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Many scientific disciplines are currently experiencing a “reproducibility crisis” because 58 

numerous scientific findings cannot be repeated consistently. A novel but controversial 59 

hypothesis postulates that stringent levels of environmental and biotic standardization in 60 

experimental studies reduces reproducibility by amplifying impacts of lab-specific 61 

environmental factors not accounted for in study designs. A corollary to this hypothesis is 62 

that a deliberate introduction of controlled systematic variability (CSV) in experimental 63 

designs may lead to increased reproducibility. We tested this hypothesis using a multi-64 

laboratory microcosm study in which the same ecological experiment was repeated in 14 65 

laboratories across Europe. Each laboratory introduced environmental and genotypic CSV 66 

within and among replicated microcosms established in either growth chambers (with 67 

stringent control of environmental conditions) or glasshouses (with more variable 68 

environmental conditions). The introduction of genotypic CSV led to lower among-69 

laboratory variability in growth chambers, indicating increased reproducibility, but had no 70 

significant effect in glasshouses where reproducibility was generally lower. Environmental 71 

CSV had little effect on reproducibility. Although there are multiple causes for the 72 

“reproducibility crisis”, deliberately including genetic variation may be a simple solution 73 

for increasing the reproducibility of ecological studies performed in controlled 74 

environments.   75 

 76 

Reproducibility—the ability to duplicate a study and its findings—is a defining feature of 77 

scientific research. In ecology, it is often argued that it is virtually impossible to accurately 78 

duplicate any single ecological experiment or observational study. The rationale is that the 79 

complex ecological interactions between the ever-changing environment and the extraordinary 80 
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diversity of biological systems exhibiting a wide range of plastic responses at different levels of 81 

biological organization make exact duplication unfeasible1,2. Although this may be true for 82 

observational and field studies, numerous ecological (and agronomic) studies are carried out with 83 

artificially assembled simplified ecosystems and controlled environmental conditions in 84 

experimental microcosms or mesocosms (henceforth, “microcosms”)3–5. Since biotic and 85 

environmental parameters can be tightly controlled in microcosms, results from such studies 86 

should be easier to reproduce. Even though microcosms have frequently been used to address 87 

fundamental ecological questions4,6,7, there has been no quantitative assessment of the 88 

reproducibility of any microcosm experiment. 89 

Experimental standardization— the implementation of strictly defined and controlled 90 

properties of organisms and their environment—is widely thought to increase both 91 

reproducibility and sensitivity of statistical tests8,9 because it reduces within-treatment 92 

variability. This paradigm has been recently challenged by several studies on animal behavior, 93 

suggesting that stringent standardization may, counterintuitively, be responsible for generating 94 

non-reproducible results9–11 and contribute to the actual reproducibility crisis12–15; the results 95 

may be valid under given conditions (i.e., they are local “truths”) but are not generalizable8,16. 96 

Despite rigorous adherence to experimental protocols, laboratories inherently vary in many 97 

conditions that are not measured and are thus unaccounted for, such as experimenter, micro-scale 98 

environmental heterogeneity, physico-chemical properties of reagents and lab-ware, pre-99 

experimental conditioning of organisms, and their genetic and epigenetic background. It even has 100 

been suggested that attempts to stringently control all sources of biological and environmental 101 

variation might inadvertently lead to the amplification of the effects of these unmeasured 102 

variations among laboratories, thus reducing reproducibility9–11.  103 
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Some studies have gone even further, hypothesizing that the introduction of controlled 104 

systematic variation (CSV) among the replicates of a treatment (e.g., using different genotypes or 105 

varying the organisms’ pre-experimental conditions among the experimental replicates) should 106 

lead to less variable mean response values between the laboratories that duplicate the 107 

experiments9,11. In short, it has been argued that reproducibility may be improved by shifting the 108 

variance from among experiments to within them9. If true, then introducing CSV will increase 109 

researchers’ ability to draw generalizable conclusions about the directions and effect sizes of 110 

experimental treatments and reduce the probability of false positives. The trade-off inherent to 111 

this approach is that increasing within-experiment variability will reduce the sensitivity (i.e. the 112 

probability of detecting true positives) of statistical tests. However, it currently remains unclear 113 

whether introducing CSV increases reproducibility of ecological microcosm experiments, and if 114 

so, at what cost for the sensitivity of statistical tests. 115 

To test the hypothesis that introducing CSV enhances reproducibility in an ecological 116 

context, we had 14 European laboratories simultaneously run a simple microcosm experiment 117 

using grass (Brachypodium distachyon L.) monocultures and grass and legume (Medicago 118 

truncatula Gaertn.) mixtures. As part of the reproducibility experiment, the 14 laboratories 119 

independently tested the hypothesis that the presence of the legume species M. truncatula in 120 

mixtures would lead to higher total plant productivity in the microcosms and enhanced growth of 121 

the non-legume B. distachyon via rhizobia-mediated nitrogen fertilization and/or nitrogen 122 

sparing effects17–19.  123 

All laboratories were provided with the same experimental protocol, seed stock from the 124 

same batch, and identical containers in which to establish microcosms with grass only and grass-125 

legume mixtures. Alongside a control (CTR) with no CSV and containing a homogenized soil 126 
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substrate (mixture of soil and sand) and a single genotype of each plant species, we explored the 127 

effects of five different types of within- and among-microcosm CSV on experimental 128 

reproducibility of the legume effect (Fig. 1): 1) within-microcosm environmental CSV (ENVW) 129 

achieved by spatially varying soil resource distribution through the introduction of six sand 130 

patches into the soil; 2) among-microcosm environmental CSV (ENVA), which varied the 131 

number of sand patches (none, three, or six) among replicate microcosms; 3) within-microcosm 132 

genotypic CSV (GENW) that used three distinct genotypes per species planted in homogenized 133 

soil in each microcosm; 4) among-microcosm genotypic CSV (GENA) that varied the number of 134 

genotypes (one, two, or three) planted in homogenized soil among replicate microcosms; and 5) 135 

both genotypic and environmental CSV (GENW+ENVW) within microcosms that used six sand 136 

patches and three plant genotypes per species in each microcosm. In addition, we tested whether 137 

