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In this study, we investigated whether the Agr communication system of the pathogenic
bacterium Listeria monocytogenes was involved in adaptation and competitiveness in
soil. Alteration of the ability to communicate, either by deletion of the gene coding
the response regulator AgrA (response-negative mutant) or the signal pro-peptide AgrD
(signal-negative mutant), did not affect population dynamics in soil that had been sterilized
but survival was altered in biotic soil suggesting that the Agr system of L. monocytogenes
was involved to face the complex soil biotic environment. This was confirmed by a set of
co-incubation experiments. The fitness of the response-negative mutant was lower either
in the presence or absence of the parental strain but the fitness of the signal-negative
mutant depended on the strain with which it was co-incubated. The survival of the
signal-negative mutant was higher when co-cultured with the parental strain than when
co-cultured with the response-negative mutant. These results showed that the ability to
respond to Agr communication provided a benefit to listerial cells to compete. These
results might also indicate that in soil, the Agr system controls private goods rather than
public goods.
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INTRODUCTION
For the last few decades, communication between bacteria has
raised a growing interest. Cell-to-cell communication is based on
the synthesis, the diffusion between cells and the perception of
signal molecules. The perception of these molecules in the cell’s
extracellular environment induces the regulation of transcription
and eventually adjustment of the physiology of the cell to its
surrounding environmental conditions. Various communication
systems have been described in the prokaryotic world. They differ
according to the type of signal molecules and the machinery used
to integrate the signal. To date, the communication systems most
studied involve cyclic peptides (AIP), acyl-homoserine lactones
(acyl-HSL) or auto-inducer-2 (AI-2) as signal molecules (Miller
and Bassler, 2001; Reading and Sperandio, 2006; Atkinson and
Williams, 2009).

Several social traits are regulated through cell-to-cell com-
munication. Adhesion, biofilm formation and mobility require
functional communication systems in several bacterial species
(Labbate et al., 2004; Yarwood et al., 2004; Sturme et al., 2005;
Rieu et al., 2007; Boles and Horswill, 2008; Fujii et al., 2008;
Jayaraman and Wood, 2008; Riedel et al., 2009; Ray and Visick,
2012; Bowden et al., 2013). Public goods are exo-products as
for example, virulence factors, surfactants or antibiotics pro-
duced and secreted by bacterial populations. Their production
is usually under the control of the spatial distribution and den-
sity of cells and is dependent on the characteristics of mass
transfer in the environment. For example, in Staphylococcus

aureus (Morfeldt et al., 1995; Novick and Geisinger, 2008),
Enterococcus faecalis (Qin et al., 2001; Nakayama et al., 2006),
Clostridium perfringens (Vidal et al., 2011; Chen and McClane,
2012), Pseudomonas aeruginosa (Passador et al., 1993; Pearson
et al., 1997), and Listeria monocytogenes (Autret et al., 2003; Riedel
et al., 2009), communication systems control the secretion of the
virulence factors required for the onset of infection. Moreover,
survival mechanisms, such as sporulation, granulose formation,
and antibiotic production are also controlled by communica-
tion systems in Clostridium acetobutylicum (Steiner et al., 2012),
Pseudomonas chlororaphis (Morohoshi et al., 2013), and Bacillus
subtilis (Comella and Grossman, 2005). These communication-
dependent coordinated behaviors are examples of cooperation in
the microbial world (Keller and Surette, 2006; Diggle et al., 2007).
Such a social trait is vulnerable to exploitation by cheaters, these
individuals that do not cooperate but gain the benefit from oth-
ers cooperating (Velicer, 2003). Cheaters are individuals unable
either to respond to the signal or to synthesize it. Cheaters have
been isolated from populations of clinical and environmental
P. aeruginosa (Salunkhe et al., 2005; Heurlier et al., 2006). Saving
the cost of the production of the signal molecules, of their detec-
tion or production of exo-products (Diggle et al., 2007) may give
cheaters an advantage and may decrease the value of coopera-
tion (West et al., 2002; Rainey and Rainey, 2003). Experimentally,
under controlled environments where access to public goods is
required for growth, cheaters are fitter than individuals that coop-
erate (Rainey and Rainey, 2003; Diggle et al., 2007). Assessing the
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value of cooperation in natural settings is required in order to
understand why communication and cooperation behaviors have
been conserved so far in bacteria.

