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Abstract: Spectral measurements are employed in many precision agriculture applications, due to
their ability to monitor the vegetation’s health state. Spectral vegetation indices are one of the main
techniques currently used in remote sensing activities, since they are related to biophysical and
biochemical crop variables. Moreover, they have been evaluated in some studies as potentially
beneficial for detecting or differentiating crop diseases. Flavescence Dorée (FD) is an infectious,
incurable disease of the grapevine that can produce severe yield losses and, hence, compromise the
stability of the vineyards. The aim of this study was to develop specific spectral disease indices
(SDIs) for the detection of FD disease in grapevines. Spectral signatures of healthy and diseased
grapevine leaves were measured with a non-imaging spectro-radiometer at two infection severity
levels. The most discriminating wavelengths were selected by a genetic algorithm (GA) feature
selection tool, the Spectral Disease Indices (SDIs) are designed by exhaustively testing all possible
combinations of wavelengths chosen. The best weighted combination of a single wavelength and a
normalized difference is chosen to create the index. The SDIs are tested for their ability to differentiate
healthy from diseased vine leaves and they are compared to some common set of Spectral Vegetation
Indices (SVIs). It was demonstrated that using vegetation indices was, in general, better than using
complete spectral data and that SDIs specifically designed for FD performed better than traditional
SVIs in most of cases. The precision of the classification is higher than 90%. This study demonstrates
that SDIs have the potential to improve disease detection, identification and monitoring in precision
agriculture applications.

Keywords: spectral analysis; feature selection; genetic algorithms; classification; vegetation indices;
vineyard; diseases

1. Introduction

Plant pathogens pose a major threat to crops and reduce yields worldwide [1]. Marks occurring
due to two different infections can be quite similar. Also, patches resulting of the same infection do not
appear the same way depending on the crop variety and surrounding conditions. Thus, identifying
crop diseases based on symptomatology alone is a complicated and subjective task and is often not
sufficient. Additional laboratory tests are usually required to confirm the visual diagnosis.

Since 2013, about half of the French vineyard (400,000 ha) is placed in compulsory control zone
against the FD and its insect vector [2]. The FD has also spread to other southern European countries
(Italy, Portugal, Serbia and Switzerland) where it induced serious yield losses [2,3] and was declared
as a quarantine body by the European Union. FD disease may result in the deterioration of the
European grape quality. When FD is identified, massive amounts of pesticides are applied to prevent
the propagation of the infection. This implies other problems such as chemical pollution and soil
contamination. In order to efficiently apply pesticides, detecting and mapping initial established
symptoms of diseases seems crucial.
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Traditional methods for damage identification in crops include, first, visual inspection, a subjective
and time-consuming approach particularly when large fields are scouted; second, laboratory-based
techniques (Enzyme Linked Immunosorbent Essay (ELISA) or Polymerase Chain Reaction (PCR)),
laborious biological techniques that require a strictly defined protocol in order to give a reliable
result. Conversely, recent Remote sensing (RS) technology is capable of continuously analyzing
information acquired by a device placed at a distance from the phenomenon of interest. RS devices
can be grouped into two categories: imaging and non-imaging devices. In the first category, we find
Hyperspectral/Multispectral Imaging, Fluorescence Imaging, Thermal Imaging and RGB Imaging. In the
second category, we have Visible/Near Infra-Red Spectroscopy, Thermal Spectroscopy and Fluorescence
Spectroscopy. RS techniques were exploited in the agricultural field in general [4,5] and have shown
great potential in crop monitoring and yield mapping by providing new techniques that can replace
or enhance classical approaches used in cultivar management [6,7]. Published scientific literature on
the use of RS techniques to detect diseases are numerous. Hyperspectral Imaging was used by [8] to
detect fusarium infection and by [9] to identify pathogens and necrosis in sugar beet. The authors in [10],
used Multispectral Imaging to detect Huanglongbing in citrus trees. The study [11] consisted on using
near-range and aerial hyperspectral sensors to detect fungal diseases. Other researchers combined existing
techniques, for example, in [12] hyperspectral reflectance and multi-spectral imaging techniques were
used together for fungal diseases detection in arable crops. Spectral reflectance is a valid tool to monitor
vegetation’s health status. In fact, infections induce changes in pigments [13,14], water content and tissue
functionality. These changes often alter the spectral characteristics of leaves. The spectral reflectance
from sugarcane infected by thrips (Fulmekiola serrata Kobus) was significantly different between several
damage severity levels and the highest difference occurred in the red edge region [15]. Other researchers,
such as in [16], also studied reflectance alteration to identify leaf blight in rice.

One way to analyze vegetative spectral modifications due to an infection is the use of spectral
vegetation indices (SVIs), calculated as ratios of reflectance at different wavebands. Many researchers
investigated the potential of SVIs in detecting diseases. For example, [17] studied some sugar
beet fungal diseases, [18] analyzed basal stem rot infection in oil palm trees. Focusing mainly on
grapevines, [19], analyzed the spectral reflectance of red-berried leaves infected by Grapevine Leaf
Roll disease (GLD) and found a set of variables capable of detecting pathogen presence. Another study
was conducted by [20], it identified a feature vector made of 11 indices, able to spectrally differentiate
healthy from GLD infected data.

In the above-mentioned studies, the SVIs used are common ones, however, the impact of plant
diseases on the physiology and phenology of plants, varies with the host-pathogen interaction and each
disease may influence the spectral signature in a different way. Common SVIs are not disease-specific
(or disease-dependent); hence, it seems beneficial to design special indices for each infection (SDIs), as
these might simplify the disease detection by spectral sensors. SDIs, unlike general SVIs, are designed
to identify a specific damage in plants. They couple information from parts of the electromagnetic
spectra which are characteristic of an infection and not visible to the human eye. Therefore, they may
have the potential to automate the disease detection procedure, not only replacing to some extent the
pathologist but also predicting the presence of an infection before its symptoms become noticeable.

In our study, spectral reflectance was acquired under production conditions, directly in the field.
Furthermore, unlike other research works, that tested only one variety, we took into consideration
4 different grapevine varieties (2 red-berried grapevine and 2 white-berried grapevine). Based on
the above background, the main objectives of this paper were (i) to identify disease specific single
wavelengths and wavelength differences based on a GA feature selection tool, (ii) to combine these
specific wavelengths to spectral disease indices and (iii) to compare the accuracy of the developed
indices with respect to common SVIs.
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2. Materials and Methods

2.1. FD Grapevine Disease and Identification Tests

The distinction between different grapevine diseases is a complicated task [21]. In fact,
various diseases can cause almost identical symptoms; also, different symptoms may appear due to
the same virus depending on the grapevine variety. Furthermore, marks can be the result of a fusion of
many infections affecting the plant at the same time. Some factors such as bad weather conditions,
nutrient deficiencies, pollution and pesticides can produce expressions indistinguishable from those of
diseases; moreover, the time of infection and the overall environment can affect the appearance of signs
on leaves. Present in the national territory since the mid-twentieth century, FD disease is transmitted
to the vine by the Scaphoideus Titanus leafhopper and is progressing regularly in France [22].

Three symptoms must be present simultaneously (some are shown in Figure 1) and on the same
branch to conclude the presence of FD [2–23]: the change in leaf coloration, the absence of lignification of
the new shoots and the mortality of the inflorescences and the berries. For more details, [24] have reviewed
in their paper the biology and the ecology of FD. In this study, we are assessing the possibility of FD
detection based exclusively on foliar symptoms by employing spectral technology. The FD is difficult to
detect because the characteristic symptoms usually appear at least one year after inoculation, not necessarily
every year, nor on all the branches. In addition, grapevine varieties have different sensitivities with respect
to FD, so the symptoms are not expressed the same fashion. Mainly, the discoloration of leaves varies
according to the grape varieties (yellow for white-berried grapevines, red for red-berried grapevines).
Other complications that arise when detecting FD is the similarity between its symptoms and those of
other yellows of the vine such as ‘Bois Noir’ (BN); however, new chemical methods based on Polymerase
Chain Reaction (PCR) are capable of detecting and differentiating BN from FD.