CSV effects are modified by the level of standardization within laboratories by using two 138 

common experimental approaches (‘SETUP’ hereafter): growth chambers with tightly controlled 139 

environmental conditions and identical soil (eight laboratories) or glasshouses with more loosely 140 

controlled environmental conditions and different soils (six laboratories; see Supplementary 141 

Table 1 for the physico-chemical properties of the soils).  142 

We measured 12 parameters representing a typical ensemble of response variables reported 143 

for plant-soil microcosm experiments. Six of these were measured at the microcosm-level: shoot 144 

biomass, root biomass, total biomass, shoot-to-root ratio, evapotranspiration, and decomposition 145 

of a common substrate using a simplified version of the “teabag litter decomposition method”20. 146 

The other six were measured on B. distachyon alone: seed biomass, height, and four shoot-tissue 147 

chemical variables; N%, C%, δ15N, δ13C. All 12 variables were then used to calculate the effect 148 

of the presence of a nitrogen-fixing legume on ecosystem functions in grass-legume mixtures 149 
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(‘net legume effect’ hereafter) (Supplementary Table 2), calculated as the difference between the 150 

values measured in the microcosms with and without legumes, an approach often used in 151 

legume-grass binary cropping systems19,21 and biodiversity-ecosystem function experiments17,22.  152 

Statistically significant differences among the 14 laboratories were considered an indication 153 

of irreproducibility. In the first instance, we assessed how our experimental treatments (CSV and 154 

SETUP) affected the number of laboratories that produced results that could be considered to 155 

have reproduced the same finding. We then determined how experimental treatments affected 156 

standard deviation (SD) of the legume effect for each of the 12 variables both within- and 157 

among-laboratories; lower among-laboratory SD implies that the results were more similar, 158 

suggesting increased reproducibility. Lastly, we explored the relationship between within- and 159 

among-laboratory SD, and how the experimental treatments affected the statistical power of 160 

detecting the net legume effect. 161 

Although each laboratory followed the same experimental protocol, we found a remarkably 162 

high level of among-laboratory variation for most response variables (Supplementary Fig. 1) and 163 

the net legume effect on those variables (Fig. 2). For example, the net legume effect on mean 164 

total plant biomass varied among laboratories from 1.31 to 6.72 g dry weight (DW) per 165 

microcosm in growth chambers, suggesting that unmeasured laboratory-specific conditions 166 

outweighed effects of experimental standardization. Among glasshouses, differences were even 167 

larger: the net legume effect on mean plant biomass varied by two orders of magnitude, from 168 

0.14 to 14.57g DW per microcosm (Fig. 2). Furthermore, for half of the variables (root biomass, 169 

litter decomposition, grass height, foliar C%, 15C and 15N) the direction of the net legume 170 

effect varied with laboratory. 171 
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Mixed-effects models were used to test the effect of legume species presence (LEG), 172 

laboratory (LAB), CSV, and their interactions (with experimental block—within-LAB growth 173 

chamber or glasshouse bench—as a random factor) on the 12 response variables. The impact of 174 

the presence of legumes varied significantly with laboratory and CSV for half of the variables, as 175 

indicated by the LEG×LAB×CSV three-way interaction (Table 1, Supplementary Figs 2 and 3). 176 

For the other half, significant two-way interactions between LEG×LAB and CSV×LAB were 177 

found. The same significant interactions were found when analyzing the first (PC1) and second 178 

(PC2) principal components from a principal component analysis (PCA) that included all 12 179 

response variables; PC1 and PC2 together explained 45% of the variation (Table 1; 180 

Supplementary Fig. 4ab). Taken together, these results suggest that the effect size or direction of 181 

the net legume effect was significantly different (i.e. not reproducible) in some laboratories and 182 

that the introduced CSV treatment affected reproducibility. In a complementary analysis 183 

including the SETUP in the model (and accounting for the LAB effect as a random factor), we 184 

found that the impact of the CSV treatment varied significantly with the SETUP (CSV×SETUP 185 

or LEG×CSV×SETUP interactions; Supplementary Table 3), suggesting the reproducibility of 186 

the results differed between glasshouses and growth chambers. 187 

To answer the question of how many laboratories produced results that were statistically 188 

indistinguishable from one another (i.e. reproduced the same finding), we used Tukey’s post-hoc 189 

Honest Significant Difference (HSD) test for the LAB effect on the first and second principal 190 

components describing the net legume effect, which together explained 49% of the variation 191 

