (8). The 
environmental drivers of Holophaga indicated that the Acidobacte­
ria members inhabited constrained soil environments, that is, acidic 
and oligotrophic soils with a coarse texture. According to the sparse 
knowledge of this uncultivable genus (one species known), these 
bacteria have the ecological role of K-strategists, with a strictly an­
aerobic metabolism, capacities for homoacetogenesis, and also the 
genomic potential for involvement in key N-cycle processes such as 
nitrogen fixation (42). Thus, the high abundance of Holophaga sug­
gests the presence of a nonnegligible amount of anoxic microhabitats 
(micropores) in soils, characterized by low nutrient availability with­
in the soil aggregates (43).

Similar drivers were identified for the phylum Firmicutes and 
genus Bacillus, such as soil pH, clay content, C/N ratio, and elevation. 
The negative effect of all these environmental parameters indicated 
that Bacillus inhabit cropland and grassland soils with high pH and 
coarse texture rich in labile organic matter. This is in accordance with 
the ability of Bacillus to degrade simple organic compounds such as 
xylose (44) or starch (26), commonly found in agricultural soils. More­
over, most Bacillus species (347 referenced to date) are phosphate sol­
ubilizers in the soil (45) and carry the genes required for six nitrogen 
cycle pathways [from ammonia assimilation to nitrogen fixation (46)]. 
This strong involvement of Bacillus in the biogeochemical cycles, 
which subsequently increases the availability of nutrients to plants, 
together with its capacity for phytopathogen suppression (47), confers 
this genus with a key position in soils, especially in the cropping context.

The Actinobacteria and Gammaproteobacteria phyla provided an 
example of the second scenario. The ecology and distribution of each of 
these phyla reflects the combined ecological and biogeographic char­
acteristics of all the genera in that phylum. Members of Actinobacteria 
are known to have an important role in organic matter turnover and the 
breakdown of recalcitrant molecules, such as cellulose and complex 
hydrocarbons, and are particularly abundant in woodland soils where 
the C/N ratio is highest (48). In our data set, the genera Frigoribacterium, 
Acidothermus, Conexibacter, and Mycobacterium were more abundant 
in forests or correlated with a high C/N ratio. Moreover, as numerous 
Actinobacteria genera are sources of antibiotics, insecticides, and 
antifungal or bioherbicide agents, they have a key role in biological 
methods of crop protection (49). These genera also include plant growth–
promoting rhizobacteria, symbionts, endophytes, and elicitors of plant 
defense (49); thus, several of them should find appropriate ecological 
niches in crop systems. All these soil functions, added to potential 
implications in nitrogen cycling (46), may explain why distribution 
of the Actinobacteria phylum is so widespread.

Robustness and limitation of the sampling  
and analytical strategies
This work is the most intensive, without a priori, soil sampling survey 
(about 2000 soil samples) focusing on a nationwide scale. Compared 
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to global studies (on the world scale), based on a few tens of samples 
(14), our sampling design provides a foundation for robust analysis 
and conclusions about soil microbial biogeography. By examining 
major environmental variability across a 550,000 km2 area (5), we can 
affirm that our results are not biased by environmental sampling 
(50). The general applicability of our results to other pedoclimatic 
and land use conditions (for example, tropical ecosystems) may be 
limited by the small surface area of France in relation to that of the 
world. However, the pedoclimatic diversity recorded on this regional 
scale is higher than in many other countries (51). This diversity in 
turn provides a wide range of environmental conditions for micro­
bial communities that can also be found in a large part of the conti­
nental Europe and, more globally, in the Northern Hemisphere (51).

Our molecular analytical strategy is known to present high levels 
of robustness (52), although numerous biases inherent in amplicon 
library preparation like DNA extraction (53), amplification (54), 
sequencing, and the inference of patterns of organism abundance 
from library data pertaining to relative abundance are also well known 
(55). Analyses were conducted in a consistent manner to remove errors 
due to sequencing and chimeras, and the data sets were rarefied to 
the same sampling depth (that is, 10,000 reads per sample), so that 
relative changes in microbial taxonomic composition levels can be 
compared across samples, even if the biodiversity sampling was not 
exhaustive (55). Nevertheless, comparison of our study with others 
is limited by our choice of 16S rRNA primers, which were designed 
to specifically target both bacterial and archaeal diversity. The results 
obtained by using these primers were able to reveal taxonomic groups 
(for example, Holophaga), rarely detected in previous soil studies. Several 
of these taxa, mainly genera, occurred frequently and in high relative 
abundance on the nationwide scale, implying that their detection was 
not random. In addition to using these different primers, we also chose 
a finer but more time-consuming method of taxonomic assignment 
than the approach currently used in QIIME (Quantitative Insights 
Into Microbial Ecology). More precisely, rather than assigning the seed 
sequence of each operational taxonomic unit (OTU), all reads in the data 
set were individually assigned. This approach led to changes in relative 
abundance of taxonomic groups within the community and, thus, 
the detection of new phyla or genera, underestimated in other studies.

CONCLUSION
Our study highlights the heterogeneous distribution of all soil bac­
terial and archaeal phyla and genera across continental France, 
using one of the most intensive soil sampling strategies available. 
Biogeographical patterns ranged from patchy to spotty and were 
explained by both selection and neutral processes, each being non­
exclusive for a given phylum. Comparison of our wide-scale study 
with investigations conducted on worldwide, regional, and landscape 
scales indicated that soil pH and land management are recurrent 
drivers (10, 14, 36). Comparison of bacterial biogeography at the 
phylum and genus taxonomic levels suggests that analysis at high 
taxonomic levels is mainly suitable for deciphering the distribution 
and environmental drivers of dominant populations. Comprehensive 
knowledge of the ecological attributes and spatial distribution of soil 
bacteria should improve the ability to predict shifts in community 
structure and, therefore, in soil functioning. Finally, on the basis of 
this knowledge, the future objectives will be to increase soil man­
agement sustainability and to implement the corresponding protec­
tion policy in a context of global change. Here, a significant amount 