When FD is diagnosed in the field and in order to control the overall risk, uprooting contaminated
vines regularly and applying pesticides to limit the population of leafhoppers, are the currently
applied approaches.
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Figure 1. Some symptoms of FD on leaves: a red discoloration on a red grapevine variety (a) and a
yellow discoloration on a white grapevine variety (b); windings of leaves can also be noticed.

2.2. Sampling Set-Up

In 2016, spectral signatures were considered from Provence-Alpes Côte d’Azur (PACA) French
region (Figure 2). Two acquisition campaigns were conducted at the time in the PACA region. The first
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one took place on the 9th of August, where, symptoms affected only parts of the leaves. The second
one took place on the 27th of September, where symptoms affected complete leaves.
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Figure 2. Vineyard distribution and S. titanus presence in France (from [24] modified).

Four grapevine varieties were tested, 2 red-berried ones (Marselan, Grenache) and 2 white-berried
ones (Vermentino, Chardonnay). Red-berried fields were measured first in the morning from (10:00 to
12:00) and white-berried fields were measured next in the afternoon (14:00 to 16:00).

Measurements were performed on 2–4 leaves per grapevine and 2–4 measurements were made
on each leaf. Four diseased and four healthy grapevines were considered for each grapevine variety.
In total, there were 213 diseased and 201 healthy samples (63 Diseased Grenache and 64 Healthy
Grenache; 63 Diseased Marselan and 64 Healthy Marselan; 47 Diseased Vermentino and 40 Healthy
Vermentino, 42 Diseased Chardonnay and 34 Healthy Chardonnay). A range of healthy leaves of
different ages was selected; however, for the infected leaves, a set is chosen in order to get a complete
and representative range of FD symptoms. In order to ensure timely follow-up, the grapevines
were located using a GPS and leaves were labeled. We tried to consider the same leaves during
both acquisition campaigns but after testing them in August, leaves were not necessarily present in
September; they either naturally fell or were cut by the winegrower. Thus, when the leaf was not
found, we considered another candidate located on the same branch.

An inspector from the Regional Federation of Defense against Pests of PACA was there to confirm
the presence of the disease and its severity stage. Furthermore, extra laboratory tests (PCR analysis)
were done after the end of the acquisition campaigns to support the inspector’s claim.

2.3. Reflectance Measurements

Spectral reflectance is the ratio of incident to reflected radiant flux measured from a surface
over a defined range of wavelengths. Spectral reflectance measurements from leaf surfaces, in this
study, were acquired using a portable Spectro-radiometer (FieldSpec 3, Analytical Spectral Devices,
Boulder, CO, USA). Measurements were made on each leaf using a plant probe, specially designed
with a low power source, for sensible vegetation surfaces, leaving no observable damage. It has
the advantage of reducing the effect of environmental light scattering to insure better measurement
accuracy. Each sample data was taken every 1 nm from 350 nm to 2500 nm. This was the result of
an interpolation performed by the software because the true spectral resolution of the instrument is
about 3 nm at 700 nm wavelengths and about 10 nm at 1400 or longer wavelengths. Before starting the
acquisitions, the spectro-radiometer was warmed up for a minimum of 20 min, then a calibration was
performed to absolute reflectance using a Teflon calibration disk. The number of samples for Spectrum
was set to 30, the number of samples for Dark Current and White Reference were set to 100. It took
approximately four hours to complete the measurements directly in the field.

Spectral measurements were taken from the same locations on leaves (shown in Figure 3) for
both acquisition campaigns and one measurement is taken per location. The locations were chosen
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according to the disease that has tendency to start growing between the veins first. A range of 2–4
measurements is considered depending on the leaf surface with respect to the probe diameter. When
the leaf is small, only 2 reflectance spectra from 2 locations are acquired and when the leaf is wide
enough, 4 spectral tests are taken from all the 4 locations. The same procedure is applied for healthy
leaves and infected leaves.
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Figure 3. Locations of the measurements on a sample leaf.

2.4. Spectral Data Analysis for Disease Detection

Each spectral measurement, acquired in this study, is the reflectance in a large number of
contiguous narrow bands (350–2500 nm). Analyzing such high dimensional data is a complex
and time-consuming task; therefore, reducing the dimensionality of the data, by selecting optimal
wavebands, seems crucial. Techniques, such as SDIs, that uses only few spectral bands, are useful in
the hyperspectral data analysis.

2.4.1. Spectral Disease Vegetation Indices Development Based on GA Feature Selection (SDIs)

In this section, the procedure is detailed from the acquisition of spectral signatures till the creation
of disease-specific (or disease-dependent) indices. Figure 4 shows the approach that was adapted to
compute and to evaluate SDIs.
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Figure 4. Systematical approach and development of SDIs from hyperspectral reflectance data.

After the acquisition of the spectral signatures of leaves from the field, we obtained a set of healthy
and diseased observations ranging from 350 to 2500 nm, with a total of 2151 features or wavelengths.
Since the spectral data were noisy at the extremities, values between 400 nm and 2100 nm were only
considered and adopted, giving in total 1901 wavelengths. Following this, the spectral resolution
was reduced by a factor of 3 due to high correlation between adjacent wavelengths. In consequence,
only 633 wavelengths were considered for the rest of the analysis (Figure 5).

From the modified set of observations obtained, the best wavelengths were chosen by applying a GA
feature selection tool. Genetic Algorithms (GA) provides a valid tool for solving optimization and search
problems; it imitates the natural human evolution process [25]. GA manipulates one population to produce
a new one based on some genetic operators. The five important steps in GA [26] are: (1) chromosome
encoding, (2) fitness evaluation, (3) selection mechanisms, (4) genetic operators and (5) criteria to stop the
GA (Figure 6).
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Human genetics vocabulary is often used in GA, chromosomes are the bit strings (individuals that
form the population), gene is the feature [27]. In this study, a binary space is assumed: a gene value
“1” indicates that the feature indexed by the “1” is chosen. Contrarily, (i.e., if it is 0), the feature is not
chosen for evaluation. At the beginning, a matrix of dimension (Population size (300 samples) ×Number
of wavelengths (633 spectral features)) containing random binary digits is created, which forms the
initial population. A fitness function evaluates the discriminative capacity of the population, made by
chromosomes, each selecting a subset of features. In this work, the loss obtained by cross-validated
SVM (Support Vector Machine) classification model is used. Individuals are ranked, based on the values
reported by the fitness function; then, the Elite kids with the best fitness values, are selected to survive
and are, hence, transferred to the next generation. The selection operation provides individuals for
genetic cross-over and mutation; it ensures that the population is being constantly improved. Tournament
Selection was used here due to its simplicity, speed and efficiency. Cross-over consists on combining
two parent individuals to form children in the new generation. XOR operation is performed in this
case since parent chromosomes are binary [28]. The number of new children produced due to the
cross-over operator, is defined based on the cross-over fraction. Mutation is another genetic operator and
induces a perturbation of chromosomes by applying a bit flipping procedure depending on the mutation
probability. Mutation ensures genetic diversity, eliminating premature convergence. A uniform mutation
is applied in this study. The number of new children produced due to the mutation operator, is defined
by subtracting the population size from the number of elite children and the number of children obtained
by cross-over. Each new generation, formed by GA, contains individuals from Elite kids, crossover kids
and mutation kids [29]. The new population is evaluated again and the GA continues to evolve until
the stopping condition is met. Two stopping conditions are applied in this study: Maximum Number of
Generations and Stall Generation Limit. GA terminates if the average changes in the fitness values among
the chromosomes over Stall Generation Limit generations is less than or equal to tolerance function.
The goal is to insure genetic homogeneity. All the GA parameters used in our study are described in
Table 1.
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Table 1. Numerical values of different GA parameters considered in this study.