(Supplementary Fig. 4cd). Out of the 14 laboratories, seven (PC1) and 11 (PC2) laboratories 192 

were statistically indistinguishable in controls; this value increased in the treatments with 193 

environmental or genotypic CSV for PC1 but not PC2 (Table 2). When we analyzed responses in 194 
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growth chambers alone, five of eight laboratories were statistically indistinguishable in controls, 195 

but this increased to six out of eight laboratories when we considered treatments with only 196 

environmental CSV and seven of eight in treatments with genotypic CSV (GENW, GENA and 197 

GENW+ENVW). In glasshouses, introducing CSV did not affect the number of statistically 198 

indistinguishable laboratories with respect to PC1 but decreased the number of statistically 199 

indistinguishable laboratories with respect to PC2 (Table 2). 200 

We also assessed the impact of the experimental treatments on the among- and within-201 

laboratory SD. Analysis of the among-laboratory SD of the net legume effect revealed a 202 

significant CSV×SETUP interaction (F5,121=7.38, P < 0.001) (Fig. 3a, b). This interaction 203 

included significantly lower fitted coefficients (i.e., lower among-laboratory SD) in growth 204 

chambers for GENW (t5,121 = -3.37, P = 0.001), GENA (t5,121 = -2.95, P = 0.004) and 205 

ENVW+GENW (t1,121 = -3.73, P < 0.001) treatments relative to CTR (see full model output for 206 

among-laboratory SD in Supplementary Note). For these three treatments, the among-laboratory 207 

SD of the net legume effect was 18% lower with genotypic CSV than without it, indicating 208 

increased reproducibility (Fig. 3a). The same analysis performed on within-laboratory SD of the 209 

net legume effect only found a slight but significant increase of within-laboratory SD in the 210 

GENA treatment (t5,121 = 3.52, P < 0.001) (see model output for within-laboratory SD in 211 

Supplementary Note). We then tested whether there was a relationship between within- and 212 

among-laboratory SD with a statistical model for among-laboratory SD as a function of within-213 

laboratory SD, SETUP, CSV and their interactions. We found a significant within-laboratory 214 

SD×SETUP×CSV three-way interaction (F5,109 = 2.4, P < 0.040) affecting among-laboratory SD 215 

(Supplementary Note). This interaction was the result of a more negative relationship between 216 
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within- and among-laboratory SD in glasshouses relative to growth chambers, but with different 217 

slopes for the different CSV treatments (Fig. 4).  218 

Introducing CSV can increase within-laboratory variation, as indicated by the positive 219 

coefficients fitted in some of the CSV treatments in the model output for within-laboratory SD 220 

(see Supplementary Note). Thus, for the three CSV treatments that produced the most consistent 221 

results (GENW, GENA, ENVW+GENW), we analyzed the statistical power of detecting the net 222 

legume effect within individual laboratories. In growth chambers, adding genotypic CSV led to a 223 

slight reduction in statistical power relative to CTR (57% in CTR vs. 46% in the three treatments 224 

containing genotypic variability) that could have been compensated for by using eleven instead 225 

of six replicated microcosms per treatment. In glasshouses, owing to a higher effect size of 226 

legume presence on the response variables, the statistical power for detecting the legume effect 227 

in CTR was slightly higher (68%) than in growth chambers, but was reduced to 51% on average 228 

for the three treatments containing genotypic CSV, a decrease that could have been compensated 229 

for by using 16 replicated microcosms instead of six. 230 

Overall, our study shows that results produced by microcosm experiments can be strongly 231 

biased by lab-specific factors. Based on the principal component explaining most of the variation 232 

in the twelve response variables (PC1), only seven out of the 14 laboratories produced results 233 

that can be considered reproducible (Table 2) with the current standardization procedures. This 234 

result is in line with the only other comparable study12 (to the best of our knowledge) reporting 235 

that out of ten laboratories, only four generated similar leaf growth phenotypes of Arabidopsis 236 

thaliana (L). In addition to highlighting that approximately one in two ecological studies 237 

performed in microcosms under controlled environments produce statistically different results, 238 

our study provides supporting evidence for the hypothesis that introducing genotypic CSV can 239 
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increase reproducibility of ecological studies9–11. However, the effectiveness of genotypic CSV 240 

for enhancing reproducibility varied with the setup; it led to lower (−18%) among-laboratory SD 241 

in growth chambers only, with no benefit observed in glasshouses. Lower among-laboratory SD 242 

in growth chambers implies that the microcosms containing genotypic CSV were less strongly 243 

affected by unaccounted-for lab-specific environmental or biotic variables. Analyses performed 244 

at the level of individual variables (Table 1) showed that introducing genotypic CSV affected the 245 

among-laboratory SD in most, but not all variables. This suggests that the relationship between 246 

genotypic CSV and reproducibility is probabilistic and results from the decreased likelihood that 247 

microcosms containing CSV will respond to unaccounted for lab-specific environmental factors 248 

in the same direction and with the same magnitude. The mechanism is likely to be analogous to 249 

the stabilizing effect of biodiversity on ecosystem functions under changing environmental 250 

conditions23–26, but additional empirical evidence is needed to confirm this conjecture. 251 

Introducing genotypic CSV increased reproducibility in growth chambers (with stringent 252 

control of environmental conditions) but not in glasshouses (with more variable environmental 253 

conditions). Higher among-laboratory SD in glasshouses may indicate the existence therein of 254 

stronger laboratory-specific factors, and our deliberate use of different soils in the glasshouses 255 

presumably contributed to this effect. However, the among-laboratory SD in glasshouses 256 

decreased with increasing within-laboratory SD, irrespective of CSV, an effect that was less 257 

clear in growth chambers (Fig. 4). This observation appears to be in line with the hypothesis put 258 

forward by Richter et al.9, who proposed that increasing the variance within experiments can 259 

reduce the among-laboratory variability of the mean effect sizes observed in each laboratory. 260 

