Low Probability of Interception Radar Signals Detection, Comparison of a YOLOv8 Model and a Conventional Signal Processing Method - Hub Intelligence Artificielle de CentraleSupélec
Communication Dans Un Congrès Année : 2024

Low Probability of Interception Radar Signals Detection, Comparison of a YOLOv8 Model and a Conventional Signal Processing Method

Détection de signaux radar à faible probabilité d'interception, comparaison d'un modèle YOLOv8 et d'une méthode de traitement conventionnelle

Résumé

Radar interception plays a critical role in electronic warfare by capturing and analyzing enemy radar emissions. Low Probability of Intercept (LPI) signals are designed to minimize detectability, which poses a significant challenge to conventional detection methods. This paper explores the benefit of the YOLOv8 algorithm, a state-of-the-art deep learning model, for detecting LPI radar signals in time-frequency images. A comparative analysis to assess detection performance is conducted with a common sense solution based on energy detector : the Generalized Likelihood Ratio Test (GLRT). Results demonstrate that YOLOv8 achieves detection with a notable improvement in Peak Signal-to-Noise Ratio (PSNR) for every waveform considered.
Fichier sous embargo
Fichier sous embargo
0 4 30
Année Mois Jours
Avant la publication
lundi 21 avril 2025
Fichier sous embargo
lundi 21 avril 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04785369 , version 1 (15-11-2024)

Identifiants

  • HAL Id : hal-04785369 , version 1

Citer

Mazouz Reihan, Picheral José, Marcos Sylvie, Taylor Abigael, Jonathan Bosse. Low Probability of Interception Radar Signals Detection, Comparison of a YOLOv8 Model and a Conventional Signal Processing Method. RADAR 2024, Oct 2024, Rennes, France. ⟨hal-04785369⟩
0 Consultations
0 Téléchargements

Partager

More