GA Parameter Value

Population size (Number of Chromosomes) 300
Genome length (Number of genes/features) 300

Population type Bit strings
Fitness Function SVM-Based Classification Error

Number of generations 300
Stall generation limit 50

Crossover Arithmetic
Crossover Probability 0.8

Mutation Uniform Mutation
Mutation Probability 0.2

Selection scheme Tournament of size 2
Elite Count 2

When GA terminates, one individual is chosen providing the convergence. This individual
contains the optimal features, it is a binary set with “1” meaning that the feature at this specific index
is considered. Since the initial population is randomly created, the number of selected wavelengths
by the GA tool cannot be predicted and is function of the data, in fact, the GA keeps evolving until
convergence and the number of features might be big. In order to reduce computational cost, we
averaged the selected wavelengths chosen by GA to obtain only 8 wavelengths representative of the
set (Figure 7). However, this feature averaging step is optional and all wavelengths selected by GA can
be used in the feature combination step.
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The indices to be developed aim at identifying a specific plant disease. Thus, a combination
of a single wavelength and a normalized wavelength difference seemed suitable. A weighting
factor for the single wavelength was determined and the possible weights were: −1, −0.5, 0.5
and 1. An exhaustive search of the best SDI is undertaken, combinations of an individual
wavelength and a normalized wavelength difference are tested. Each combination of 3 wavelengths
and a weighting factor forms an index (Equation (1)). When feature averaging is applied:
8 wavelengths× 7 wavelengths× 6 wavelengths× 4 weighting factors = 1344 possible combinations or
SDIs were tested. The ideal case would be, again, to consider directly the wavelengths selected by GA
with no averaging and evaluate all possible combinations. The indices were assessed for their classification
ability using a 10-fold cross validation SVM model and the configuration providing the best classification
precision is retained, this optimal configuration is the best SDI.

SDI = ab + (c + d)/(c − d) (1)

where a, c, d are wavelengths chosen from the pool of the 8 best averaged wavelengths (a 6= c 6= d)
and b is the weighting factor.
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2.4.2. Common Spectral Vegetation Indices computation (SVIs)

In the context of vegetation status monitoring, identifying a specific disease or stress, can be done
using spectral reflectance measurements. Discrimination between healthy and infected plants is performed
based on some optimal wavelengths or a combination of wavelengths. The principal aim of SVIs is
to highlight a certain property of the vegetation; they are combinations of reflectance at 2 or many
wavelengths. Several vegetation indices have been proposed in the scientific literature, most of them relate
the physiological status of crop to hyperspectral data through their correlation to biochemical constituents
(chlorophyll, carotenoids, water, cellulose, lignin, dry matter . . . ). Pigment-specific vegetation indices
are, currently, an effective data analysis tool for disease discrimination. The ability to identify FD with
vegetation indices, found in the literature, was tested in this segment. The classification accuracies of the
NDVI, the PRI, the ARI, the SIPI, the mCAI, the PSSRa, PSSRb and PSSRc, the GM1 and GM2, the ZTM
and the TCARI/OSAVI were compared to those obtained by SDIs (Table 2).

Table 2. Typical SVIs in literature and applied in this study.

Index Name Formula Association with Relevant Plant Pigment Reference
Example

Normalized Difference
Vegetation Index (NDVI)

NDVI_705 = (R750 −
R705)/(R750 + R705)

NDVI is a very typical index. Positive values suggest
vegetated areas. [30,31]

Photochemical Reflectance
index (PRI)

PRI = (R570 −
R531)/(R570 + R531)

PRI index is a function of the reflectance at the 531
nm, this reflectance is related to xanthophyll. When
the xanthophyll activity is high, the light use
efficiency is low, meaning a possible stress occurred.

[32–34]

Anthocyanin Reflectance
Index (ARI) ARI = (1/R550) − (1/R700) ARI index is designed to estimate the stack of

anthocyanin in senescing and stressed leaves. [35]

The structure insensitive
pigment index (SIPI)

SIPI = (R800 −
R445)/(R800 + R680)

The SIPI index is responsive to the ratio of
carotenoids to chlorophyll. It is very practical to use
when the canopy structure or leaf area index are
inconsistent.

[36,37]

Modified chlorophyll
absorption integral (mCAI)

mCAI=(R545 + R752)/2 × (752 −
545) − (∑545 − 752 (1.158 × R))

The mCAI is sensitive to the chlorophyll content.
It calculates the area between a straight line
connecting two points (the green peak at 545 nm and
752 nm) and the curve itself

[38]

Pigment specific simple
ratio chlorophyll a (PSSRa) PSSRa = R800/R680 The pigment specific ratio indices were suggested to

estimate the pigment’s content at the leaf level.
Samples from trees at different senescence stages
were studied aiming to empirically determine the
best individual wavebands for pigment assessment
(680 nm for chlorophyll a, 635 nm for chlorophyll b,
470 nm for the carotenoids).

[36,39,40]

Pigment specific simple
ratio chlorophyll b (PSSRb) PSSRb = R800/R635 [36,41,42]

Pigment specific simple
ratio carotenoids (PSSRc) PSSRc = R800/R470 [36–42]

Gitelson and Merzlyak
1 (GM1) GM1 = R750/R550

GM1 and GM2 were created to measure the
chlorophyll content in vegetation leaves.

[43,44]

Gitelson and Merzlyak
2 (GM2) GM2 = R750/R700 [45]

Zarco-Tejada Miller (ZTM) ZTM = R750/R710
ZTM is a Red edge index highly correlated to
chlorophyll content. At the canopy level, it has the
advantage of minimizing shadow effects.

[46,47]

Ratio of the Transformed
Chlorophyll Absorption in
Reflectance Index and
Optimized Soil-Adjusted
Vegetation Index
(TCARI/OSAVI)

TCARI = 3 × ((R700 − R670) − 0.2
× (R700 − R550) × (R700/R670))
OSAVI = (1 + 0.16) × (R800 −
R670)/(R800 + R670 + 0.16)

A combination of the Transformed Chlorophyll
Absorption in Reflectance Index (TCARI) and the
Optimized Soil-Adjusted Vegetation Index (OSAVI).
It is sensitive to chlorophyll content variations and
resistant to variations in Leaf Area Index (LAI) and
underlying soil background effect.

[48,49]

2.5. Classification

There are hundreds of classifiers in the literature and it is often difficult for researchers to choose
an appropriate classifier for a certain application. The easiest approach that is used to address this issue
is to try several classifiers and select the one having the highest accuracy. In this work, we selected
only one classifier, the Support Vector Machines since it is one of the most widely used classifiers in
the field and gave good performance in several applications [50,51].
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2.5.1. Support Vector Machines (SVM)

SVM is a supervised machine learning algorithm, mostly used to solve classification problems.
It consists on defining a boundary (line/hyperplane) that best separates two classes [52]. The closest
points to the boundary are called support vectors, the margin is the perpendicular distance calculated
from the boundary to the support vectors. A maximal-margin classifier defines a hyperplane separating
two classes and having the largest margin. However, a soft-margin classifier allows points to lie
between the margins or on the wrong side of the plane. It is usually used when classes are not
fully separable.

In practice, SVM are implemented using kernels. When applying non-linear Kernels (polynomial or
radial), non-linear boundaries are created and the accuracy improves. Due to its flexibility, the Radial Basis
Function (RBF) kernel is however the most used, so we employed it also in our study. One of the most
known methods for fitting SVM is the Sequential Minimal Optimization (SMO) method. The concept and
the applications of SVM are discussed in detail in [53].

2.5.2. Data Configuration

In our study, we employed a binary classification involving only 2 classes: we considered the
healthy group vs. the diseased group in total (medium infested measurements from the August
acquisition campaign + high infested measurements from the September acquisition campaign).
Since there are four grapevine varieties tested in this study (Marselan, Grenache, Vermentino and
Chardonnay), it is possible to analyze the measurements of each variety alone, or measurements can be
combined. Based on the grapevine color, we can analyze red types and white types; it is also feasible
to combine all leaf measurements together (Figure 8).
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3. Results

Spectroscopic and imaging techniques have demonstrated good potential in detecting disease
and stress in crops. Currently, researchers tend to apply spectral vegetation indices (SVIs) to identify
different plant diseases.