Yet, despite the negative correlation between within- and among-laboratory SD observed in 261 

glasshouses, the among-laboratory SD remained higher in glasshouses than in growth chambers. 262 
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Therefore, we consider that the hypothesized mechanistic link between CSV-induced higher 263 

within-laboratory SD and increased reproducibility is poorly supported by our dataset. 264 

Nevertheless, one possible explanation for the lack of effect on reproducibility in glasshouses is 265 

that our CSV treatments did not introduce a sufficiently high level of within-laboratory 266 

variability to buffer against laboratory-specific factors for all response variables; across the 267 

twelve response variables, the average main effect (i.e., without the interaction terms) of the 268 

CSV treatment contributed to a low percentage (2.6% ± 1.6 s.e.m.) of the total sum of squares 269 

relative to the main effects of laboratory (43.4% ± 5.2 s.e.m.) and legumes (10.9% ± 3.1 s.e.m.). 270 

A similar conjecture was put forward by the other two studies that explored the role of CSV for 271 

reproducibility in animal behavior9,10. At present we are unable to conclude that the introduction 272 

of stronger sources of controlled within-laboratory variability can increase reproducibility in 273 

glasshouses with more loosely controlled environmental conditions and different soils. 274 

Our results indicate that genotypic CSV is more effective in increasing reproducibility than 275 

environmental CSV, irrespective of whether the CSV was introduced within or among individual 276 

replicates (i.e., microcosms). However, we cannot discount the possibility that we found this 277 

result because our treatments with environmental CSV were less successful in increasing within-278 

microcosm variability. Additional experiments could test whether other types of environmental 279 

CSV, such as soil nutrients, texture, or water availability, might be more effective at increasing 280 

reproducibility.  281 

We expected higher overall productivity (i.e., a net legume effect) in the grass-legume 282 

mixtures and enhanced growth of B. distachyon because of the presence of the nitrogen (N)-283 

fixing M. truncatula. However, these species were not selected because of their routine pairings 284 

in agronomic or ecological experiments (they are rarely used that way), but rather because they 285 



Milcu et al. 2017 

13/31 

 

are frequently present in controlled environment experiments looking at functional genomics. 286 

Contrary to our expectation, and despite the generally lower 15N signature of B. distachyon in the 287 

presence of N-fixing M. truncatula (suggesting that some of the N fixed by M. truncatula was 288 

taken up by the grass), the biomass of B. distachyon was lower in the microcosms containing M. 289 

truncatula. Seed mass and shoot %N data of B. distachyon was lower in mixtures 290 

(Supplementary Fig. 1), suggesting that the two species competed for N. The lack of a significant 291 

N fertilization effect of M. truncatula on B. distachyon could have resulted from the 292 

asynchronous phenologies of the two species: the 8–10-week life cycle of B. distachyon may 293 

have been too short to benefit from the N fixation by M. truncatula.  294 

Because well-established meta-analytical approaches can account for variation caused by 295 

local factors and still detect the general trends across different types of experimental setups, 296 

environments, and populations, we should ask whether the additional effort required for 297 

introducing CSV in experiments is worthwhile. Considering the current reproducibility crisis in 298 

many fields of science27, we suggest that it is, for at least three reasons. First, some studies 299 

become seminal without any attempts to reproduce them. Second, even if a seminal study that is 300 

flawed due to laboratory-specific biases is later proven wrong, it usually takes significant time 301 

and resources before its impact on the field abates. Third, the current rate of reproducibility is 302 

estimated to be as low as one-third12–14, implying that most data entering any meta-analysis are 303 

biased by unknown lab-specific factors. Addition of genotypic CSV may enhance the 304 

reproducibility of individual experiments and eliminate potential biases in data used in meta-305 

analyses. Last, if each individual study is less affected by laboratory-specific unknown 306 

environmental and biotic factors, then we would also need fewer studies to draw solid 307 

conclusions about the generality of phenomena. Therefore, we argue that investing more in 308 



Milcu et al. 2017 

14/31 

 

making individual studies more reproducible and generalizable will be beneficial in both the 309 

short and long run. At the same time, adding CSV can reduce statistical power to detect 310 

experimental effects, so some additional experimental replicates would be needed when using it.  311 

Arguably, our use of statistical significance tests of effects sizes to determine reproducibility 312 

might be viewed as overly restrictive and better suited to assessing reproducibility of parameter 313 

estimates rather than assessing the generality of the hypothesis under test27. We used this 314 

approach because no generally accepted alternative framework is available to assess how close 315 

the multivariate results from multiple laboratories need to be to conclude that they reproduced 316 

the same finding. It is worth noting that although the direction of the legume effect was the same 317 

in the majority of laboratories, the differences among laboratories were very large (e.g., up to 318 

two orders of magnitude for shoot biomass) and in 10% of the 168 laboratory × variable 319 

combinations (14 laboratories × 12 response variables) the direction of the legume effect differed 320 

from the among-laboratory consensus (Fig. 2).  321 

In conclusion, our study shows that the current standardization procedures used in ecological 322 

microcosm experiments are inadequate in accounting for lab-specific environmental factors and 323 

suggests that introducing controlled variability in experiments may buffer effects of lab-specific 324 

factors. Although there are multiple causes for the reproducibility crisis15,28,29, deliberately 325 

including genetic variation in the studied organisms can be a simple solution for increasing the 326 

reproducibility of ecological studies performed in controlled environments. However, as the 327 

introduced genotypic variability only increased reproducibility in experimental setups with 328 

tightly controlled environmental conditions (i.e., in growth chambers using identical soil), our 329 

study indicates that the reproducibility of ecological experiments can be enhanced by a 330 
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combination of rigorous standardization of environmental variables at the laboratory level as 331 

well as controlled genotypic variability.  332 

 333 
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METHODS  422 

All laboratories tried to the best of their abilities to carry out an identical experimental protocol. 423 