We tackled this issue with the bacterial model L. monocyto-
genes as this food-borne pathogen is ubiquitous in nature. It has
been isolated from water systems (De Luca et al., 1998; Paillard
et al., 2005; Lyautey et al., 2007), vegetation (Welshimer, 1968;
Beuchat, 1996), farms (Nightingale et al., 2004; Fox et al., 2009;
Latorre et al., 2010; Strawn et al., 2013), food industries (Goulet
et al., 1998; Garrido et al., 2009; Serio et al., 2011), and feces
of animals (Fenlon, 1985; Iida et al., 1991). It is also found in
soil (Welshimer, 1960; Weis and Seeliger, 1975; Locatelli et al.,
2013a; Vivant et al., 2013a). A communication system has been
characterized in this organism. It is the Agr system that regulates
adhesion, biofilm formation (Rieu et al., 2007; Riedel et al., 2009)
and infection of mammalian hosts (Autret et al., 2003; Riedel
et al., 2009). Four genes, agrBDCA, code the proteins required
for Agr communication (Autret et al., 2003; Garmyn et al., 2009).
Among them, agrD codes the propeptide AgrD processed into
a mature autoinducing peptide (AIP) by AgrB; AgrA, the tran-
scriptional regulator of the two component system AgrC/AgrA, is
the response component of the system. Detection of AIP by the
sensor AgrC triggers activation of AgrA. In order to investigate
whether or not cooperation through communication provided an
advantage to populations of L. monocytogenes in complex, natural
environments, we compared the behavior of two communica-
tion mutants, a signal-negative mutant �agrD unable to produce
AIP but equipped to sense and respond to AIP, and a response-
negative mutant �agrA unable to respond to extracellular sig-
nal, to the behavior of the parental strain following inoculation
in soil.

MATERIALS AND METHODS
BACTERIAL STRAINS AND CULTURE MEDIA
Rifampicin resistant strains were used in this study. The parental
strain L. monocytogenes L9 is derived from L. monocytogenes EGD-
e (Lemunier et al., 2005). Rifampicin resistant isogenic mutants
L. monocytogenes DG125A6 (this study) and L. monocytogenes
DG119D9 (this study), respectively are �agrA and �agrD in-
frame deletion mutants (Rieu et al., 2007). Rifampicin resistant
strains were isolated on Polymyxin-Acriflavin-Lithium-Chloride-
Ceftazidime-Aesculin-Mannitol agar (PALCAM; AES chemu-
nex, Bruz, France) supplemented with 200 μg.ml−1 rifampicine
(Sigma-Aldrich, Saint Quentin Fallavier, France) according to
Lemunier et al. (2005). For each strain, spontaneous RifR mutants
were selected by comparing growth rates during planktonic
growth and the ability to grow as biofilm in tryptone soy broth
(TSB; AES chemunex, Bruz, France) at 25◦C without shaking.
L. monocytogenes DG125A6 was used as a response-negative
mutant and L. monocytogenes DG119D9 as a signal-negative
mutant.

A working stock stored at −80◦C was used throughout the
study. Strains were grown statically at 25◦C for 16 h in 5 ml of
TSB. Three independent inocula were prepared by inoculating
10 ml of TSB (1% v/v) and incubating statically at 25◦C to an
O.D600nm of 0.4. The cultures were then centrifuged at 8000 g
for 5 min at room temperature and pellets were suspended in

NaCl (0.85%). Cultures were adjusted to a concentration of 2.108

CFU/ml.