3.1. Reflectance Spectra of Diseased Grapevine Leaves

When comparing spectral signatures of healthy and infected red/white berried leaves in Figure 9,
obvious differences can be depicted, suggesting that the spectral response was affected by the
infestation. For the Marselan variety (a red-berried variety), the healthy spectra were higher than the
infested ones in the visible (VIS) region (mainly between 500–700 nm) but the opposite occurred in the
region NIR (800–1300 nm) and in the IR region (>1300 nm). It seems like when the infestation arises,
the spectral signature is lower in the VIS region and higher in the NIR-IR region, the same trend was
also observed for the Grenache type (data not shown here). On the other hand, for the Chardonnay
variety (a white berried variety), the healthy spectra were lower than the infested ones in the VIS region
(mainly between 500–700 nm) but the opposite occurred in the region NIR (800–1300 nm) and in the
IR region (>1300 nm). It seems like when the infestation occurs, the spectral signature is higher in the
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VIS region and lower in the NIR-IR region, the same trend was also observed for the Vermentino type
(data not shown here). These changes prove that the spectral signature depends on the pathogen-host
interaction. In other words, the grapevine variety does not show the same pattern when the same
infestation occurs.

The mean value from a 10-fold cross-validation was reported for the classification; in this manner,
all the data were taken into account and variances between different experiments under similar
conditions were considered.

The model accuracy defined the percentage of testing set samples correctly classified and the False
Negative Rate (FNR) defines the percentage of negative results that are, in fact, positive; in contrast,
False Positive Rate (FPR) defines the percentage of positive results that are, in fact, negative. When plotting
on a single graph, the FPR values on the abscissa and the TPR values on the ordinate, the resulting
curve is called ROC (Receiver Operating Characteristic) curve, AUC (Area Under Curve) refers to the
area under the curve. The advantage of using dimension reduction techniques based on GA will be
demonstrated next.
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3.2. No Dimension Reduction, Use of Complete Spectral Data

In this section, all spectral data are considered (400–2100 nm) in the analysis; this means that no
dimension reduction method is applied in this case.

Table 3 presents the result of using complete spectra measurements from August (slightly infected
leaves). The best classification accuracy is for Vermentino (93.75%) and the worst is for Marselan variety
(70.97%). The Grenache and Chardonnay measurements gave similar precision (90.63%). What can be
critical in disease diagnosis is probably the FNR, which means that a diseased case was claimed to
be healthy. In general, the lower the FNR, the better the classifier is. Here, the best FNR was also for
the Vermentino (6.67%). When considering combined measurements depending on the color of the
grapevines, the observations of the White measurements were better than Red ones (92.19% > 87.3%).

Table 4 presents the result of using complete spectra measurements from September (highly
infected leaves). The accuracy from September, in general, is better than that of August for all kinds of
measurements. This seems logical, since symptoms at the end of the season become well established,
diseased spectral reflectance are more influenced by the disease and can be more easily discriminated
from healthy ones. White berried grapevines performed better that red-ones when each grapevine
type is considered alone or combined (Marselan-Grenache 94.79–95.06% vs. Vermentino-Chardonnay
98.18–97.73%; Red 96.61% < White 98.99%). Furthermore, for White-berried leaves no FPR was reported.
The hardest classification scenario is when all measurements were combined because observations
from all grapevine types having different characteristics were put together. However, we obtained a
satisfying SVM precision (96.01%) and a good AUC (0.99).
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Table 3. Results of using complete spectra in classifying different groups of spectral data acquired in
the August acquisition campaign (Severity of infestation = 1).

Grapevine Variety Accuracy (%) FNR (%) FPR (%) AUC

Marselan 70.97 27.27 30.00 0.82
Grenache 90.63 7.14 11.11 0.73

Vermentino 93.75 6.67 5.88 0.93
Chardonnay 90.63 12.50 6.25 0.95

Red 87.30 7.69 16.22 0.96
White 92.19 9.38 6.25 0.93

All 88.19 13.85 9.68 0.95

Table 4. Results of using complete spectra in classifying different groups of spectral data acquired in
the September acquisition campaign (Severity of infestation = 2).

Grapevine Variety Accuracy (%) FNR (%) FPR (%) AUC

Marselan 94.79 4.35 6.00 0.99
Grenache 95.06 2.38 7.69 0.97

Vermentino 98.18 3.23 0.00 0.96
Chardonnay 97.73 3.85 0.00 0.96

Red 96.61 2.22 4.60 0.99
White 98.99 1.75 0.00 0.93

All 96.01 2.08 6.06 0.99

Table 5 presents the result of using complete spectra measurements from August in addition to
those from September (slightly + highly infected leaves). Here the accuracy in general was better than
considering moderately infected leaves (from August) but was less than using only highly infected leaves
for the analysis (from September). The classification’s accuracy was above 92% for all cases: the best
was for Chardonnay (97.37%), no FPR was found for this variety. When combining measurements was
applied, similar results were found for Red, White and All configurations (around 95–96% of accuracy).

Table 5. Results of using complete spectra in classifying different groups of spectral data acquired in
the August and September acquisition campaigns (Severity of infestation = 1 & 2).

Grapevine Variety Accuracy (%) FNR (%) FPR (%) AUC

Marselan 92.91 9.23 4.84 0.98
Grenache 96.77 1.72 4.55 0.89

Vermentino 96.55 2.22 4.76 0.97
Chardonnay 97.37 4.65 0.00 0.97

Red 96.41 3.28 3.88 0.99
White 95.09 5.56 4.11 0.93

All 95.65 1.98 6.60 0.99

3.3. Dimension Reduction Using Vegetation Indices (SVIs)

In this section, the results of the classification using the common SVIs are presented. Only the
best SVIs will be presented next, for more details refer to Tables A1–A3.

Table 6 presents the result of calculating the best traditional SVI from August measurements
(slightly infected leaves). The classification accuracies were satisfying (>90%) and they were more
advantageous than using the complete spectra. No FNR was reported for Grenache leaves. The best
SVIs were ARI, ZTM, TCARI/OSAVI. ARI is convenient for Red-grapevine varieties when considered
individually or combined. ZTM behaved well for Vermentino and Chardonnay but when combined,
TCARI/OSAVI performed better. This index was also robust when all observations are considered
together (92.13%).
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Table 6. Results of using the best SVIs in classifying different groups of spectral data acquired in the
August acquisition campaign (Severity of infestation = 1).

Grapevine Variety Accuracy (%) FNR (%) FPR (%) AUC Best SVIs

Marselan 90.32 11.11 7.69 0.94 PRI-ARI
Grenache 96.88 0.00 6.25 1.00 ARI

Vermentino 93.75 5.88 6.67 0.94 ZTM
Chardonnay 90.63 11.11 7.14 0.91 NDVI-ZTM

Red 95.24 5.88 3.45 0.99 ARI
White 92.19 11.11 3.57 0.92 TCARI/OSAVI

All 92.13 13.51 1.89 0.92 TCARI/OSAVI

Table 7 presents the result of calculating the best traditional SVI from September measurements
(highly infected leaves). In this case, all accuracies were enhanced with respect to those of August
(>94%). When compared to using complete spectra, SVIs used less wavebands and gave better
accuracies except for the case of mixing all measurements together (96.01% > 94.02%). The best
results were associated with White-berried signatures and no FNR were found (97–98%). ARI, ZTM,
GM1 and mCAI accomplished best precisions. Similar to the first acquisition campaign, the index
ARI was interesting for the red-berried signatures. Moreover, ZTM was chosen for Vermentino and
Chardonnay. However, when combined, GM1 was selected. mCAI was the most robust index when
All measurements are mixed together (94.02%).

Table 7. Results of using the best SVIs in classifying different groups of spectral data acquired in the
September acquisition campaign (Severity of infestation = 2).