Whereas not all laboratories managed to recreate precisely all details of the experimental 424 

protocol, we considered this to be a realistic scenario under which ecological experiments using 425 

microcosms are performed in glasshouses and growth chambers.  426 

Germination 427 

The seeds from the three genotypes of Brachypodium distachyon (Bd21, Bd21-3 and Bd3-1) and 428 

Medicago truncatula (L000738, L000530 and L000174) were first sterilized by soaking 100 429 

seeds in 100 mL of a sodium hypochlorite solution with 2.6% active chlorine, and stirred for 15 430 

min using a magnet. Thereafter, the seeds were rinsed 3 times in 250 mL of sterile water for 10-431 

20 seconds under shaking. Sterilized seeds were germinated in trays (10 cm deep) filled with 432 

vermiculite. The trays were kept at 4°C in the dark for three days before being moved to light 433 

conditions (300 μmol m-2 s-1 PAR) and 20/16°C and 60/70% air RH for day- and night-time, 434 

respectively. When the seedlings of both species reached 1 cm in height above the vermiculite, 435 

they were transplanted into the microcosms.  436 

Preparation of microcosms 437 

All laboratories used identical containers (2-liter volume, 14.8-cm diameter, 17.4-cm height). 438 

Sand patches were created using custom-made identical “patch makers” consisting of six rigid 439 

PVC tubes (2.5 cm in diameter and 25 cm long), arranged in a circular pattern with an outer 440 

diameter of 10 cm. A textile mesh was placed at the bottom of the containers to prevent the 441 

spilling of soil through drainage holes. Filling of microcosms containing sand patches started 442 

with the insertion of the empty tubes into the containers. Thereafter, in growth chambers, 2000-g 443 

dry-weight of soil, subtracting the weight of the sand patches, was added into the containers and 444 
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around the “patch maker” tubes. Because different soils were used in the glasshouses, the dry 445 

weight of the soil differed depending on the soil density and was first estimated individually in 446 

each laboratory as the amount of soil needed to fill the pots up to 2 cm from the top. After the 447 

soil was added to the containers, the tubes were filled with a mixture of 10% soil and 90% sand. 448 

When the microcosms did not contain sand patches, the amount of sand otherwise contained in 449 

the six patches was homogenized with the soil. During the filling of the microcosms, a common 450 

substrate for measuring litter decomposition was inserted at the center of the microcosm at 8 cm 451 

depth. For simplicity as well as for its fast decomposition rate, we used a single batch of 452 

commercially available tetrahedron-shaped synthetic tea bags (mesh size of 0.25 mm) containing 453 

2 g of green tea (Lipton, Unilever), as proposed by the “tea bag index” method20. Once filled, the 454 

microcosms were watered until water could be seen pouring out of the pot. The seedlings were 455 

then manually transplanted to predetermined positions (Fig. 1), depending on the genotype and 456 

treatment. Each laboratory established two blocks of 36 microcosms each, resulting in a total of 457 

72 microcosms per laboratory, with blocks representing two distinct chambers in growth 458 

chamber setups or two distinct growth benches in the same glasshouse. 459 

Soils 460 

All laboratories using growth chamber setups used the same soil, whereas the laboratories using 461 

glasshouses used different soils (see Supplementary Table 1 for the physicochemical properties 462 

of the soils). The soil used in growth chambers was classified as a nutrient-poor cambisol and 463 

was collected from the top layer (0–20 cm) of a natural meadow at the Centre de Recherche en 464 

Ecologie Expérimentale et Prédictive—CEREEP (Saint-Pierre-Lès-Nemours, France). Soils used 465 

in glasshouses originated from different locations. The soil used by laboratory L2 was a fluvisol 466 

collected from the top layer (0-40 cm) of a quarry site near Avignon, in the Rhône valley, 467 
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Southern France. The soil used by laboratory L4 was collected from near the La Cage field 468 

experimental system (Versailles, France) and was classified as a luvisol. The soil used by labs 469 

L11 and L12 was collected from the top layer (0-20cm) within the haugh of the river Dreisam in 470 

the East of Freiburg, Germany. This soil was classified as an umbric gleysol with high organic 471 

carbon content. The soil from laboratory L14 was classified as a eutric fluvisol and was collected 472 

on the field site of the Jena Experiment, Germany. Prior to the establishment of microcosms, all 473 

soils were air-dried at room temperature for several weeks and sieved with a 2-mm mesh sieve. 474 