SOIL SAMPLES AND SOIL MICROCOSMS PREPARATION
Soil was sampled in a pasture located in Burgundy, France. This
sampling site belongs to a country-wide soil sampling network
(RMQS) based on a 16 × 16 km systematic grid covering the
whole of France (Arrouays et al., 2002). Twenty-five individual
core samples of topsoil (0–30 cm) were taken using a sampling
design within an area of 20 × 20 m. The core samples were then
mixed to obtain a composite sample. The soil sample was then
sieved to 5 mm and stored at 4◦C. Aliquots of the soil were
heat sterilized three times (120◦C, 20 min) with a period of 24 h
between each autoclave treatment. Fifty g of sterilized and non-
sterilized soil were packed in triplicate to constitute sterilized and
biotic soil microcosms. Soil’s attributes such as location, com-
position, chemistry, and land use are stored in the DONESOL
database (Grolleau et al., 2004). Briefly, it is a clay soil with neu-
tral pH. Organic carbon and nitrogen content were respectively
35.3 and 3.9 g.kg−1.

SOIL MICROCOSM INOCULATION WITH SINGLE STRAIN AND
CO-INOCULATION
Single strain cultivation in biotic and sterilized soil were
performed by inoculating a single strain, either L. monocy-
togenes L9, L. monocytogenes DG125A6 or L. monocytogenes
DG119D9, at a concentration of 2.106 CFU/g in 50 g soil micro-
cosms. Microcosms were also co-inoculated with appropriate
mixtures from individual cultures to a final ratio of 50:50
(2.106:2.106 CFU/g). The following listerial mixtures were tested:
L. monocytogenes L9/L. monocytogenes DG125A6, L. monocy-
togenes L9/L. monocytogenes DG119D9, and, L. monocytogenes
DG125A6/L. monocytogenes DG119D9. Experiments were pre-
pared in triplicates. All inoculated and co-inoculated microcosms
were incubated at 25◦C in the dark.

ENUMERATION AND DETERMINATION OF LISTERIAL POPULATIONS
DYNAMICS
For single-cultures, listerial populations were enumerated
by serial plating on Polymyxin-Acriflavin-Lithium-Chloride-
Ceftazidime-Aesculin-Mannitol agar (PALCAM; AES Chemunex,
Bruz, France) supplemented with 100 μg.l−1 cycloheximide and
100 μg.l−1 rifampicin (Sigma-Aldrich, Saint Quentin Fallavier,
France) immediately after inoculation and periodically over a
14-days period for microcosms or over a 48-h period for extracts.

In microcosms inoculated with 50/50 mixtures, the total num-
ber of listerial cells was enumerated as described above. The
proportion of each of the two strains was determined by strain-
specific PCR amplification (described below) from up to 96
colonies collected from the supplemented PALCAM plates.

PCR AMPLIFICATION
DNA template was prepared by transferring each colony in 200 μl
of water. Three sets of strain-specific primers were designed to
discriminate co-inoculated strains. Two PCR reactions with two
of the primer sets were required to discriminate co-inoculated
strains. The sequences of the strain-specific primer sets and the
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genotype targeted are shown Table 1. PCR amplification was car-
ried out in a final volume of 20 μl containing 2.5 μl of DNA
template, 1 μl of dimethyl sulfoxide (DMSO, Sigma-Aldrich,
Saint Quentin Fallavier, France), 2 μl of 10X PCR buffer with
MgCl2, 0.16 μl of dNTP mix (25 mM), 1.0 U of Taq polymerase
(MP Bio, Illkirch Graffenstaden, France), and a final concentra-
tion of 0.6 μM of each primer. The following conditions were
specifically determined and used: 95◦C for 10 min, 30 cycles of
15 sec at 95◦C, 50◦C for 1 min and 72◦C for 2 min, followed by
7 min at 72◦C.

COMPETITIVE INDEX DETERMINATION
For each of the three replicates, the competitive Index (CI) was
calculated as follows:

CItx = ((CFUmutant/CFUparental)tx/(CFUmutant/CFUparental)t0)

Where CItx is the competitive index at time tx (x = 2 days, 4
days, 7 days or 14 days), CFUmutant and CFUparental are the num-
ber of Colony Forming Units per gram of soil of the mutant and
the parental strains, respectively, at time tx and at time t0. A CI
score of 1 indicates no fitness difference. A similar calculation was
realized for co-cultured listerial mutants.

STATISTICAL ANALYSIS
Patterns of survival of listerial populations were compared
by repeated-measures analysis of variance (repeated-measures
ANOVA) in both sterilized and biotic microcosms. To estimate
whether or not the CI evolved over time, thus to determine
whether a strain had a better ability to compete in soil, repeated-
measures analysis of variance (repeated-measures ANOVA) was
performed.