Grapevine Variety Accuracy (%) FNR (%) FPR (%) AUC Best SVIs

Marselan 96.88 4.00 2.17 0.9805 ARI
Grenache 97.53 2.70 2.27 0.9988 ARI

Vermentino 98.18 0.00 3.23 0.9613 NDVI-mCAI-PSSRb-ZTM
Chardonnay 97.73 0.00 3.85 0.9579 NDVI-mCAI-PSSRb-GM1-GM2-ZTM-TCARI/OSAVI

Red 98.31 2.33 1.10 0.9991 ARI
White 98.99 0.00 1.75 0.9792 ARI-GM1

All 94.20 7.52 2.80 0.9540 mCAI

Table 8 presents the result of calculating the best traditional SVI from August measurements in
addition to those from September (slightly + highly infected leaves). The performance was less than
using only spectra with well-established disease marks from September. When compared to using
complete spectra, Marselan, White-berried data were better or very similar to using complete spectra.
However, for Grenache and mixed data the use of all wavelengths was more accurate. The best SVIs
were ARI, GM1, ZTM and mCAI. ARI was again chosen to be the best SVI for classifying White grape
leaves and was also selected when red grape leaves reflectance was tested (93.23%). GM1 was found
to be interesting for Vermentino but ZTM was more convenient for Chardonnay. mCAI, like the above
case, was the most robust index when all measurements are mixed together (88.41%).

Table 8. Results of using the best SVIs in classifying different groups of spectral data acquired in the
August and the September acquisition campaigns (Severity of infestation = 1 & 2).

Grapevine Variety Accuracy (%) FNR (%) FPR (%) AUC Best SVIs

Marselan 93.70 8.70 3.45 0.9824 ARI
Grenache 91.13 13.70 1.96 0.9753 ARI

Vermentino 95.40 6.98 2.27 0.9730 GM1
Chardonnay 96.05 5.56 2.50 0.9672 GM2-ZTM

Red 93.23 11.19 0.93 0.9888 ARI
White 95.09 8.64 1.22 0.9433 ARI

All 88.41 16.96 5.98 0.9184 mCAI
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3.4. Dimension Reduction Using Spectral Disease Indices (SDIs)

The discriminatory capacity of the best single wavelengths and wavelength differences chosen
by the GA were tested. This data reduction procedure was the foundation for spectral disease index
development. In this section, the results of the classification using the SDIs are presented.

Table 9 presents the result of calculating SDIs from August measurements (slightly infected leaves).
A 100% success with no FNR in classifying individual grapevine measurements was obtained, except
for Chardonnay. When combining observations, the results were also satisfying (precision > 94.44%).
In general, better percentage was reached when applying the SDIs than using the complete spectra on
one hand and applying conventional SVIs on the other hand.

Table 9. Results of using SDIs in classifying different groups of spectral data acquired in the August
acquisition campaign (Severity of infestation = 1).

Grapevine Variety Accuracy (%) FNR (%) FPR (%) AUC
SDIs

a c d b

Marselan 100.00 0.00 0.00 1.00 702 957 2133 1
Grenache 100.00 0.00 0.00 1.00 861 2094 921 −1

Vermentino 100.00 0.00 0.00 1.00 735 2097 1029 0.5
Chardonnay 96.87 5.88 0.00 0.93 543 876 1380 1

Red 95.23 6.06 3.33 0.97 1506 2214 507 0.5
White 96.87 3.12 3.12 0.98 792 2151 654 −0.5

All 94.48 6.15 4.83 0.98 1401 2205 501 −0.5

Table 10 presents the result of calculating SDIs from September measurements (highly infected
leaves). A 100% success with no FNR in classifying leaves measurements each variety at a time and
when considering White-reflectance spectra together was obtained. In general, these accuracies are
better than those corresponding to the first acquisition campaign. However, when the red varieties are
grouped together, it seems that the ARI was better than the SDI (96.6% < 98.31%). When observations
were combined, using complete spectra gave a slightly better result than the SDI (96.01% > 94.20%)

Table 10. Results of using SDIs in classifying different groups of spectral data acquired in the September
acquisition campaign (Severity of infestation = 2).

Grapevine Variety Accuracy (%) FNR (%) FPR (%) AUC
SDIs

a c d b

Marselan 100.00 0.00 0.00 1.00 546 708 597 −1
Grenache 100.00 0.00 0.00 1.00 528 540 1383 1

Vermentino 100.00 0.00 0.00 1.00 708 1656 1755 0.5
Chardonnay 100.00 0.00 0.00 1.00 462 570 888 −1

Red 96.61 5.68 1.12 0.97 738 1650 573 1
White 100.00 0.00 0.00 1.00 726 2166 927 1

All 94.20 8.95 2.81 0.98 498 675 1581 −1

Table 11 presents the result of calculating SDIs from August measurements in addition to those
from September (slightly + highly infected leaves). No FPR was present for White-berried data.
In general, these accuracies are better than those corresponding to the first acquisition campaign.
However, in accordance with the last case, when the red varieties are grouped together, it seems that
the ARI was better than the SDI (92.03% < 93.23%). For the White-berried measurements and all mixed
ones, it seems that using complete spectra is a bit more advantageous than the SDI but with more
computation burden.
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Table 11. Results of using SDIs in classifying different groups of spectral data acquired in the August
and the September acquisition campaigns (Severity of infestation = 1 & 2).

Grapevine Variety Accuracy (%) FNR (%) FPR (%) AUC
SDIs

a c d b

Marselan 93.70 7.57 4.91 0.95 1653 2181 687 −1
Grenache 95.16 7.46 1.75 0.96 651 1944 549 1

Vermentino 96.55 6.97 0.00 0.97 687 1908 762 −0.5
Chardonnay 98.68 2.85 0.00 0.98 486 558 966 −0.5

Red 92.03 7.87 8.06 0.95 1725 2226 1485 −0.5
White 98.15 3.89 0.00 0.98 714 1404 936 0.5

All 89.37 12.79 8.37 0.92 1770 2208 2019 −0.5

4. Discussion

SDI indices were put in place in this article to improve and simplify FD disease detection in
grapevines based on hyperspectral data. At the beginning, the most significant wavebands from the
VIS, Red-edge, NIR or SWIR (Short-Wave Infrared) needed to be selected.

Feature selection is often used in data pre-processing to identify relevant features having
significance in the classification task. The results obtained in this study, confirmed the effectiveness of
the GA algorithm in improving the robustness of the feature selection procedure. In fact, GA was able
to reach a global optimum despite local peaks that might be caused by noise or interdependencies in
the data set. This conclusion was also confirmed in other studies in different fields. In [54] GA selected
the best subset of features for breast cancer diagnosis system. Furthermore, in [55] GA feature selection
algorithm was applied for hand writing recognition. The complexity of the feature set was reduced
using less features and achieved recognition rates similar to those reached when no feature selection
is applied.

After the choice of certain wavebands by the GA tool was made, the SDIs were normalized in order
to reduce the impact of change in lighting, land, crop variety or sensor specific effects. This helped
producing more robust and more generalized indices. SDIs were more advantageous than complete
spectra and SVIs in the beginning of the season (August measurements), hence, great promise for
early detection of diseases. Using complete spectra was better for the case of combined measurements
(August + September) for the Grenache, red-varieties and all data. However, the proposed indices
proved high accuracy in general with the advantage of reducing data dimensionality by speeding up
the disease detection. SDIs gave, in general, higher accuracy than SVIs but, the ARI index performed a
bit better in September measurements for red varieties and all combined data than the corresponding
SDIs. The ARI index is documented as a performant feature in many studies. The study [56] concluded
that ARI had a persistent response to yellow rust disease at 4 out of 5 growth stages and mentioned that
the ARI index was selected for diagnosis of yellow rust in other studies like the one conducted by [57].
Among the indices investigated in the research made by [58], only the ARI index could differentiate
healthy from rust infected leaves. However, it was not capable of distinguishing stem rust from leaf
rust pustules. In addition to the ARI index, ZTM, GM1, mCAI and TCARI/OSAVI were found to be
the best SVIs in this study. The ratio of the TCARI and the OSAVI indices formed a good Chlorophyll
estimator, this was done independently of Leaf Area Index (LAI) and illumination state. The ratio
demonstrated good results not only in continuous closed crop canopies [49] but also in open tree
canopy orchards [59]. Authors in [58] found that the TCARI index, was the only index capable of
discriminating stem and leaf rust, among all others. Chlorophyll content is a potential indicator of
vegetation stress because of its direct role in the photosynthesis process of light harvesting, initiation
of electron transport [46], this was confirmed in our study as the ZTM vegetation index was chosen for
white-berried data. Loss of chlorophyll in response to infestation by sap feeding insects like aphids [60]
and leafhoppers [61] has been reported earlier. GM1 was also selected in this study; in fact, differences
in reflectance between healthy and stressed vegetation due to changes in Chl; a, b levels have been
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detected previously in the green peak and along the red-edge spectral region of 690–750 nm [62].
The CAI index indicates exposed surfaces containing dried plant material [63]. Absorptions in the
2000 nm to 2200 nm range are sensitive to cellulose. It was stated in [64] that the CAI index is useful to
monitor vegetation coverage for biomass estimation.