A common inoculum was provided to all laboratories to assure that rhizobia specific to M. 475 

truncatula were present in all soils.  476 

Abiotic environmental conditions 477 

The set points for environmental conditions were 16 h light (at 300 μmol m-2 s-1 PAR) and 8 h 478 

dark, 20/16°C, 60/70% air RH for day- and night-time, respectively. Different soils (for 479 

glasshouses) and treatments with sand patches likely affected water drainage and 480 

evapotranspiration. The watering protocol was thus based on dry weight relative to weight at full 481 

water holding capacity (WHC). The WHC was estimated based on the weight difference between 482 

the dry weight of the containers and the wet weight of the containers 24 h after abundant 483 

watering (until water was flowing out of the drainage holes in the bottom of each container). Soil 484 

moisture was maintained between 60 and 80% of WHC (i.e. the containers were watered when 485 

the soil water dropped below 60% of WHC and water added to reach 80% of WHC) during the 486 

first 3 weeks after seedling transplantation and between 50 and 70% of WHC for the rest of the 487 

experiment. Microcosms were watered twice a week with estimated WHC values from two 488 

microcosms per treatment. To ensure that the patch/heterogeneity treatments did not become a 489 

water availability treatment, all containers were weighed and brought to 70 or 80% of WHC 490 
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every two weeks. This operation was synchronized with within-block randomization. All 14 491 

experiments were performed between October 2014 and March 2015.  492 

Sampling and analytical procedures 493 

After 80 days, all plants were harvested. Plant shoots were cut at the soil surface, separated by 494 

species, and dried at 60ºC for three days. Roots and any remaining litter in the tea bags were 495 

washed out of the soil using a 1-mm mesh sieve and dried at 60ºC for three days. Microcosm 496 

evapotranspiration rate was measured before the harvesting as the difference in weight changes 497 

from 70% of WHC after 48 h. Shoot C%, N%, δ13C, and δ15N were measured on pooled shoot 498 

biomass (including seeds) of B. distachyon and analyzed at the Göttingen Centre for Isotope 499 

Research and Analysis using a coupled system consisting of an elemental analyzer (NA 1500, 500 

Carlo Erba, Milan, Italy) and a gas isotope mass spectrometer (MAT 251, Finnigan, Thermo 501 

Electron Corporation, Waltham, Massachusetts, USA).  502 

Data analysis and statistics 503 

All analyses were done using R version 3.2.429. Prior to data analyses, each laboratory was 504 

screened individually for outliers. Values that were lower or higher than 1.5 × IQR (interquartile 505 

range)30 within each laboratory, and representing less than 1.7% of the whole dataset, were 506 

considered to be outliers due to measurement errors or typos. These values were removed and 507 

subsequently treated as missing values. We then assessed whether the impact of the presence of 508 

legume (LEG) varied with laboratory (LAB) and the treatment of controlled systematic 509 

variability (CSV). This was tested individually for each response variable (Table 1) with a 510 

mixed-effects model using the “nlme” package31. Following the guidelines suggested by Zuur et 511 

al. (2009)32, we first identified the most appropriate random structure using a restricted 512 

maximum likelihood (REML) approach and selected the random structure with the lowest 513 
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Akaike information criterion (AIC). For this model, CSV and LAB were included as fix factors, 514 

experimental block as a random factor, and a “varIdent” weighting function to correct for 515 

heteroscedasticity resulting from more heteroscedastic data at the LAB and LEG level (R syntax: 516 

“model= lme (response variable ~ LEG*CSV*LAB, random=~1|block, weights=varIdent (form 517 

= ~1|LAB*LEG)”) (Table 2). As the LAB and SETUP experimental factors were not fully 518 

crossed (i.e. laboratories performed the experiment only in one type of setup), the two 519 

experimental variables could not be included simultaneously as fixed effects. Therefore, to test 520 

for the SETUP effect, we used an additional complementary model including CSV and SETUP 521 

as fix effects and laboratory as a random factor (R syntax: “model= lme (response variable ~ 522 

LEG*CSV*SETUP, random=~1|LAB/block, weights=varIdent (form = ~1|LAB*LEG)”) 523 

(Supplementary Table 3). To test whether the results were affected by the collinearity among the 524 

response variables, the two models also were run on the first (PC1) and second (PC2) principal 525 

components the 12 response variables (Fig. 4ab). PCs were estimated using the “FactoMineR” 526 

package33, with missing values replaced using a regularized iterative multiple correspondence 527 

analysis34 in the “missMDA” package35. The same methodology was used to compute a second 528 

PCA derived from the net legume effect on the 12 response variables (Supplementary Fig. 4cd). 529 

To assess how many laboratories produced results that were statistically indistinguishable from 530 

one another, we applied Tukey’s post-hoc HSD test in the “multcomp” package to lab-specific 531 

estimates of PC1 and PC2 (Table 2). 532 

To assess how the CSV treatments affected the among- and within-laboratory variability, 533 

we used the standard deviation (SD) instead of the coefficient of variation, because the net 534 

legume effect contained both positive and negative values. To calculate among- and within-535 

laboratory SDs, we centered and scaled the raw values using the z-score normalization [z-scored 536 
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variable = (raw value–mean)/SD] individually for each of the 12 response variables. Among-537 

laboratory SD was computed from the mean of the laboratory z-scores for each response 538 

variable, CSV, and SETUP treatments (n = 144; 6 CSV levels × 2 SETUP levels × 12 response 539 

variables). Within-laboratory SDs were computed from the values measured in the six replicated 540 

microcosms for each CSV and SETUP treatment combination, individually for each response 541 

variable, resulting in a dataset with the same structure as for among-laboratory SDs (n = 144; 6 542 