of unexplained variance was observed for most of the soil bacterial taxa 
distributions. A promising way to better decipher the drivers behind 
this residual variance would be to analyze bacterial taxa by soil horizon 
to detect the potential effects of horizon-specific soil properties such 
as pH or C/N ratio. It is also important to note that the hierarchy of 
the processes and drivers was mainly based on abiotic parameters. Hence, 
another perspective could be to explore bacterial and archaeal bioge­
ography in light of the biotic relationships existing between soil pop­
ulations through interaction networks (2). Although interactions between 
community members with regard to functioning are undoubtedly 
huge, the identification and integration of these biotic and abiotic 
interactions on a broad scale still present major challenges in mi­
crobial ecology. In addition, consideration of the fungal populations 
will further enhance our global overview of soil microbial taxonomic 
group distribution by integrating the biotic interrelationships ex­
isting between these two kingdoms of soil microorganisms.

MATERIALS AND METHODS
Experimental design
Soil samples were obtained from the French Soil Quality Monitoring 
Network (RMQS), which is a soil monitoring network based on a 16-km 
regular grid across the 550,000-km2 French territory (5, 16). The RMQS 
includes 2173 monitoring sites, each located at the center of a 16 × 
16–km cell (Fig. 1), for which soil profile, site environment, climatic 
factors, location, vegetation, and land management were described. 
All details concerning soil sampling, storage, and physicochemical 
analysis were reported (16). Available climatic data were monthly rain, 
ETP (evapotranspiration), and temperature at each node of a 12 × 
12–km2 grid, averaged for the 1992–2004 period. These climatic data 
were obtained by interpolating observational data using the Analysis 
System Providing Information Adapted to Nivology (SAFRAN model). 
The RMQS site–specific data were linked to the climatic data by 
finding the closest node within the 12 × 12–km2 climatic grid for each 
RMQS site. Land cover was recorded according to the coarse level 
of the CORINE Land Cover classification (IFEN; www.statistiques.
developpement-durable.gouv.fr/donnees-ligne/li/2539/0/base-
donnees-geographique-corine-land-cover-clc.html), which consists 
of a rough descriptive classification into five classes: forest, croplands, 
grasslands, others, and perennial crops (corresponding to vineyards 
and orchards). All these data were available in the DONESOL data­
base (16, 28).

Molecular characterization of bacterial community diversity
Soil DNA extraction and purification
Microbial DNA was extracted and purified from 1 g of each of the 
2173 soils sampled at each RMQS site, using the GnS-GII procedure 
previously described (53). Crude DNA extracts were quantified by 
agarose gel electrophoresis stained with ethidium bromide and using 
calf thymus DNA as standard curve (16). Crude DNA was then puri­
fied using a MinElute gel extraction kit (Qiagen) and quantified using 
a QuantiFluor staining kit (Promega) prior to further investigations.
Polymerase chain reaction amplification and pyrosequencing 
of 16S rRNA gene sequences
A 16S rRNA gene fragment targeting the V3 to V4 regions to char­
acterize bacterial diversity was amplified using the primers F479 
(5′-CAGCMGCYGCNGTAANAC-3′) and R888 (5′-CCGYCAAT­
TCMTTTRAGT-3′) with the method described previously (53). 
Homemade bioinformatic programs were developed to design 
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these primers and to search large DNA sequence databases for the 
presence of primers, including degeneracies, as coded by the IUPAC 
(International Union of Pure and Applied Chemistry) rules, and 
also additional mismatches to test primer improvement. The se­
quences investigated were SILVA, direct extraction of every small 
subunit rRNA sequence from EMBL (European Molecular Biology 
Laboratory) using ACNUC, and also a dedicated reference database 
of 18S eukaryotic sequences, which had been thoroughly analyzed 
and annotated for in silico match analysis [see table S2 from Terrat 
et al. (7)]. A total of 2132 soil samples were successfully amplified 
from the 2173 DNA soil samples. The polymerase chain reaction 
(PCR) products were then purified using a MinElute PCR purifica­
tion kit (Qiagen) and quantified using a QuantiFluor staining kit 
(Promega). A second PCR of seven cycles was then duplicated for 
each sample under similar PCR conditions, with purified PCR products 
as matrix (7.5 ng of DNA was used for a 25-l mix of PCR) and 
dedicated fusion primers (“F479/AdaptorB,” “R888/MID/AdaptorA”) 
integrating the required adaptors, keys, and multiplex identifiers at 
the 5′ extremities. All duplicated PCR products were then pooled, 
purified using a MinElute PCR purification kit (Qiagen), and quan­
tified using a QuantiFluor staining kit (Promega). For all libraries, 
equal amounts from 30 samples were pooled and then cleaned to 
remove excess nucleotides, salts, and enzymes using the Agencourt 
AMPure XP system (Beckman Coulter Genomics). TE buffer (100 l) 
(Roche) was used for the elution. Pyrosequencing was then carried out 
on a GS FLX Titanium (Roche 454 Sequencing System) by Genoscope.
Bioinformatics sequence analysis
Bioinformatic analyses were done using the GnS-PIPE pipeline de­
veloped by the GenoSol platform [Institut National de Recherche 
Agronomique (INRA)] (availability: https://zenodo.org/record/ 
1123425#.WxD4DO6FPIU) (5). After sequencing, 49,794,516 raw 
reads were obtained for the 2132 soil samples. First, all raw reads 
were sorted according to each multiplex identifier sequence (no 
tolerated error in 10-base multiplex identifiers). Then, a prepro­
cessing step was carried out to filter and delete low-quality reads 
based on (i) their length (fewer than 350 bases), (ii) their number 
of ambiguities (deletion of reads with one or more N, or reads with 
homopolymer of more than seven consecutive bases), and (iii) their 
primer sequence(s) (the proximal primer sequence had to be com­
plete and without errors, with a maximum of two mismatches tol­
erated in the distal primer sequence). A PERL program was then 
applied for rigorous dereplication (that is, clustering of strictly identical 
sequences with same length). The dereplicated reads were aligned 
using the INFERNAL alignment program (v1.0.2, http://eddylab.
org/infernal, with the selected parameters: --hbanded, --sub, --dna) 
to obtain a global alignment against a hand-curated database con­
taining 508 full-length 16S rRNA sequences, chosen after careful 
consideration and aligned with recommended parameters (v1.0.2 
using selected parameters: --rf, --ere 1.4). Then, in agreement with 
a previous study (56), aligned sequences were clustered into OTUs 
at 95% of similarity using the CrunchClust program (v43 program, 
https://code.google.com/archive/p/crunchclust) that groups rare 
reads with abundant ones and does not count differences in homo­
polymer lengths (default parameters were selected). We chose this 
level of clustering as it corresponds roughly to the genus level, 
particularly with our primer set (in silico evaluation), and it also cor­
responds to the level used to define each soil community composi­
tion. Here, an OTU is defined by the most abundant read, known 
as the centroid, and every read in the OTU must have similarity 