Many studies tended to manage pest occurrence in commercially important agricultural crops by
designing new and adapted vegetation indices. Research [65] monitored damage by green bugs in
wheat by using a hyperspectral spectrometer and a digital camera. They designed 2 indices based on
possible band combinations and their correlation with the severity damage. Optimal bands were 509, 537,
572, 719, 747, 873, 901 nm. The study detailed in [66], on the other hand, used 2 or 3 narrow bands to
design hyperspectral indices in order to assess severity grades of leafhopper in cotton. Two indices gave
better results than traditional SVIs from literature and were consistent across tested fields. Interesting
bands were: 550, 691, 715, 761, 1124 nm. In the research of [67], two indices were proposed and found
to be capable of estimating leaf rust disease. The difficulty was to detect early symptoms due to the
resemblance between spectral signatures between lightly infected areas and healthy ones. Based on this
research, new indices performed better than other common SVIs. Optimal wavebands found were: 455,
605, 695 nm. (Mahlein et al., 2013) designed four SDIs and proved high specificity and sensitivity for
identifying healthy leaves Cercospora leaf spot, Sugar beet rust and Powdery mildew. Detection of early
symptoms of infection was the most difficult part in this research. Chosen bands varied from: 513, 520,
534, 570, 584, 698, 704, 724, 734 nm.

For August data, the majority of the selected bands were found in the NIR region; however, for
September data, VIS bands were mostly selected since symptoms became more visually pronounced.
In this case, bands from blue (450–520 nm), green (530–570 nm), red (580–700 nm) in the VIS were
selected. This was in accordance with [19] the 2 maximum differences in the VIS region appeared
at the green peak (550 nm) and in the red peak (680 nm) indicating less chlorophyll absorption in
the infected leaves. Furthermore, changes in Cab levels were translated as modifications occurring
over the spectral red edge region, this explains why many optimal bands were selected in the specific
range of 690–750 nm. Reflectance near 700 nm was pointed out by [68] as an essential feature of green
vegetation produced by an equilibrium between biochemical and biophysical plant characteristics.
Since plant diseases influence the chlorophyll content of crop plants, increased reflectance around
700 nm can be a first but unspecific indicator to detect diseased crops. Many chosen bands were
also mixed with the water absorption bands; the research conducted in [69], demonstrated that the
sensitivity to water content was greatest in spectral bands centered at 1450, 1940 where water has its
major absorption features.

It can be concluded, as seen from the tables, that the SDIs were dependent on the disease
infestation level and the grapevine variety considered; the best wavelengths selected were different
from one case to another. As a consequence, although the SDIs tested gave good results, there was
no single best index for FD in all situations. In fact, the sensitivity of an index differs depending on
the soil, the vegetation and the weather conditions. Therefore, no single index with the same spectral
bands was found to be applicable to quantify FD in this research. SDIs were found to be interesting for
precision agricultural applications; additional work will be needed in order to apply SDIs in practice.
The proposed indices need to be tested on different varieties of grapevines before it can be effectively
applied in precision farming. Our study enhances the ability to detect and map FD when foliar
symptoms are becoming visible, hence, further tests need to be carried on hosts which do not provide
any clear symptoms of infestation, to check if the computed SDIs are capable of predicting early the
FD occurrence. Besides, suggested SDIs need to be tested in changing environments, scales and field
conditions; other types of diseases must be also taken into consideration to investigate whether SDIs
are capable of distinguishing FD from various infestations in general and BN in particular. At the end,
it was proven, through this study that the development of indices based on spectral variations due to
vegetation diseases, is feasible.
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5. Conclusions and Perspectives

Plants display the occurrence of infections in a number of ways. RS is an effective way to detect
crop diseases, based on the fact that a pest modifies the photosynthesis phenomenon and the physical
structure of the plant, altering the absorption of light by the plant’s surface. The difference between
spectral signatures of healthy and diseased plants can be the key to identify efficient wavelengths
correlated with a specific disease. The transformation of reflectance into vegetation indices is a widely
used technique to detect leaf contents (pigments, water, ...); nevertheless, these indices, based on only
few wavelengths, showed potential for disease detection. Common vegetation indices are not yet
capable of identifying a particular disease. In this article, a data analysis technique was exposed to
design specific grapevine disease indices.

Our data set contains a large number of features, in order to reduce the cost and running time, as well
as achieving an acceptably high recognition rate, we have selected the most useful ones by applying
a GA feature selection tool. GA is one of the most advanced techniques used in the field of predictive
analysis, it is computationally expensive but it performs better than common selection techniques and
has the advantage of manipulating large data sets with no need for specific knowledge about the problem
under study. After being selected, wavelengths are then combined to design the SDI. Depending on the
disease severity, on one hand and on the grapevine variety on the other hand, a combination of a single
and normalized wavelengths is required each time to correctly identify the FD.

Our study extracted some wavelengths bands sensible to FD occurrence at the leaf-scale. Based on
these findings, it might be possible to conceive a multispectral camera, for example and mount the
sensor on a movable platform to localize infection foci in a field. However, when going from considering
leaves to examining a complete branch, or maybe the whole grapevine, some corrections need to be
taken into account. Geometric and radiometric improvements capable to solve shadowing problems,
branch structures and interfering reflectance from other surrounding objects are necessary. When applying
a multispectral sensor, we will not only have spectral information but also spatial data. Available spatial
data will enable adding advanced image processing algorithms to make the detection of FD more robust.
Actually, two other FD symptoms cannot be detected spectrally, so, in order to better conclude the presence
of the condition, additional pattern recognition algorithms can be integrated directly in the sensor to
detect the absence of lignification and the berry mortality.

In accordance with other studies, we found that SDIs performed better than traditional SVIs.
The advantages of using SDIs include the dimensionality reduction and the efficiency of computation
and processing. The proposed method for SDIs development, in this article, can be transferred to
hyperspectral data from different kinds of sensors, it can be used for other crops varieties and for
different kinds of diseases or biotic and abiotic stress of crops.
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VIS Visible
NIR Near-Infra red
PACA Provence Alpes Côte d’Azur
SVM Support Vector Machines
FPR False Positive Rate
FNR False Negative Rate
ROC Receiver Operating Characteristic
AUC Area Under the ROC
NDVI Normalized Difference Vegetation Index
PRI Photochemical Reflectance index
ARI Anthocyanin Reflectance Index
SIPI Structure insensitive pigment index
mCAI Modified chlorophyll absorption integral
PSSRa Pigment specific simple ratio chlorophyll a
PSSRb Pigment specific simple ratio chlorophyll b
PSSRc Pigment specific simple ratio carotenoids
GM1 Gitelson and Merzlyak 1
GM2 Gitelson and Merzlyak 2
ZTM Zarco-Tejada Miller
TCARI/OSAVI Ratio of the Transformed Chlorophyll Absorption in Reflectance Index and

Optimized Soil-Adjusted Vegetation Index

Appendix A

Table A1. Results of SVIs in classifying different groups of spectral data acquired in the August
acquisition campaign (Severity of infestation = 1).