RESULTS AND DISCUSSION
DYNAMICS OF LISTERIAL POPULATIONS IN SOIL MICROCOSMS
In sterilized soil microcosms, the population of the parental strain
L. monocytogenes L9 increased of over 2 log within the first 2
days of incubation and the population remained stable until the
end of the experiment (Figure 1). Inactivation of the Agr system
did not affect the dynamics of the mutants’ population and no
significant differences were observed between growth profiles of

Table 1 | Sequences of the strain-specific primer sets and genotypes

targeted.

Primer Oligonucleotide sequence 5′ → 3′ Genotype targeted

set L. monocytogenes:

L9 DG125A6 DG119D9

C10 CTTCAAACCCGGCATATCAT + + +
C11 GGAATGTTGGCGAATTTGTT

A19 AATCCATGGTACCGGTTTTTATTTGT + − +
A20 CTCGAGTAAACTCAAGCTTTTAATTA

B7 AGCTAGCTGTCATGAAGTTTGCTCTCG + + −
D2 AAGAATCCGCAACTTTCATGG

+ amplification, − no amplification.

the parental strain, the signal-negative �agrD mutant and the
response-negative �agrA mutant. Similar results were collected
during growth in sterilized soil extracts (data not shown). These
results confirm previous reports on the ability of L. monocytogenes
to multiply in sterilized soil (Dowe et al., 1997; Moshtaghi et al.,
2009; McLaughlin et al., 2011; Piveteau et al., 2011). Moreover,
our results suggest that the ability to produce AIP and to respond
to the signal is not indispensable for growth of L. monocytogenes
in this specific environment.

When indigenous microflora was not inactivated, in biotic
soil microcosms, results were different (Figure 2). First of all,
no growth was observed. The population of the parental strain
was stable during the first 2 days of incubation thereafter the
population declined throughout the duration of the experiment.
Furthermore, the behavior of the mutants was significantly differ-
ent. Indeed, the population of the two mutants declined sharply
within the first 2 days of incubation and it was over 1 log lower
than that of the parental strain from day 2 to the end of the
experiment (P < 0.05). Differences between mutants were not
significant. The results point out to the role of endogenous micro-
bial communities in limiting implantation of L. monocytogenes in
soil. Indeed, inactivation of telluric communities lifts inhibition
(Dowe et al., 1997; Locatelli et al., 2013b; Vivant et al., 2013b).
Moreover, microbial diversity is critical regarding the ability of
soil microbial communities to limit invasion by L. monocytogenes
(Vivant et al., 2013b). Our data strongly suggest that the activity
of the Agr communication system is required for optimal survival
of L. monocytogenes in soil. This suggests that the production of
signal molecules and/or AgrA-mediated regulation improves the
fitness of the populations of L. monocytogenes in soil. Moreover,
production of private or public goods could be involved. In order
to figure out if signal sensing in one hand or public goods produc-
tion in the other hand underpinned the fitness advantage of the
parental strain, we followed the fate of populations of the signal-
negative and response-negative mutants during co-incubation
with the parental strain in soil microcosms.

FIGURE 1 | Growth kinetics of L. monocytogenes (�) parental strain,

(•) signal- and ( ) response-negative mutants in sterilized soil

microcosms. Error bars represent the standard deviation from three
replicate samples value.
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COMPARISON OF THE FITNESS OF THE MUTANTS AND PARENTAL
STRAINS IN SOIL MICROCOSMS
To determine if alteration of the Agr communication system
affected fitness in soil, we measured the survival of the parental
strain and of both mutants in sterilized or biotic soil depend-
ing on whether they had been cultured with the parental strain,
a mutant or as single listerial population. Moreover, Competitive
Indexes (CI) of co-cultured listerial strains over a 14-days period
in soil microcosms were calculated.