above the given identity threshold with the centroid. A filtering 
step was then carried out to check all reads detected only once and 
not clustered, which might be artifacts, such as PCR chimeras, 
based on the quality of their taxonomic assignments. A database 
of 16S rRNA sequences from SILVA (version r114), filtered, cu­
rated, and annotated (database is available here: https://zenodo.
org/record/1065438#.WxD4L-6FPIU) using the USEARCH program 
(v8.0.1623; www.drive5.com/usearch) with specific parameters 
(-maxhits 15, -maxaccepts 0, and –maxrejects 0), was used (associ­
ated PERL program using USEARCH and formatting results are 
available here: https://zenodo.org/record/1064170#.WxD4S-6FPIU). 
If a read obtained a percentage of similarity lower than 90%, then 
it was discarded from the data set. This filtering step allowed the 
deletion of most of the chimeras produced during the PCR process, 
but also led to the deletion of potential novel minor taxa not current­
ly included in the used database. A total of 32,634,692 high-quality 
reads (range of sequencing depth: 48 to 49,926 reads by sample) were 
kept after these steps. The number of high-quality reads for each 
sample was then “rarefied” (that is, 10,000 high-quality reads for 
each sample) by random selection to allow efficient comparison of 
the data sets and avoid biased community comparisons and rarefac­
tion curves (5). So, 1798 soil samples were kept for subsequent analyses, 
encompassing a total of 17,980,000 reads.

A postprocessing step was then applied to this global data set to 
filter potentially artifactual reads as already described regarding mi­
crobial richness across France (5). Briefly, the 17,980,000 reads from 
all samples were aligned and clustered at 95% of similarity into 
OTUs, using the previously described CrunchClust program. There­
after, all OTUs that occurred only once in the overall data set and 
encompassed only a single read were removed. This postprocessing 
step reduced the number of total OTUs from 205,590 to 92,571 
(more than 50% lost), but the number of reads only from 17,980,000 
to 17,866,981 (less than 1% lost). The number of deleted reads by 
sample was 62 ± 60 on average (minimum, 10; maximum, 1093). 
Finally, all kept reads were then compared to the dedicated reference 
database originated from SILVA. The same previously described 
programs and parameters were used to determine independently the 
composition of each soil community at the phylum or subphylum 
level (that is, Alphaproteobacteria, Betaproteobacteria, Deltaproteo­
bacteria, Gammaproteobacteria, and Epsilonproteobacteria) and at 
the genus level (procedure, database, and programs available online: 
https://zenodo.org/record/1065438#.WxD4fe6FPIU and https:// 
zenodo.org/record/1064170#.WxD4ku6FPIU). Unknown sequences 
represented an average of 0.47% by sample at the phylum taxonom­
ic level and an average of 11% by sample at the genus taxonomic level.

All raw data sets are publicly available in the European Bioinformatics 
Institute (EBI) database system (in the Short Read Archive) under proj­
ect accession no. PRJEB21351. The matrix of taxonomic data is available 
online (https://zenodo.org/record/1063503#.WxD4pu6FPIU).

Statistical analysis
Phylum and genus classification
On the basis of the average relative abundance and occurrence of the 
35 phyla, an ascendant hierarchical clustering was performed using 
the unweighted pair group method with arithmetic mean (UPGMA) 
agglomeration method. Despite the seven clusters and the six cutoffs 
identified by the clustering (fig. S1), we limited the ranking to four 
groups to keep the classification simple and readable. The subsequent 
mathematical analyses excluded the 15 rarest phyla, that is, those 
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with a relative abundance below 0.01% and detected in less than 50% 
of the sampling sites, because the robustness of the statistical analyses 
was affected by the reduced size of the data set.