Grapevine Variety SVIs Accuracy (%) FNR (%) FPR (%) AUC

Marselan

NDVI 0.8710 0.1176 0.1429 0.9580
PRI 0.9032 0.1111 0.0769 0.9160
ARI 0.9032 0.1111 0.0769 0.9412
SIPI 0.4516 0.5000 0.6667 0.4244

mCAI 0.5806 0.3889 0.4615 0.5924
PSSRa 0.5806 0.4091 0.4444 0.5126
PSSRb 0.7742 0.1875 0.2667 0.7605
PSSRc 0.4839 0.4762 0.6000 0.4244
GM1 0.5484 0.4286 0.5000 0.5462
GM2 0.8387 0.1250 0.2000 0.8992
ZTM 0.8387 0.1250 0.2000 0.9244

TCARI/OSAVI 0.8387 0.2000 0.0909 0.8193

Grenache

NDVI 0.9375 0.1053 0 0.9608
PRI 0.9375 0.1053 0 0.9608
ARI 0.9688 0 0.0625 1
SIPI 0.8750 0.1579 0.0769 0.9529

mCAI 0.8750 0.1905 0 0.8902
PSSRa 0.5625 0.4286 0.4545 0.5020
PSSRb 0.9375 0.1053 0 0.9451
PSSRc 0.5938 0.4091 0.4000 0.6549
GM1 0.6563 0.2500 0.4000 0.6471
GM2 0.9375 0.1053 0 0.9529
ZTM 0.9375 0.1053 0 0.9490

TCARI/OSAVI 0.8750 0.1905 0 0.8314

Vermentino

NDVI 0.9063 0.1111 0.0714 0.9412
PRI 0.9063 0.1111 0.0714 0.8863
ARI 0.6875 0.3333 0.2727 0.6706
SIPI 0.3438 0.5909 0.8000 0.2627
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Table A1. Cont.

Grapevine Variety SVIs Accuracy (%) FNR (%) FPR (%) AUC

Vermentino

mCAI 0.8438 0.2000 0.0833 0.8667
PSSRa 0.5000 0.4737 0.5385 0.5373
PSSRb 0.7813 0.2222 0.2143 0.8824
PSSRc 0.6250 0.3684 0.3846 0.6000
GM1 0.9063 0.1111 0.0714 0.9608
GM2 0.8750 0.1176 0.1333 0.9255
ZTM 0.9375 0.0588 0.0667 0.9490

TCARI/OSAVI 0.8438 0.2000 0.0833 0.9490

Chardonnay

NDVI 0.9063 0.1111 0.0714 0.9059
PRI 0.8438 0.2000 0.0833 0.9647
ARI 0.6875 0.2941 0.3333 0.6784
SIPI 0.3750 0.5652 0.7778 0.4314

mCAI 0.8438 0.1667 0.1429 0.9137
PSSRa 0.5938 0.4091 0.4000 0.5725
PSSRb 0.8125 0.2105 0.1538 0.9490
PSSRc 0.5313 0.4286 0.5000 0.5235
GM1 0.8750 0.1176 0.1333 0.9020
GM2 0.8750 0.1176 0.1333 0.9098
ZTM 0.9063 0.1111 0.0714 0.9176

TCARI/OSAVI 0.8438 0.1667 0.1429 0.8902

Red

NDVI 0.9206 0.1316 0 0.9545
PRI 0.9365 0.1081 0 0.9576
ARI 0.9524 0.0588 0.0345 0.9980
SIPI 0.5556 0.4359 0.4583 0.6768

mCAI 0.8254 0.2195 0.0455 0.8566
PSSRa 0.5397 0.4118 0.4483 0.6000
PSSRb 0.8413 0.2250 0.0870 0.8707
PSSRc 0.4444 0.5405 0.6154 0.4313
GM1 0.5079 0.3462 0.4324 0.5081
GM2 0.9206 0.1316 0 0.8758
ZTM 0.9206 0.1316 0 0.9414

TCARI/OSAVI 0.6825 0.270 0.2308 0.7232

White

NDVI 0.6094 0.3667 0.4118 0.6393
PRI 0.5313 0.4286 0.4091 0.4633
ARI 0.8750 0.1795 0.0400 0.9013
SIPI 0.8438 0.2051 0.0800 0.8700

mCAI 0.8281 0.2439 0.0870 0.8123
PSSRa 0.8125 0.2353 0.2333 0.8485
PSSRb 0.7188 0.2941 0.3000 0.7185
PSSRc 0.8906 0.0938 0.1250 0.9501
GM1 0.9063 0.0882 0.0667 0.9550
GM2 0.5781 0.4194 0.4545 0.5464
ZTM 0.5781 0.3704 0.4324 0.6295

TCARI/OSAVI 0.9219 0.1111 0.0357 0.9247

All

NDVI 0.6614 0.3043 0.2931 0.7251
PRI 0.6063 0.4063 0.4286 0.5593
ARI 0.8268 0.1884 0.1552 0.8970
SIPI 0.8898 0.1549 0.0893 0.9134

mCAI 0.8898 0.1471 0.1186 0.8841
PSSRa 0.8661 0.1667 0.0909 0.8605
PSSRb 0.5669 0.4179 0.4333 0.6022
PSSRc 0.6378 0.2833 0.3284 0.6772
GM1 0.8110 0.1940 0.1833 0.8658
GM2 0.6614 0.3158 0.2549 0.7318
ZTM 0.5984 0.4154 0.4355 0.6278

TCARI/OSAVI 0.9213 0.1351 0.0189 0.9221
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Table A2. Results of SVIs in classifying different groups of spectral data acquired in the September
acquisition campaign (Severity of infestation = 2).

Grapevine Variety SVIs Accuracy (%) FNR (%) FPR (%) AUC

Marselan

NDVI 0.7604 0.2400 0.2391 0.7234
PRI 0.6250 0.3774 0.3721 0.6018
ARI 0.9688 0.0400 0.0217 0.9805
SIPI 0.7917 0.1778 0.2353 0.7972

mCAI 0.9583 0.0213 0.0612 0.9440
PSSRa 0.5104 0.4762 0.5000 0.4774
PSSRb 0.6146 0.3571 0.4074 0.6331
PSSRc 0.6667 0.3509 0.3077 0.6817
GM1 0.9479 0.0769 0.0227 0.9709
GM2 0.8021 0.2222 0.1667 0.7933
ZTM 0.7292 0.2653 0.2766 0.7117

TCARI/OSAVI 0.9375 0.0784 0.0444 0.9431

Grenache

NDVI 0.6543 0.3784 0.3182 0.6867
PRI 0.6914 0.3000 0.3137 0.6873
ARI 0.9753 0.0270 0.0227 0.9988
SIPI 0.8395 0.2273 0.0811 0.8747

mCAI 0.9383 0.0789 0.0465 0.9681
PSSRa 0.7407 0.2500 0.2653 0.7377
PSSRb 0.5679 0.4667 0.4118 0.5577
PSSRc 0.7284 0.2222 0.2963 0.7506
GM1 0.9383 0.1190 0 0.9969
GM2 0.6790 0.3514 0.2955 0.7230
ZTM 0.6296 0.4054 0.3409 0.6683

TCARI/OSAVI 0.7901 0.2500 0.1707 0.8974

Vermentino

NDVI 0.9818 0 0.0323 0.9600
PRI 0.9455 0.0769 0.0345 0.9613
ARI 0.7455 0.2105 0.2778 0.8080
SIPI 0.9273 0.0435 0.0938 0.9560

mCAI 0.9818 0 0.0323 0.9613
PSSRa 0.8364 0.2143 0.1111 0.8547
PSSRb 0.9818 0 0.0323 0.9600
PSSRc 0.6727 0.3333 0.3235 0.7320
GM1 0.9455 0.0769 0.0345 0.9573
GM2 0.9636 0.0400 0.0333 0.9600
ZTM 0.9818 0 0.0323 0.9600

TCARI/OSAVI 0.9636 0.0400 0.0333 0.9573

Chardonnay

NDVI 0.9773 0 0.0385 0.9537
PRI 0.9545 0 0.0741 0.9474
ARI 0.9318 0.0556 0.0769 0.9053
SIPI 0.9318 0.1000 0.0417 0.9516

mCAI 0.9773 0 0.0385 0.9474
PSSRa 0.9091 0.1053 0.0800 0.9074
PSSRb 0.9773 0 0.0385 0.9495
PSSRc 0.7955 0.1429 0.2333 0.7853
GM1 0.9773 0 0.0385 0.9495
GM2 0.9773 0 0.0385 0.9516
ZTM 0.9773 0 0.0385 0.9474

TCARI/OSAVI 0.9773 0 0.0385 0.9579

Red

NDVI 0.6836 0.3011 0.2381 0.7092
PRI 0.6554 0.3684 0.3663 0.6776
ARI 0.9831 0.0233 0.0110 0.9991
SIPI 0.8644 0.1573 0.1136 0.8377

mCAI 0.9548 0.0357 0.0430 0.9510
PSSRa 0.5989 0.4143 0.4112 0.5969
PSSRb 0.5763 0.4096 0.3830 0.6084
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Table A2. Cont.