As shown in Figure 3, in sterilized soil microcosms, coloniza-
tion profiles were similar for all strains whether they had been
cultured as a single strain or with a partner. Moreover, variations
of the CI were not significant (ANOVA, P > 0.05) (Table 2). This
is consistent with the results described above and confirms that
in sterilized soil, in the absence of biotic pressure, inactivation of
the Agr system does not alter the competitiveness of the mutants.
Considering that in sterilized soil, cell density is higher than in
biotic soil (about 4 log) and that scavenging of signal molecules
is more limited, accumulation of signal molecules is expected.

FIGURE 2 | L. monocytogenes (�) parental strain, (•) signal- and ( )

response-negative mutants survival in biotic soil microcosms. Error
bars represent the standard deviation from three replicate samples value.

This suggests that, under these experimental conditions, the
AgrA-controlled features may not be essential for growth.

Under biotic conditions, survival of the parental strain
(Figure 4A) and the response-negative mutant (Figure 4B) did
not vary whatever the co-culture tested. On the opposite, results
indicated a significant (ANOVA, P < 0.05) improvement of the
signal-negative mutant’s survival when co-cultured with the
parental strain but not when co-cultured with the response-
negative mutant (Figure 4C). This indicates that the fitness of
the signal-mute strain depended of the presence or absence of
cells with active Agr systems and that the parental strain provided
a benefit to this mutant. In addition to this, CI measurements
showed that under biotic conditions, the CI of the response-
negative mutant co-incubated with the parental strain signifi-
cantly (ANOVA, P < 0.05) decreased over time (Table 3). Under
these conditions, the parental strain had a significant competi-
tive advantage over the response-negative mutant. The inability
to respond to Agr communication was detrimental to the sur-
vival of the response-negative mutant. This is supporting the
idea that the Agr communication system is important for com-
petitiveness of L. monocytogenes in soil when complex microbial
communities are active. When the signal-negative mutant and
the parental strain were co-inoculated, the analysis of variance

Table 2 | Competitive Indexes of co-cultured listerial strains over a

14-days period in sterilized soil microcosms.

Time Response-negative Signal-negative Response-negative

(Days) mutant/parental mutant/parental mutant/signal-

strain strain negative mutant

0 1 1 1

2 1.91 3.21 3.74

4 1.50 1.37 1.03

7 1.81 1.13 1.63

14 1.67 1.68 1.12

* Indicates when the CI significantly differed from the time 0 (repeated-

measures ANOVA, Tukey, P < 0.05).

FIGURE 3 | Dynamics of (A) the parental strain, (B) the

response-negative mutant and (C) the signal-negative mutant

populations in sterilized soil microcosms. (�) Single culture, ( ) co-culture

with the parental strain, ( ) co-culture with the response-negative mutant,
( ) co-culture with the signal-negative mutant. Error bars represent the
standard deviation from three replicate samples value.
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FIGURE 4 | Dynamics of (A) the parental strain, (B) the

response-negative mutant and (C) the signal-negative mutant

populations in biotic soil microcosms. (�) Single culture, ( ) co-culture

with the parental strain, ( ) co-culture with the response-negative mutant,
( ) co-culture with the signal-negative mutant. Error bars represent the
standard deviation from three replicate samples value.

Table 3 | Competitive Indexes of co-cultured listerial strains over a

14-days period in biotic soil microcosms.

Time Response-negative Signal-negative Response-negative

(Days) mutant/parental mutant/parental mutant/signal-

strain strain negative mutant

0 1 1 1

2 0.54 0.31* 0.80

4 0.20* 0.31 0.50

7 0.25* 1.26 0.49

14 0.26* 1.74 1.95

* Indicates when the CI significantly differed from the time 0 (repeated-

measures ANOVA, Tukey, P < 0.05).

showed that the CI did not significantly vary over the 14 days
of the experiment except after 2 days of incubation where the
CI of the signal-negative mutant was significantly lower than the
parental strain (P < 0.05) (Table 3). These results suggest that, at
later stages of incubation, the fitness of the signal-negative mutant
was similar to the fitness of the parental strain during co-culture,
confirming that the presence of the parental strain improved
competitiveness of the signal-negative mutant. Finally, when the
two mutants were tested in biotic soil microcosms, the CI did
not vary significantly over time (Table 3) meaning that none of
the mutants took advantage over the other during the 14 days of
incubation.