CSV levels × 2 SETUP levels × 12 response variables). Some of the 12 response variables were 543 

intrinsically correlated, but most had correlation coefficients < 0.5 (Supplementary Fig. 5) and 544 

were therefore treated as independent variables. To analyze and visualize the relationships 545 

between the SDs calculated from variables with different units, before the calculation of the 546 

among- and within-laboratory SD, the raw values of the 12 response variables were centered and 547 

scaled. 548 

The impact of experimental treatments on among- and within-laboratory SD was analyzed 549 

using mixed-effect models, following the same procedure described for the individual response 550 

variables. The model with the lowest AIC included a random slope for the SETUP within each 551 

response variable as well as a “varIdent” weighting function to correct for heteroscedasticity at 552 

the variable level (R syntax: “model= lme (SD ~ CSV*SETUP, random=~SETUP|variable, 553 

weights=varIdent (form = ~1|variable)) (see also Supplementary Notes). The relationship 554 

between within- and among-laboratory SD also was tested with a model with similar random 555 

structure but with among-laboratory SD as a dependent variable and within-laboratory SD, CSV, 556 

and SETUP as predictors.   557 

Because the treatments containing genotypic CSV increased reproducibility in growth 558 

chambers, but slightly increased within-laboratory SD, we also examined the effect of adding 559 
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CSV on the statistical power for detecting the net legume effect in each individual laboratory. 560 

This analysis was done with the “power.anova.test” function in the “base” package. We 561 

computed the statistical power of detecting a significant net legume effect (if one had used a one-562 

way ANOVA for the legume treatment) for CTR, GENW, GENA and ENVW+GENW treatments 563 

for each laboratory and response variable. This allowed us to calculate the average statistical 564 

power for the aforementioned treatments and how many additional replicates would have been 565 

needed to achieve the same statistical power as we had in the CTR.  566 

The data that support the findings of this study are publicly available at 567 

https://doi.pangaea.de/10.1594/PANGAEA.880980 568 
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Table 1 | Impact of experimental treatments on response variables. Mixed-effects model outputs summarizing the F- and P-values 584 

(as asterisks) for the impacts of the presence of legumes (LEG), controlled systematic variability (CSV) and laboratory (LAB) on the 585 

12 response variables. We also present the impact of experimental treatments on the first and second principal components (PC1 and 586 

PC2) of all 12 response variables. The response variables we measured are a typical ensemble of variables measured in plant-soil 587 

microcosm experiments (BM = biomass). † symbol indicates response variables measured for the grass B. distachyon only, whereas 588 

the rest of the variables were measured at the microcosm level, i.e. including the contribution of both the legume and the grass species. 589 

Asterisks indicate the significance levels (*** for P < 0.001; ** for P < 0.01; * for P < 0.05; + for P < 0.1; ns for P >0.1). DF = 590 

numerator degrees of freedom. 591 

 592 

 593 
 

DF Shoot BM Root BM Seed BM† Total BM Shoot/Root Grass height† Shoot N%† 

LEG 1 4602.95 (***) 1131.65 (***) 2186.64 (***) 690.73 (***) 1137.01 (***) 3.33 (+) 449.87 (***) 

CSV 5 15.57 (***) 23.93 (***) 58.01 (***) 1.78 (ns.) 23.98 (***) 23.36 (***) 0.78 (ns.) 

LAB 13 1088.67 (***) 182.53 (***) 364.57 (***) 1251.96 (***) 183.42 (***) 317.33 (***) 335.18 (***) 

LEG×CSV 5 23.64 (***) 4.48 (***) 33.62 (***) 3.49 (**) 4.51 (***) 2.62 (*) 1.34 (ns) 

LEG×LAB 13 235.99 (***) 40.58 (***) 78.17 (***) 116.63 (***) 40.38 (***) 49.89 (***) 14.12 (***) 

CSV×LAB 65 6.55 (***) 3.15 (***) 6.93 (***) 7.33 (***) 3.17 (***) 10.16 (***) 1.98 (***) 

LEG×LAB×CSV 65 2.22 (***) 1.12 (ns.) 2.70 (***) 1.18 (ns.) 1.12 (ns.) 1.45 (*) 1.71 (***) 
  

n = 1005 n = 989 n = 997 n = 976 n = 987 n = 1008 n = 1008 
  

     

  

 

DF Shoot C%† Shoot δ15N† Shoot δ13C† ET Litter PC1 PC2 

LEG 1 110.67 (***) 14.43 (***) 26.62 (***) 1269.93 (***) 1.81 (ns.) 1242.53 (***) 988.88 (***) 

CSV 5 0.16 (ns.) 8.85 (***) 75.73 (***) 9.37 (***) 1.05 (ns.) 12.87 (***) 22.56 (***) 
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LAB 13 174.50 (***) 258.30 (***) 888.42 (***) 748.66 (***) 117.34 (***) 920.65 (***) 513.83 (***) 

LEG×CSV 5 2.55 (*) 6.48 (***) 5.15 (***) 1.24 (ns.) 1.77 (ns.) 7.08 (***) 11.79 (***) 

LEG×LAB 13 11.90 (***) 16.78 (***) 2.52 (**) 172.74 (***) 2.05 (*) 118.12 (***) 28.22 (***) 

CSV×LAB 65 1.67 (**) 4.39 (***) 4.97 (***) 21.69 (***) 2.97 (***) 7.22 (***) 2.76 (***) 