The dominant genera were considered present in more than 75% 
of the sampling sites and with an average relative abundance higher 
than 0.5% of the sequences. These thresholds were chosen to retain 
those genera that were most representative at the community level, 
that is, the pool of dominant genera should represent most of the 
sequences in each sample.
Mapping using geostatistics
A geostatistical method was used to map the microbial phyla and 
genera and to characterize their spatial variations (https://zenodo.
org/record/1063500#.WxD4t-6FPIU). When the relative abundance 
of the taxa did not follow a normal distribution, a quantile transfor­
mation was applied before modeling the spatial correlations. In con­
ventional geostatistical analysis, an estimate of a variogram model is 
computed on the basis of the observations, which describe the spa­
tial variation of the property of interest. This model is then used to 
predict the property at unsampled locations using kriging (57). A 
common method for variogram estimation is first to calculate the 
empirical (so-called experimental) variogram by the method of mo­
ments (58), and then to fit a model to the empirical variogram by 
(weighted) nonlinear least squares. We tried to fit several models 
and retained the one that minimized the objective function (59). 
The validity of the best fitted geostatistical model was then assessed 
in terms of the standardized squared prediction errors (SSPEs) us­
ing the results of a leave-one-out cross validation. If the fitted mod­
el provided a valid representation of the spatial variation of the taxa 
relative abundance, then these errors would have a 2 distribution 
with a mean of 1 and a median of 0.455 (60). The mean and median 
values of the SSPEs were also calculated for 1000 simulations of the 
fitted model to determine the 95% confidence limits and to obtain a 
map of the kriging SE. The geostatistical analysis gstat package was 
used for variogram analysis and kriging. The effective range of the 
variograms fitted on the data represents the size of the geographical 
patches, which were classified as spotty, intermediate, or large spatial 
patterns. Three classes of patch size were defined according to our 
sampling procedure across a 16 × 16–km grid. The spottiest patch 
size, <64-km radius, corresponded to a local spatial pattern con­
sidering a spatial structure spread over 51 sampling sites only. The 
largest patch size, >200-km radius, was considered the more global 
spatial pattern at the scale of France. Patches of 200-km radius 
(=400-km diameter) represented more than half of the territory and 
contrasted with the spottiest patches. The third class grouped all the 
intermediate patches, due to the lack of information, allowing 
better ranking of these spatial structures.
Variance partitioning
The relative contributions of soil physicochemical parameters, land 
management, climatic conditions, geomorphology, and space in 
shaping the patterns of soil bacterial phyla (called “marginal effects”) 
were estimated by variance partitioning (https://zenodo.org/record/ 
1063479#.WxD4zu6FPIU). The explanatory variables were selected 
to reduce the autocorrelation in the models and to obtain the most 
parsimonious models. Thus, only 12 environmental parameters of 
the 21 measured were kept in the analyses. These were pH, amounts 
in clay and silt for the soil texture, C/N ratio, SOC, available phos­
phorous and total potassium content for the soil nutrient, tempera­
ture for the climatic factors, latitude and longitude of the location of 
the sites, elevation for the geomorphology, and four classes along an 

anthropization gradient (forest, grassland, crop system, and vineyard/
orchard) for the land management. All quantitative (response and 
explanatory) data were standardized to guarantee an approximated 
Gaussian and homoskedastic residual distribution of the model. 
Considering that the largest part of the environmental selection was 
measured by the previous explanatory variables, we then investigated 
the effect of neighborhood on the residuals of the variance parti­
tioning models, using the PCNM approach computed on the spatial 
coordinates of the sites. The PCNM method (described below) de­
scribes and identifies the scales of the spatial relationship between 
samples (40) (see details in the Supplementary Materials). The clas­
sification of the PCNM vectors into fine-scale (30 to 100 km) and 
coarse-scale (100 to 350 km) neighborhood effects was chosen to 
reveal those spatial structures in the residual distributions of phyla, 
which could be related to short- or long-distance dispersal patterns. 
Thereafter, the most influential types of parameters were identified 
by organizing the above parameters into five groups: (i) soil physi­
cochemical characteristics including pH, soil texture, and nutrient 
contents; (ii) land management; (iii) spatial descriptors including 
spatial location, elevation, and PCNM variables; (iv) climate as tem­
perature; and, finally, (v) interactions between all the environmental 
parameters excluding the PCNM variables. The variance explained 
by each group of parameters was computed as the sum of the variance 
explained by all marginal effects.

The PCNM approach was used to describe and identify the scales of 
the spatial relationship between samples (40). This PCNM method 
was applied to the geographic coordinates, and only PCNMs with a 
significant Moran index were selected for the variance partitioning 
analysis (P < 0.001). These PCNMs represented the spatial scales that 
the sampling scheme could perceive (61). The spatial neighborhood 
described by each PCNM was determined by the range of Gaussian 
variogram models (62). All quantitative (response and explanatory) data 
were standardized to have an approximated Gaussian and homoske­
dastic residual distribution. A two-step procedure was used to de­
termine the environmental parameters significantly shaping bacterial 
phyla and to limit overfitting and exclude co-linear variables (63). 
The first step consisted of a coarse selection of explanatory variables 
included in models minimizing the Bayesian Information Criterion 
and maximizing the adjusted R2 using the regsubset function (leaps 
package). In the second step, a forward selection procedure was 
applied to the subset of explanatory variables to identify the model 
maximizing the adjusted R2 (63). Spatial descriptors were then selected 
from the model residuals (64) using the forward selection step only 
since all PCNMs are linearly independent. The respective amounts of 
variance (that is, marginal and shared) for bacterial phyla distribution 
were determined by canonical variation partitioning and the adjusted R2 
with redundancy analysis (63). The statistical significance of the marginal 
effects was assessed from 1000 permutations of the reduced model. 
All these analyses were performed with R (www.r-project.org/) using the 
vegan package (https://cran.r-project.org/web/packages/vegan/vegan.pdf).

The relative contributions of environmental parameters were 
evaluated by performing a variance partitioning for each phylum 
(the applied procedure is detailed in the Supplementary Materials, 
https://zenodo.org/record/1063479#.WxD43u6FPIU).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/7/eaat1808/DC1
Fig. S1. Dendrogram of the ascendant hierarchical clustering by the UPGMA agglomeration 
method.
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Fig. S2. Mapping of abundance of minor bacterial phyla.
Fig. S3. Mapping of abundance of the 47 major bacterial genera belonging to 12 phyla.
Fig. S4. Maps of soil physicochemical characteristics across France.
Table S1. Comparisons of relative abundance distribution between the 35 phyla across France.
Table S2. Parameters and type of models for the 20 maps of phyla.
Table S3. Outputs of models used for the variance partitioning analysis of phyla distributions.
Table S4. Occurrence, relative abundance, and parameters of geostatistical models for the 47 
genera.
Table S5. Outputs of models used for the variance partitioning analysis of genera distributions.