These results show first of all that signal molecules accumulate
to levels sufficient to promote induction of the Agr communi-
cation system. The minimal threshold required to induce com-
munication and cell-density-dependent gene expression depends
on properties of the environment such as water availability, mass-
transfer (Dulla and Lindow, 2008) and cell distribution (Hense
et al., 2007). Under specific environmental conditions, with
restricted diffusion of signal molecules, quorum can be reached
even in small size populations. For example, on the surface of
leaves, as few as 10 aggregated cells of Pseudomonas syringae
can reach the quorum size (Dulla and Lindow, 2008). The local
characteristics of soil such as the rates of diffusion and degra-
dation of signal molecules and the cell density could generate a

social environment propitious to communication between cells
of L. monocytogenes even if present in small size populations.

Secondly, these results suggest that cells of the signal-mute
population perceive and integrate signals produced by the
parental strain into a concerted Agr response that restored the
fitness of the signal-mute mutant. Such improvement was not
observed with the response-negative mutant suggesting that
under these experimental conditions, the Agr communication
system regulates intracellular factors (private goods) rather than
exo-products (public goods). Production of private goods pro-
motes fitness advantage at the level of the individual cell in the
bacterial models Pseudomonas aeruginosa and Bacillus subtilis
(Dandekar et al., 2012; Darch et al., 2012; Oslizlo et al., 2014).
Control of private goods by the Agr communication system is
supported by results of transcriptomic analyses. Indeed, gene
expression profile of the response-negative �agrA mutant indi-
cated that deletion of agrA resulted in deregulations of amino
acids, purine, and pyrimidine synthesis pathways and nitrogen
transport (Garmyn et al., 2012). In soil, adaptation of L. mono-
cytogenes requires an extensive reprofiling of gene expression
(Piveteau et al., 2011) and genes coding proteins involved in cel-
lular processes (transport proteins) and intermediary metabolism
(specific pathways for metabolism of carbohydrates) including
chitinases and β-glucosidases are upregulated. In the telluric envi-
ronment where nutrients can be scarce, bacteria must be able to
use a large range of carbon and nitrogen sources, for example
cellulose and by-products of its hydrolysis (vegetal residues) and
chitin (arthropod exoskeleton and cell wall of fungi) polymers
largely represented in nature, and to synthesize specific enzymes
for their catabolism. The ability of L. monocytogenes to acquire
and use these energy sources could be critical for its saprophytic
life in soil.

Recently, chitin hydrolysis by L. monocytogenes was reported to
be under the control of the Agr System (Paspaliari et al., 2014). In
our experiment, although chitin hydrolysis could generate public
goods, we did not evidence any detrimental effect of the presence
of mutants to the fitness of the parental strain. Agr mutants did
not seem to act as cheaters exploiting the benefit of cooperation
under our experimental conditions. In soil, cellular density may
be locally inappropriate to gain benefit of cooperation. Others
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have shown that induction of private goods can be dominant
and mask the benefits of public goods (Dandekar et al., 2012).
Considering social traits are vulnerable to cheaters, in popula-
tions of L. monocytogenes, Agr mutants should be isolated from
environments where Agr communication mediates social traits.
However, at the moment, no environmental or clinical isolates
of L. monocytogenes has been reported with mutations in agrB-
DCA. On the opposite, P. aeruginosa cheaters have been isolated
from specific, confined environments where diffusion of signal
molecules is low and where the pathogen is able to settle for a
long period (Sandoz et al., 2007). Characteristics of the various
environments where most isolates of L. monocytogenes have been
collected so far are not propitious to the emergence of cheaters.

CONCLUSION
The results reported here give new insights into the role of the Agr
communication system in complex natural settings. First of all,
the Agr communication system is required for optimal survival of
L. monocytogenes in soil; secondly, it provides a benefit to L. mono-
cytogenes populations in soil; thirdly, in the natural environment,
production of signal molecules triggers a response in the receiv-
ing cells; and fourthly, the Agr system controls private goods. The
question of whether the Agr system is a social trait of listerial pop-
ulations remains to be investigated further. Indeed, the fact that
the Agr system controls private goods does not exclude that it also
controls public goods in specific habitats of L. monocytogenes.
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