Article Dans Une Revue Future Generation Computer Systems Année : 2018

Benchmarking Top-K Keyword and Top-K Document Processing with T²K² and T²K²D²

Résumé

Top-k keyword and top-k document extraction are very popular text analysis techniques. Top-k keywords and documents are often computed on-the-fly, but they exploit weighted vocabularies that are costly to build. To compare competing weighting schemes and database implementations, benchmarking is customary. To the best of our knowledge, no benchmark currently addresses these problems. Hence, in this paper, we present T²K², a top-k keywords and documents benchmark, and its decision support-oriented evolution T²K²D². Both benchmarks feature a real tweet dataset and queries with various complexities and selectivities. They help evaluate weighting schemes and database implementations in terms of computing performance. To illustrate our bench-marks' relevance and genericity, we successfully ran performance tests on the TF-IDF and Okapi BM25 weighting schemes, on one hand, and on different relational (Oracle, PostgreSQL) and document-oriented (MongoDB) database implementations, on the other hand.
Fichier principal
Vignette du fichier
benchmark.pdf (944.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01717121 , version 1 (19-04-2018)

Licence

Identifiants

Citer

Ciprian-Octavian Truica, Jérôme Darmont, Alexandru Boicea, Florin Radulescu. Benchmarking Top-K Keyword and Top-K Document Processing with T²K² and T²K²D². Future Generation Computer Systems, 2018, 85, pp.60-75. ⟨10.1016/j.future.2018.02.037⟩. ⟨hal-01717121⟩
305 Consultations
376 Téléchargements

Altmetric

Partager

More