REFERENCES AND NOTES
	 1.	 R. I. Griffiths, B. C. Thomson, P. Plassart, H. S. Gweon, D. Stone, R. E. Creamer, 

P. Lemanceau, M. J. Bailey, Mapping and validating predictions of soil bacterial 
biodiversity using European and national scale datasets. Appl. Soil Ecol. 97, 61–68 (2016).

	 2.	 B. Karimi, P. A. Maron, N. Chemidlin Prévost-Bouré, N. Bernard, D. Gilbert, L. Ranjard, 
Microbial diversity and ecological networks as indicators of environmental quality. 
Environ. Chem. Lett. 15, 265–281 (2017).

	 3.	 R. I. Griffiths, B. C. Thomson, P. James, T. Bell, M. Bailey, A. S. Whiteley, The bacterial 
biogeography of British soils. Environ. Microbiol. 13, 1642–1654 (2011).

	 4.	 L. Ranjard, S. Dequiedt, N. Chemidlin Prévost-Bouré, J. Thioulouse, N. P. A. Saby, 
M. Lelievre, P. A. Maron, F. E. R. Morin, A. Bispo, C. Jolivet, D. Arrouays, P. Lemanceau, 
Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. 
Nat. Commun. 4, 1434 (2013).

	 5.	 S. Terrat, W. Horrigue, S. Dequiedt, N. P. A. Saby, M. Lelièvre, V. Nowak, J. Tripied, 
T. Régnier, C. Jolivet, D. Arrouays, P. Wincker, C. Cruaud, B. Karimi, A. Bispo, P. A. Maron, 
N. Chemidlin Prévost-Bouré, L. Ranjard, Mapping and predictive variations of soil 
bacterial richness across France. PLOS ONE 12, e0186766 (2017).

	 6.	 L. R. Thompson, J. G. Sanders, D. McDonald, A. Amir, J. Ladau, K. J. Locey, R. J. Prill, 
A. Tripathi, S. M. Gibbons, G. Ackermann, J. A. Navas-Molina, S. Janssen, E. Kopylova, 
Y. Vázquez-Baeza, A. González, J. T. Morton, S. Mirarab, Z. Z. Xu, L. Jiang, M. F. Haroon, 
J. Kanbar, Q. Zhu, S. J. Song, T. Kosciolek, N. A. Bokulich, J. Lefler, C. J. Brislawn, 
G. Humphrey, S. M. Owens, J. Hampton-Marcell, D. Berg-Lyons, V. McKenzie, N. Fierer, 
J. A. Fuhrman, A. Clauset, R. L. Stevens, A. Shade, K. S. Pollard, K. D. Goodwin, 
J. K. Jansson, J. A. Gilbert, R. Knight; Earth Microbiome Project Consortium, 
A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 
457–463 (2017).

	 7.	 F. Constancias, N. P. A. Saby, S. Terrat, S. Dequiedt, W. Horrigue, V. Nowak, J.-P. Guillemin, 
L. Biju-Duval, N. Chemidlin Prévost-Bouré, L. Ranjard, Contrasting spatial patterns and 
ecological attributes of soil bacterial and archaeal taxa across a landscape. 
Microbiologyopen 4, 518–531 (2015).

	 8.	 N. Fierer, M. A. Bradford, R. B. Jackson, Toward an ecological classification of soil bacteria. 
Ecology 88, 1354–1364 (2007).

	 9.	 B. Zhang, X. Wu, G. Zhang, S. Li, W. Zhang, X. Chen, L. Sun, B. Zhang, G. Liu, T. Chen, The 
diversity and biogeography of the communities of Actinobacteria in the forelands of 
glaciers at a continental scale. Environ. Res. Lett. 11, 054012 (2016).

	 10.	 S. M. Hermans, H. L. Buckley, B. S. Case, F. Curran-Cournane, M. Taylor, G. Lear, Bacteria as 
emerging indicators of soil condition. Appl. Environ. Microbiol. 83, e02826-16 (2017).

	 11.	 J. M. DeBruyn, L. T. Nixon, M. N. Fawaz, A. M. Johnson, M. Radosevich, Global 
biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil.  
Appl. Environ. Microbiol. 77, 6295–6300 (2011).

	 12.	 S. T. Bates, D. Berg-Lyons, J. G. Caporaso, W. A. Walters, R. Knight, N. Fierer, Examining the 
global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011).

	 13.	 L. Philippot, S. G. E. Andersson, T. J. Battin, J. I. Prosser, J. P. Schimel, W. B. Whitman, 
S. Hallin, The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 
8, 523–529 (2010).

	 14.	 M. Delgado-Baquerizo, A. M. Oliverio, T. E. Brewer, A. Benavent-González, D. J. Eldridge, 
R. D. Bardgett, F. T. Maestre, B. K. Singh, N. Fierer, A global atlas of the dominant bacteria 
found in soil. Science 359, 320–325 (2018).

	 15.	 R. Angel, M. I. M. Soares, E. D. Ungar, O. Gillor, Biogeography of soil archaea and bacteria 
along a steep precipitation gradient. ISME J. 4, 553–563 (2010).

	 16.	 S. Dequiedt, N. P. A. Saby, M. Lelievre, C. Jolivet, J. Thioulouse, B. Toutain, D. Arrouays, 
A. Bispo, P. Lemanceau, L. Ranjard, Biogeographical patterns of soil molecular microbial 
biomass as influenced by soil characteristics and management. Glob. Ecol. Biogeogr. 20, 
641–652 (2011).

	 17.	 D. R. Nemergut, E. K. Costello, M. Hamady, C. Lozupone, L. Jiang, S. K. Schmidt, N. Fierer, 
A. R. Townsend, C. C. Cleveland, L. Stanish, R. Knight, Global patterns in the biogeography 
of bacterial taxa. Environ. Microbiol. 13, 135–144 (2011).

	 18.	 C. Bienhold, L. Zinger, A. Boetius, A. Ramette, Diversity and biogeography of bathyal and 
abyssal seafloor bacteria. PLOS ONE 11, e0148016 (2016).