Grapevine Variety SVIs Accuracy (%) FNR (%) FPR (%) AUC

Red

PSSRc 0.6893 0.3049 0.2947 0.7210
GM1 0.9492 0.0957 0 0.9792
GM2 0.7175 0.2929 0.1923 0.7063
ZTM 0.6836 0.3889 0.3448 0.7196

TCARI/OSAVI 0.8870 0.1538 0.0930 0.9633

White

NDVI 0.6465 0.4048 0.3158 0.6956
PRI 0.5859 0.5667 0.4348 0.5199
ARI 0.9899 0 0.0175 0.9788
SIPI 0.9394 0.1064 0.0192 0.9767

mCAI 0.9495 0.0238 0.0351 0.9784
PSSRa 0.9495 0.0476 0.0526 0.9593
PSSRb 0.8889 0.1304 0.0566 0.9435
PSSRc 0.9798 0.0233 0.0179 0.9655
GM1 0.9899 0 0.0175 0.9792
GM2 0.7778 0.2955 0.2182 0.8223
ZTM 0.5657 0.5000 0.4030 0.5793

TCARI/OSAVI 0.9697 0.0233 0.0179 0.9950

All

NDVI 0.4674 0.6184 0.4900 0.4102
PRI 0.8551 0.1944 0.0833 0.9300
ARI 0.7029 0.3411 0.2857 0.7255
SIPI 0.7138 0.3103 0.2938 0.7362

mCAI 0.9420 0.0752 0.0280 0.9540
PSSRa 0.6232 0.3962 0.3706 0.6362
PSSRb 0.7899 0.2819 0.1575 0.8120
PSSRc 0.8188 0.2365 0.1094 0.8512
GM1 0.6775 0.3729 0.3354 0.6991
GM2 0.5181 0.5049 0.4393 0.5523
ZTM 0.5688 0.5208 0.4500 0.5637

TCARI/OSAVI 0.8877 0.1298 0.0897 0.9160

Table A3. Results of SVIs in classifying different groups of spectral data acquired in the August and
the September acquisition campaigns (Severity of infestation = 1 & 2).

Grapevine Variety SVIs Accuracy (%) FNR (%) FPR (%) AUC

Marselan

NDVI 0.6929 0.3030 0.3115 0.7045
PRI 0.7165 0.2899 0.2759 0.7318
ARI 0.9370 0.0870 0.0345 0.9824
SIPI 0.7402 0.2143 0.2958 0.7355

mCAI 0.9213 0.1014 0.0517 0.8901
PSSRa 0.5433 0.4407 0.4706 0.5330
PSSRb 0.5118 0.4776 0.5000 0.5769
PSSRc 0.5984 0.3833 0.4179 0.6150
GM1 0.8583 0.2099 0.0217 0.9164
GM2 0.7087 0.3056 0.2727 0.7419
ZTM 0.7008 0.3151 0.2778 0.7655

TCARI/OSAVI 0.8504 0.1714 0.1228 0.9002

Grenache

NDVI 0.7500 0.2381 0.2623 0.7846
PRI 0.8226 0.1111 0.2286 0.7971
ARI 0.9113 0.1370 0.0196 0.9753
SIPI 0.8226 0.2083 0.1346 0.8521

mCAI 0.9032 0.1286 0.0556 0.9318
PSSRa 0.6048 0.3810 0.4098 0.5828
PSSRb 0.6290 0.3676 0.3750 0.6547
PSSRc 0.6532 0.3279 0.3651 0.6352
GM1 0.8226 0.2558 0 0.8776
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Table A3. Cont.

Grapevine Variety SVIs Accuracy (%) FNR (%) FPR (%) AUC

Grenache
GM2 0.7742 0.2429 0.2037 0.7893
ZTM 0.7661 0.2388 0.2281 0.8089

TCARI/OSAVI 0.7742 0.2857 0.1000 0.7620

Vermentino

NDVI 0.9080 0.0976 0.0870 0.9602
PRI 0.8506 0.1316 0.1633 0.9014
ARI 0.6207 0.3750 0.3818 0.5536
SIPI 0.8161 0.2549 0.0833 0.7937

mCAI 0.8391 0.2353 0.0556 0.8489
PSSRa 0.6897 0.3600 0.2432 0.7312
PSSRb 0.9080 0.0976 0.0870 0.9539
PSSRc 0.6437 0.3438 0.3636 0.5938
GM1 0.9540 0.0698 0.0227 0.9730
GM2 0.9080 0.0976 0.0870 0.9491
ZTM 0.9310 0.0513 0.0833 0.9655

TCARI/OSAVI 0.9425 0.0909 0.0233 0.9459

Chardonnay

NDVI 0.9342 0.1053 0.0263 0.9659
PRI 0.9342 0.0833 0.0500 0.9484
ARI 0.8684 0.0968 0.1556 0.8725
SIPI 0.8026 0.2917 0.0357 0.8474

mCAI 0.9474 0.0811 0.0256 0.9589
PSSRa 0.7237 0.3478 0.1667 0.7582
PSSRb 0.9342 0.1053 0.0263 0.9247
PSSRc 0.5658 0.4688 0.4091 0.5617
GM1 0.9211 0.1081 0.0513 0.9568
GM2 0.9605 0.0556 0.0250 0.9582
ZTM 0.9605 0.0556 0.0250 0.9672

TCARI/OSAVI 0.9342 0.1053 0.0263 0.9568

Red

NDVI 0.7331 0.2908 0.2545 0.7578
PRI 0.6773 0.2719 0.3285 0.7174
ARI 0.9323 0.1119 0.0093 0.9888
SIPI 0.7968 0.2180 0.2034 0.8010

mCAI 0.9203 0.1087 0.0442 0.9126
PSSRa 0.5817 0.3760 0.3968 0.5854
PSSRb 0.6574 0.3630 0.3621 0.6756
PSSRc 0.5936 0.3740 0.3984 0.5963
GM1 0.8486 0.2289 0 0.9032
GM2 0.7809 0.2414 0.1698 0.7743
ZTM 0.7331 0.2727 0.2222 0.7531

TCARI/OSAVI 0.8088 0.2437 0.0769 0.8270

White

NDVI 0.6687 0.3333 0.3398 0.6903
PRI 0.5644 0.4559 0.4000 0.5352
ARI 0.9509 0.0864 0.0122 0.9433
SIPI 0.9264 0.1395 0.0130 0.9517

mCAI 0.9202 0.1125 0.0482 0.9385
PSSRa 0.9202 0.1235 0.0488 0.9477
PSSRb 0.8037 0.2527 0.0972 0.8503
PSSRc 0.9202 0.1395 0.0130 0.9456
GM1 0.9387 0.0988 0.0244 0.9658
GM2 0.6503 0.3200 0.2727 0.6598
ZTM 0.5951 0.4151 0.4000 0.5662

TCARI/OSAVI 0.9387 0.1098 0.0247 0.9659

All

NDVI 0.5242 0.4805 0.4692 0.5060
PRI 0.7850 0.2857 0.1818 0.7996
ARI 0.7271 0.2786 0.2676 0.7574
SIPI 0.7536 0.2764 0.2698 0.7741
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Table A3. Cont.

Grapevine Variety SVIs Accuracy (%) FNR (%) FPR (%) AUC

All

mCAI 0.8841 0.1696 0.0598 0.9184
PSSRa 0.7222 0.2990 0.3000 0.7466
PSSRb 0.7101 0.3103 0.2308 0.7353
PSSRc 0.7343 0.3305 0.2472 0.7374
GM1 0.6884 0.3368 0.3348 0.7130
GM2 0.5459 0.4565 0.4435 0.5687
ZTM 0.5580 0.4176 0.4221 0.5605

TCARI/OSAVI 0.8744 0.1429 0.1078 0.8727
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