LEG×LAB×CSV 65 1.33 (*) 1.84 (***) 1.23 (ns.) 1.53 (**) 1.17 (ns.) 0.93 (ns.) 1.65 (**) 

  n = 1008 n = 963 n = 973 n = 1002 n = 974 n = 1008 n = 1008 

594 
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Table 2 | Impact of experimental treatments on the number of laboratories that reproduced the 595 

same finding. Numbers represent the total number of statistically indistinguishable laboratories based 596 

on a Tukey’s post-hoc Honest Significant Difference test of the first (PC1) and second (PC2) principal 597 

components of the net legume effect of the 12 response variables (see Supplementary Fig. 4cd for the 598 

PCA results). For a detailed description of experimental treatments and abbreviations, see Fig. 1. 599 

 600 

Source All laboratories  

(n = 14) 

Glasshouses 

(n = 6) 

Growth chambers 

 (n = 8) 

 PC1 PC2 PC1 PC2 PC1 PC2 

CTR 7 11 3 5 5 5 

ENVW 10 9 3 3 6 6 

ENVA 8 8 3 4 6 6 

GENW 8 10 3 3 6 7 

GENA 11 10 3 3 7 8 

ENVW+GENW 11 10 4 3 7 7 

 601 

  602 
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Figure legends 603 

  604 

Fig. 1 | Experimental design of one block. Grass monocultures of Brachypodium distachyon (green 605 

shades) and grass-legume mixtures with the legume Medicago trunculata (orange-brown shades) were 606 

established in 14 laboratories; shades of green and orange-brown represent three distinct genotypes of 607 

B. distachyon (Bd21, Bd21-3 and Bd3-1) and M. truncatula (L000738, L000530 and L000174). Plants 608 

were established in a substrate with equal proportions of sand (black spots) and soil (white), with the 609 

sand being either mixed with the soil or concentrated in sand patches to induce environmental 610 

controlled systematic variability (CSV). Combinations of three distinct genotypes were used to 611 

establish genotypic CSV. Alongside a control (CTR) with no CSV and containing one genotype 612 

(L000738 and/or Bd21) in a homogenized substrate (soil-sand mixture), five different types of 613 

environmental or genotypic CSV were used as treatments: 1) within-microcosm environmental CSV 614 

(ENVW) achieved by spatially varying soil resource distribution through the introduction of six sand 615 

patches into the soil; 2) among-microcosm environmental CSV (ENVA), which varied the number of 616 

sand patches (none, three or six) among replicate microcosms; 3) within-microcosm genotypic CSV 617 

(GENW) that used three distinct genotypes per species planted in homogenized soil in each microcosm; 618 

4) among-microcosm genotypic CSV (GENA) that varied the number of genotypes (one, two or three) 619 

planted in homogenized soil among replicate microcosms; and 5) both genotypic and environmental 620 

CSV (GENW+ENVW) within microcosms that used six sand patches and three plant genotypes per 621 

species in each microcosm. The “× 3” indicates that the same genotypic and sand composition was 622 

repeated in three microcosms per block. The spatial arrangement of the microcosms in each block was 623 

re-randomized every two weeks. The blocks represent two distinct chambers in growth chamber 624 

setups, whereas in glasshouse setups the blocks represent two distinct growth benches in the same 625 

glasshouse.  626 
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 629 

Fig. 2 | Net legume effect for the 12 response variables in 14 laboratories as affected by 630 

laboratory and SETUP (growth chamber vs. glasshouse) treatment. The grey and blue bars 631 

represent laboratories that used growth chamber and glasshouse set-ups, respectively. Bars show 632 

means by laboratory obtained by averaging over all CSV treatments, with error bars indicating ± 1 633 

s.e.m. (n = 72 microcosms per laboratory).  634 
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 638 

Fig. 3 | Among- and within-laboratory standard deviation (SD) of the net legume effect as 639 

affected by experimental treatments. Among-laboratory SD as affected by CSV and SETUP (a) and 640 

SETUP only (b). Within-laboratory SD as affected by CSV and SETUP (c) and SETUP only (d). 641 

Lower among-laboratory SD indicates enhanced reproducibility. Solid-filled bars and striped bars 642 

represent glasshouse (n = 6) and growth chamber setups (n = 8), respectively. Asterisks represent P-643 

values (*** for P < 0.001, ** for P < 0.01, * for P < 0.05) indicating significantly different fitted 644 

coefficients according to the mixed-effects models (see Supplementary Notes for full model outputs); 645 

in (c) the star indicates the significant difference between GENA and CTR, irrespective of the type of 646 

SETUP. For a detailed description of experimental treatments and abbreviations see Fig. 1.  647 



Milcu et al. 2016  

35/31 

 

 648 

  649 



Milcu et al. 2016  

36/31 

 

650 

Fig. 4 | Relationship between within-laboratory SD and among-laboratory SD of the net legume 651 

effect as affected by experimental treatments. The figure illustrates the significant within-laboratory 652 

SD×SETUP×CSV three-way interaction (F5,109 = 2.4, P < 0.040) affecting among-laboratory SD 653 

(Supplementary Note). This interaction is the result of a more negative relationship between within- 654 

and among-laboratory SD in glasshouses relative to growth chambers, but with different slopes for the 655 

different CSV treatments. Points represent the 12 response variables. Asterisks represent P values < 656 
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0.05 for the individual linear regressions. Note the different scale for the y-axis between growth 657 

chambers and glasshouses. For a detailed description of experimental treatments and abbreviations see  658 