	 19.	 S. Sunagawa, L. P. Coelho, S. Chaffron, J. R. Kultima, K. Labadie, G. Salazar, B. Djahanschiri, 
G. Zeller, D. R. Mende, A. Alberti, F. M. Cornejo-Castillo, P. I. Costea, C. Cruaud, F. d’Ovidio, 

S. Engelen, I. Ferrera, J. M. Gasol, L. Guidi, F. Hildebrand, F. Kokoszka, C. Lepoivre, 
G. Lima-Mendez, J. Poulain, B. T. Poulos, M. Royo-Llonch, H. Sarmento, S. Vieira-Silva, 
C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis; Tara Oceans Coordinators, C. Bowler, 
C. de Vargas, G. Gorsky, N. Grimsley, P. Hingamp, D. Iudicone, O. Jaillon, F. Not, H. Ogata, 
S. Pesant, S. Speich, L. Stemmann, M. B. Sullivan, J. Weissenbach, P. Wincker, E. Karsenti, 
J. Raes, S. G. Acinas, P. Bork, Structure and function of the global ocean microbiome. 
Science 348, 1261359 (2015).

	 20.	 G. P. Donaldson, S. M. Lee, S. K. Mazmanian, Gut biogeography of the bacterial 
microbiota. Nat. Rev. Microbiol. 14, 20–32 (2015).

	 21.	 L. G. M. Baas Becking, Geobiologie of Inleiding Tot de Milieukunde (W.P. Van Stockum & 
Zoon, 1934).

	 22.	 J. B. H. Martiny, B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, 
M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Øvreås, 
A.-L. Reysenbach, V. H. Smith, J. T. Staley, Microbial biogeography: Putting 
microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

	 23.	 A. Barberán, J. Henley, N. Fierer, E. O. Casamayor, Structure, inter-annual recurrence, and 
global-scale connectivity of airborne microbial communities. Sci. Total Environ. 487, 
187–195 (2014).

	 24.	 A. Barberán, K. S. Ramirez, J. W. Leff, M. A. Bradford, D. H. Wall, N. Fierer, Why are some 
microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. 
Ecol. Lett. 17, 794–802 (2014).

	 25.	 M. Bueche, T. Wunderlin, L. Roussel-Delif, T. Junier, L. Sauvain, N. Jeanneret, P. Junier, 
Quantification of endospore-forming firmicutes by quantitative PCR with the functional 
gene spo0A. Appl. Environ. Microbiol. 79, 5302–5312 (2013).

	 26.	 W. R. Horwath, The role of the soil microbial biomass in cycling nutrients,  
in Microbial Biomass (World Scientific Europe, 2016), pp. 41–66.

	 27.	 P. E. Galand, E. O. Casamayor, D. L. Kirchman, C. Lovejoy, Ecology of the rare microbial 
biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. U.S.A. 106, 22427–22432 (2009).

	 28.	 J. Meersmans, M. P. Martin, E. Lacarce, S. De Baets, C. Jolivet, L. Boulonne, S. Lehmann, 
N. P. A. Saby, A. Bispo, D. Arrouays, A high resolution map of French soil organic carbon. 
Agron. Sustain. Dev. 32, 841–851 (2012).

	 29.	 E. da C Jesus, T. L. Marsh, J. M. Tiedje, F. M. de S Moreira, Changes in land use alter the 
structure of bacterial communities in Western Amazon soils. ISME J. 3, 1004–1011 
(2009).

	 30.	 C. Hanson, J. A. Fuhrman, M. C. Horner-Devine, J. B. H. Martiny, Beyond biogeographic 
patterns: Processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).

	 31.	 P. M. D’Agostino, J. N. Woodhouse, A. K. Makower, A. C. Y. Yeung, S. E. Ongley, 
M. L. Micallef, M. C. Moffitt, B. A. Neilan, Advances in genomics, transcriptomics and 
proteomics of toxin-producing cyanobacteria. Environ. Microbiol. Rep. 8, 3–13 (2016).

	 32.	 Z. I. Johnson, E. R. Zinser, A. Coe, N. P. Mcnulty, E. M. S. Woodward, S. W. Chisholm, Niche 
partitioning among Prochlorococcus ecotypes along ocean-scale environmental 
gradients. Science 311, 1737–1740 (2006).

	 33.	 J. Liu, Y. Sui, Z. Yu, Y. Shi, H. Chu, J. Jin, X. Liu, G. Wang, High throughput sequencing 
analysis of biogeographical distribution of bacterial communities in the black soils of 
northeast China. Soil Biol. Biochem. 70, 113–122 (2014).

	 34.	 D. R. Nemergut, S. K. Schmidt, T. Fukami, S. P. O’Neill, T. M. Bilinski, L. F. Stanish, 
J. E. Knelman, J. L. Darcy, R. C. Lynch, P. Wickey, S. Ferrenberg, Patterns and processes of 
microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

	 35.	 H. Nacke, A. Thürmer, A. Wollherr, C. Will, L. Hodac, N. Herold, I. Schöning, M. Schrumpf, 
R. Daniel, Pyrosequencing-based assessment of bacterial community structure along 
different management types in German forest and grassland soils. PLOS ONE 6, e17000 
(2011).

	 36.	 S. L. O’Brien, S. M. Gibbons, S. M. Owens, J. Hampton-Marcell, E. R. Johnston, J. D. Jastrow, 
J. A. Gilbert, F. Meyer, D. A. Antonopoulos, Spatial scale drives patterns in soil bacterial 
diversity. Environ. Microbiol. 18, 2039–2051 (2016).

	 37.	 N. Pascault, L. Ranjard, A. Kaisermann, D. Bachar, R. Christen, S. Terrat, O. Mathieu, 
J. Lévêque, C. Mougel, C. Henault, P. Lemanceau, M. Péan, S. Boiry, S. Fontaine, 
P.-A. Maron, Stimulation of different functional groups of bacteria by various plant 
residues as a driver of soil priming effect. Ecosystems 16, 810–822 (2013).

	 38.	 D. VanInsberghe, K. R. Maas, E. Cardenas, C. R. Strachan, S. J. Hallam, W. W. Mohn, 
Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME J. 9, 
2435–2441 (2015).

	 39.	 F. Constancias, N. Chemidlin Prévost-Bouré, S. Terrat, S. Aussems, V. Nowak,  
J.-P. Guillemin, A. Bonnotte, L. Biju-Duval, A. Navel, J. M. F. Martins, P.-A. Maron, 
L. Ranjard, Microscale evidence for a high decrease of soil bacterial density and diversity 
by cropping. Agron. Sustain. Dev. 34, 831–840 (2014).

	 40.	 S. Dray, P. Legendre, P. R. Peres-Neto, Spatial modelling: A comprehensive framework for 
principal coordinate analysis of neighbour matrices (PCNM). Ecol. Modell. 196, 483–493 
(2006).

	 41.	 J. R. Powell, S. Karunaratne, C. D. Campbell, H. Yao, L. Robinson, B. K. Singh, Deterministic 
processes vary during community assembly for ecologically dissimilar taxa.  
Nat. Commun. 6, 8444 (2015).

 on July 23, 2018
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Karimi et al., Sci. Adv. 2018; 4 : eaat1808     4 July 2018

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

14 of 14

	 42.	 A. M. Kielak, C. C. Barreto, G. A. Kowalchuk, J. A. van Veen, E. E. Kuramae, The ecology of 
Acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 7, 744 (2016).

	 43.	 R. Tecon, D. Or, Biophysical processes supporting the diversity of microbial life in soil. 
FEMS Microbiol. Rev. 41, 599–623 (2017).

	 44.	 C. Pepe-Ranney, A. N. Campbell, C. Koechli, S. Berthrong, D. H. Buckley, Unearthing the 
microbial ecology of soil carbon cycling with DNA-SIP. bioRxiv 10, 33 (2015).

	 45.	 K. Mohammadi, Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role 
in crop production. Resources Environ. 2, 80–85 (2012).

	 46.	 M. B. Nelson, A. C. Martiny, J. B. H. Martiny, Global biogeography of microbial 
nitrogen-cycling traits in soil. Proc. Natl. Acad. Sci. U.S.A. 113, 8033–8040 (2016).

	 47.	 R. Sheng, D. Meng, M. Wu, H. Di, H. Qin, W. Wei, Effect of agricultural land use change on 
community composition of bacteria and ammonia oxidizers. J. Soils Sediments 13, 
1246–1256 (2013).

	 48.	 A. B. de Menezes, M. T. Prendergast-Miller, P. Poonpatana, M. Farrell, A. Bissett, 
L. M. Macdonald, P. Toscas, A. E. Richardson, P. H. Thrall, C/N ratio drives soil 
actinobacterial cellobiohydrolase gene diversity. Appl. Environ. Microbiol. 81, 3016–3028 
(2015).

	 49.	 E. A. Barka, P. Vatsa, L. Sanchez, N. Gaveau-Vaillant, C. Jacquard, H.-P. Klenk, C. Clément, 
Y. Ouhdouch, G. P. van Wezel, Taxonomy, physiology, and natural products of 
Actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43 (2016).

	 50.	 Y.-L. Chen, T.-L. Xu, S. D. Veresoglou, H.-W. Hu, Z.-P. Hao, Y.-J. Hu, L. Liu, Y. Deng, 
M. C. Rillig, B.-D. Chen, Plant diversity represents the prevalent determinant of soil fungal 
community structure across temperate grasslands in northern China. Soil Biol. Biochem. 
110, 12–21 (2017).

	 51.	 B. Minasny, A. B. McBratney, A. E. Hartemink, Global pedodiversity, taxonomic distance, 
and the World Reference Base. Geoderma 155, 132–139 (2010).

	 52.	 C. A. Lozupone, R. Knight, Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. U.S.A. 
104, 11436–11440 (2007).

	 53.	 S. Terrat, P. Plassart, E. Bourgeois, S. Ferreira, S. Dequiedt, N. Adele-Dit-De-Renseville, 
P. Lemanceau, A. Bispo, A. Chabbi, P.-A. Maron, L. Ranjard, Meta-barcoded evaluation 
of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial 
and fungal community diversity and composition. Microb. Biotechnol. 8, 131–142 
(2015).

	 54.	 R. D’Amore, U. Z. Ijaz, M. Schirmer, J. G. Kenny, R. Gregory, A. C. Darby, M. Shakya, 
M. Podar, C. Quince, N. Hall, A comprehensive benchmarking study of protocols and 
sequencing platforms for 16S rRNA community profiling. BMC Genomics 17, 55  
(2016).

	 55.	 J. Zhou, Z. He, Y. Yang, Y. Deng, S. G. Tringe, L. Alvarez-Cohen, High-throughput 
metagenomic technologies for complex microbial community analysis: Open and closed 
formats. MBio 6, e02288-14 (2015).

	 56.	 T. Větrovský, P. Baldrian, The variability of the 16S rRNA gene in bacterial genomes and 
its consequences for bacterial community analyses. PLOS ONE 8, e57923 (2013).

	 57.	 R. Webster, M. A. Oliver, Geostatistics for Environmental Scientists (John Wiley & Sons, ed. 
2, 2007).

	 58.	 G. Matheron, Les variables régionalisées et leur estimation : Une application de la théorie 
des fonctions aléatoires aux sciences de la nature, thesis, Paris, Masson (1965).

	 59.	 B. Minasny, A. B. McBratney, The Matérn function as a general model for soil variograms. 
Geoderma 128, 192–207 (2005).

	 60.	 R. M. Lark, Modelling complex soil properties as contaminated regionalized variables. 
Geoderma 106, 173–190 (2002).

	 61.	 A. Ramette, J. M. Tiedje, Multiscale responses of microbial life to spatial distance and 
environmental heterogeneity in a patchy ecosystem. Proc. Natl. Acad. Sci. U.S.A. 104, 
2761–2766 (2007).

	 62.	 E. Bellier, P. Monestiez, J.-P. Durbec, J.-N. Candau, Identifying spatial relationships at 
multiple scales: Principal coordinates of neighbour matrices (PCNM) and geostatistical 
approaches. Ecography 30, 385–399 (2007).

	 63.	 A. Ramette, Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–160 
(2007).

	 64.	 D. Borcard, P. Legendre, C. Avois-Jacquet, H. Tuomisto, Dissecting the spatial structure of 
ecological data at multiple scales. Ecology 85, 1826–1832 (2004).

Acknowledgments: We thank all the soil surveyors and technical assistants involved in 
sampling the sites. Thanks are also extended to J. Kreplak for the use of computation capacity 
and D. Warwick for her comments on the manuscript. Funding: This study was granted by 
ADEME (French Environment and Energy Management Agency) and by “France Génomique” 
through involvement of the technical facilities of Genoscope (project number ANR-10-
INBS-09-08). Because of the involvement of the technical facilities at the GenoSol platform of 
the infrastructure Analyses et Expérimentations sur les Écosystèmes (ANAEE) France, it also 
received a grant from the French state through the National Agency for Research under the 
program “Investments for the Future” (reference ANR-11-INBS-0001). RMQS soil sampling and 
physicochemical analyses were supported by a French Scientific Group of Interest on soils: the 
“GIS Sol,” involving the French Ministry of Ecology, Sustainable Development and Energy 
(MEEM); the French Ministry of Agriculture (MAP); the French Institute for Forest and 
Geographical Information (IGN); the Environment and Energy Management Agency (ADEME); 
the French Institute for Research and Development (IRD); and the National Institute for 
Agronomic Research (INRA). Author contributions: All authors conceptualized the research 
project. C.J. coordinated the sampling at the territory scale. M.L. and V.N. executed the 
molecular analyses. P.W. and C.C. contributed to the DNA sequencing. S.T. and S.D. performed 
the bioinformatic analyses. C.J., D.A., and N.P.A.S. provided the environmental data set. B.K., 
N.P.A.S., and N.C.-P.B. contributed to the statistical analyses. B.K., S.T., P.-A.M., N.C.-P.B., and L.R. 
wrote the original draft. B.K., S.T., S.D., N.P.A.S., W.H., C.J., D.A., P.W., C.C., A.B., P.-A.M., N.C.-P.B., 
and L.R. reviewed and edited the final manuscript. Competing interests: The authors declare 
that they have no competing interests. Data and materials availability: All data needed to 
evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials or they are available on different database systems: The sequencing raw data sets 
are publicly available in the EBI database system (in the Short Read Archive) under project 
accession no. PRJEB21351. The environmental data that support the findings of this study are 
available from US 1106 Infosol (INRA Orléans, France), but restrictions apply to the availability 
of these data, which were used under license for the current study, and so are not publicly 
available. Additional data related to this paper may be requested from the authors and with 
permission of US 1106 Infosol (INRA Orléans, France). All other data and procedures are 
available online: taxonomic data set: https://zenodo.org/record/1063503#.WxD5Le6FPIU; 
SILVA database available here: https://zenodo.org/record/1065438#.WxD5ae6FPIU); 
bioinformatic procedure: https://zenodo.org/record/1064170#.WxD5fe6FPIU; procedure for 
variance partitioning: https://zenodo.org/record/1063479#.WxD5ku6FPIU; procedure for 
mapping: https://zenodo.org/record/1063500#.WxD5qe6FPIU.

Submitted 2 February 2018
Accepted 23 May 2018
Published 4 July 2018
10.1126/sciadv.aat1808

Citation: B. Karimi, S. Terrat, S. Dequiedt, N. P. A. Saby, W. Horrigue, M. Lelièvre, V. Nowak,  
C. Jolivet, D. Arrouays, P. Wincker, C. Cruaud, A. Bispo, P.-A. Maron, N. C. Prévost-Bouré, L. Ranjard, 
Biogeography of soil bacteria and archaea across France. Sci. Adv. 4, eaat1808 (2018).

 on July 23, 2018
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

https://zenodo.org/record/1063503#.WxD5Le6FPIU
https://zenodo.org/record/1065438#.WxD5ae6FPIU
https://zenodo.org/record/1064170#.WxD5fe6FPIU
https://zenodo.org/record/1063479#.WxD5ku6FPIU
https://zenodo.org/record/1063500#.WxD5qe6FPIU
http://advances.sciencemag.org/


Biogeography of soil bacteria and archaea across France

Prévost Bouré and Lionel Ranjard
Claudy Jolivet, Dominique Arrouays, Patrick Wincker, Corinne Cruaud, Antonio Bispo, Pierre-Alain Maron, Nicolas Chemidlin 
Battle Karimi, Sébastien Terrat, Samuel Dequiedt, Nicolas P. A. Saby, Walid Horrigue, Mélanie Lelièvre, Virginie Nowak,

DOI: 10.1126/sciadv.aat1808
 (7), eaat1808.4Sci Adv 

ARTICLE TOOLS http://advances.sciencemag.org/content/4/7/eaat1808

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2018/07/02/4.7.eaat1808.DC1

REFERENCES

http://advances.sciencemag.org/content/4/7/eaat1808#BIBL
This article cites 60 articles, 11 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

registered trademark of AAAS.
is aScience Advances Association for the Advancement of Science. No claim to original U.S. Government Works. The title 

York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American 
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances 

 on July 23, 2018
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/content/4/7/eaat1808
http://advances.sciencemag.org/content/suppl/2018/07/02/4.7.eaat1808.DC1
http://advances.sciencemag.org/content/4/7/eaat1808#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

